
Evaluation of vTAP and Monitoring alternatives for
virtualized 5G Environments

Master’s thesis to obtain the academic degree
Master of Science
in the degree programme Master of Communication Systems and Networks
at the Faculty of Information, Media and Electrical Engineering
of the University of Applied Sciences of Cologne

Submitted by: Edisson Andres Zurita Hidalgo
Matriculation-Nr.: 11156096
Address: Betzdorfer Str. 2

50679 Köln
edisson_andres.zurita_hidalgo@smail.th-koeln.de

Set up by: Prof. Dr. Andreas Grebe
Second reviewer: Prof. Dr. René Wörzberger

Cologne, 10.06.2024

Abstract

In the last two decades, the telecommunication industry has experienced a significant
development in every possible area, beginning with a severe need to transition from
IPv4 to IPv6 addressing system due to multiple reasons: the upcoming need for higher
bandwidth which triggered the irruption of fifth-generation (5G) mobile networks, the
spread of internet up to home and even personal devices, keeping all connected on
top of a new paradigm: everything runs now “on the cloud” (or in a more elegant
term, be as much “Cloud Native” as possible) moving every possible infrastructure
from on-premises devices to the public cloud boosting throughput with less expenses
and surpassing the administrative responsibility to externals, leveraging at the same
time staff capabilities to continuously improve its productivity.

However, this rapid advancement brings a stealthy malicious consequence behind,
lurking silently behind the door: cyber attackers. More devices interconnected means
more data exchanged publicly, with a wider attack surface vulnerable to threat actors
that could exploit any possible vulnerability to gain access to the network, and even
worse, to the data.

The description of how this threads are addressed and modeled is a another thesis
topic itself, but in this project we are focusing on just on the network traffic analysis
that could help during the final phase of an attack, or could be called the post-mortem
phase, where the network administrator could analyze the traffic and determine the
root cause of the attack, and even better, to prevent it from happening again.

This project is a initiative from the Data Network (DN) Laboratory from the University
of Applied Sciences of Cologne, Germany; aims to provide tools to monitor and capture
life traffic from a virtualized 5G environment, so a network administrator is provided
with valid tools for a post-mortem analysis.

I

Contents

List of Tables IV

List of Figures V

1 Introduction 1
1.1 Objectives . 1

2 Fundamentals 2
2.1 5G network fundamentals . 2

2.1.1 Core Concepts of 5G Technology 2
2.1.2 5G Network Concepts . 4
2.1.3 Software-Defined Networking (SDN) and Network Function Vir-

tualization (NFV) . 6
2.2 The Cloud Native Approach . 7

2.2.1 Containers and Microservices 7
2.3 Kubernetes Fundamentals . 11

2.3.1 Background and Evolution . 11
2.3.2 Kubernetes Architecture . 12
2.3.3 Custom Resource Definitions 17
2.3.4 Custom Controllers . 19

2.4 Helm . 21
2.4.1 Helm’s Key Concepts . 21

2.5 Network Monitoring . 23
2.5.1 Key Components of Network Monitoring 23
2.5.2 Challenges of Network Monitoring in Kubernetes 24
2.5.3 Kubernetes Network Monitoring 27
2.5.4 Test Access Points (TAPs) . 30
2.5.5 Virtual Test Access Point (vTAP) 32

2.6 Virtualized 5G Networks . 33
2.6.1 Open5Gs . 33
2.6.2 Free5GC . 36
2.6.3 UERANSIM . 37
2.6.4 srsRAN . 38

2.7 Summary . 38

II

Contents

3 Testbed Design and Implementation 40
3.1 Introduction . 40
3.2 Overview of the Technology Stack . 40

3.2.1 Kubernetes . 40
3.2.2 Calico as Container Network Interface (CNI) 41
3.2.3 Container Runtime Interface 41
3.2.4 5G Simulation Tools . 42
3.2.5 UERANSIM for RAN Simulation 42

3.3 Kubernetes Cluster Design . 43
3.4 Deployment of the 5G Core and RAN in Kubernetes 44
3.5 Testing and Validation . 46

4 Proposed Solutions 49
4.1 Kokotap CLI . 49

4.1.1 Kokotap Way of Working . 51
4.2 Kokotap Custom Resource and Operator 58

4.2.1 Motivation for Kubernetes Custom Operator 59
4.3 Istio Service Mesh with Kiali . 69

4.3.1 Motivation for Istio and Kiali 70
4.3.2 Deploying Istio and Kiali . 70

4.4 Comparison of the Strategies . 76
4.4.1 Evaluation of Strategies . 76

5 Conclusions and Future Work 78
5.1 Conclusions . 78
5.2 Future Work . 80

Bibliography 82

Appendix 84
.1 Appendix A . 84

.1.1 Tables . 84

III

List of Tables

4.1 Comparison of the Strategies . 76

.1 Comparison of Kubernetes, Mesos, and Nomad as Container Orches-
tration Tools . 86

.2 Comparison of CNIs for Kubernetes: Calico, Cilium, and Flannel . . . 88

.3 Comparison of Container Runtimes for Kubernetes: Docker, cri-o, and
containerd . 90

.4 Comparison of Open5GS and Free5GC for 5G Core Network Imple-
mentation . 92

IV

List of Figures

2.1 Microservices Architecture [15] . 9
2.2 Kubernetes Architecture [12] . 12
2.3 Kubernetes Control Loop [7] . 19
2.4 Direct cabling vs. TAP cabling [8] . 30
2.5 Active TAP functioning [8] . 31
2.6 Open5GS Architecture [14] . 34

4.1 Testbed with kokotap . 54
4.2 Wireshark capture of the traffic, filtered to show only GTP 58
4.3 Directory structure generated by Operator SDK 62
4.4 Wireshark capture of the traffic, filtered to show only GTP. Captured

using Kokotap CRD. 69
4.5 Kiali Dashboard showing the traffic in the Kubernetes cluster 72
4.6 Kiali Graph showing the services in the Kubernetes cluster 73
4.7 Kiali Service View showing the metrics of the service 74
4.8 Jaeger Tracing showing the traces of the traffic in the Kubernetes cluster 75

V

1 Introduction

In this thesis, a complete study for evaluating virtual Test Access Points vTAP and
monitoring alternatives for virtualized 5th Generation 5G environments is documents.
This project is a initiative from the Data Network (DN) Laboratory from the University
of Applied Sciences of Cologne, Germany; after multiple studies on the 5G core, focusing
on the networking functioning and its continuous development over the years.

1.1 Objectives

The objectives of the current project are the following:

• Study the theoretical framework behind virtualization, containerization and
orchestration of a 5G environment, as well as the monitoring and vTAP concepts
needed for future sections.

• Evaluate the current state of the art of virtual Test Access Points vTAP for 5G
environments.

• Build a working testbed of a 5G environment, virtualized and deployed in the
private cloud from the DN Lab.

• Propose viable options for vTAP and for monitoring network traffic flowing
across the 5G environment.

• Evaluate the functioning of the proposed solutions and give conclusions that
could lead to further improvements and future work on the subject.

In the second chapter, the main core concepts will be introduced for the reader, so
a successful understanding of the project can be achieved. The third chapter will
present how the testbed was designed and implemented, and also some test of the
right functioning of the target 5G functions. The fourth chapter encompass the
implementation and test of each of the proposed solutions, and the a final chapter
with conclusions and suggesting future work.

Cologne, June 2023

1

2 Fundamentals

In this chapter, a general overview of the concepts that will be used during the
following chapters is introduced, so the common reader can get a formal introduction
of the concepts used during every experimentation and evaluation phase.

2.1 5G network fundamentals

Mobile communication technologies have undergone remarkable transformations over
the past few decades, transitioning from the initial analog systems of the first generation
(1G) to the sophisticated digital and broadband capabilities of the fourth generation
(4G). Each generational leap has been characterized by significant improvements in
speed, capacity, and user experience, culminating in the current development and
deployment of the fifth generation (5G) networks.

The first generation (1G) introduced analog voice communication, enabling mobile
telephony for the first time. The second generation (2G) marked the shift to digital
communication, improving voice quality and enabling text messaging services. The
third generation (3G) brought mobile internet access, facilitating data services such
as web browsing and email on mobile devices. The fourth generation (4G) further
enhanced data speeds and capacity, enabling high-definition video streaming, video
conferencing, and a wide range of mobile applications.

5G is poised to revolutionize the way we connect, communicate, and interact with
our environment, offering unprecedented opportunities for innovation across various
sectors, including healthcare, transportation, entertainment, and industrial automation.
The evolution of mobile networks reflects a continuous effort to meet increasing user
demands and technological advancements.

2.1.1 Core Concepts of 5G Technology

At its core, 5G technology is designed to meet the growing demands for high-speed data
transfer, ultra-reliable low latency communication (URLLC), and massive machine-
type communications (mMTC). These three primary use cases are the pillars upon

2

2 Fundamentals

which 5G is built, addressing the needs of diverse applications ranging from enhanced
mobile broadband (eMBB) to the Internet of Things (IoT) and critical infrastructure
communications.

• Enhanced Mobile Broadband (eMBB): focuses on providing faster data
speeds and more reliable internet connections. This aspect of 5G aims to support
applications such as high-definition video streaming, virtual reality (VR), and
augmented reality (AR), offering users seamless and immersive experiences.
eMBB is essential for consumer applications requiring high bandwidth and low
latency, transforming how we consume media and interact with digital content.

The proliferation of high-definition and 4K video content, along with the emer-
gence of VR and AR technologies, necessitates a robust and high-speed network
infrastructure. 5G’s eMBB capabilities ensure that users can experience un-
interrupted streaming, real-time gaming, and immersive virtual environments
without lag or buffering.

• Ultra-Reliable Low Latency Communication (URLLC): Ultra-Reliable
Low Latency Communication (URLLC) is crucial for applications that require
real-time data transmission with minimal delay. This includes autonomous
vehicles, industrial automation, and remote medical procedures, where reliability
and low latency are critical for safety and performance.

For instance, in autonomous driving, URLLC ensures that vehicles can commu-
nicate with each other and with traffic infrastructure instantaneously, preventing
accidents and optimizing traffic flow. In industrial automation, URLLC supports
the coordination and control of robots and machinery, enhancing productivity
and safety in manufacturing environments. Remote medical procedures, such
as telesurgery, rely on URLLC to transmit precise control commands and high-
definition video feeds, enabling surgeons to perform operations from a distance
with high accuracy and minimal delay.

• Massive Machine-Type Communications (mMTC): Massive Machine-
Type Communications (mMTC) addresses the need for a network capable of
supporting a vast number of connected devices, often with low data rates. mMTC
is essential for the proliferation of IoT devices, smart cities, and connected
agriculture, where billions of sensors and devices need to communicate efficiently.

In smart cities, mMTC enables the deployment of sensors for monitoring air
quality, managing waste, and optimizing energy consumption. Connected agri-
culture benefits from mMTC by using sensors to monitor soil conditions, crop
health, and equipment status, allowing farmers to make data-driven decisions
that optimize irrigation, fertilization, and pest control. The ability to connect

3

2 Fundamentals

a large number of devices simultaneously without network congestion is a key
advantage of mMTC in 5G.

2.1.2 5G Network Concepts

To achieve the ambitious goals of 5G, the network architecture incorporates several
advanced concepts and technologies that transform the way mobile networks are de-
signed, deployed, and managed. These innovations enable 5G to deliver unprecedented
performance, flexibility, and efficiency. Below, we explore these key network concepts
in greater detail.

Network Slicing

Network slicing is a fundamental feature of 5G that allows a single physical network
to be divided into multiple virtual networks, or "slices," each tailored to specific
applications or user requirements. This concept is akin to creating multiple indepen-
dent, end-to-end networks that share the same physical infrastructure but operate in
isolation from one another.

Each network slice can be optimized for different performance characteristics, such as
latency, bandwidth, reliability, and security. For instance:

• A slice dedicated to autonomous vehicles can prioritize ultra-low latency and
high reliability to ensure safe and responsive communication.

• A slice for enhanced mobile broadband (eMBB) can focus on providing high
data rates and large capacity for streaming high-definition video and other
data-intensive applications.

• A slice for massive machine-type communications (mMTC) can support a vast
number of IoT devices with low power consumption and efficient data handling.

Network slicing is made possible through advanced technologies such as Software-
Defined Networking (SDN) and Network Function Virtualization (NFV), which allow
for dynamic and flexible network management. SDN decouples the control plane
from the data plane, enabling centralized and programmable network control. NFV
virtualizes network functions, running them on general-purpose hardware rather than
specialized equipment, which facilitates rapid deployment and scaling of network
services.

4

2 Fundamentals

Massive MIMO (Multiple Input Multiple Output)

Massive MIMO is a technology that significantly enhances the capacity and efficiency
of 5G networks by using a large number of antennas at both the transmitter and
receiver. Unlike traditional MIMO systems that use a few antennas, massive MIMO
systems can employ dozens or even hundreds of antennas.

The key advantages of massive MIMO include:

• Increased Capacity: By transmitting multiple data streams simultaneously,
massive MIMO can support a higher number of users and devices in a given
area, making it ideal for densely populated environments such as urban centers
and stadiums.

• Improved Spectral Efficiency: Improved Spectral Efficiency: Massive MIMO
improves the use of available spectrum, allowing for more data to be transmitted
over the same frequency bands. This leads to better utilization of the limited
radio spectrum and enhances overall network performance.

• Enhanced Signal Quality: The use of multiple antennas enables advanced
signal processing techniques, such as spatial multiplexing and beamforming,
which can improve signal strength and reduce interference. Beamforming, in
particular, focuses the wireless signal towards specific users or devices, enhancing
coverage and reliability.

Massive MIMO is a critical component of 5G networks, enabling them to meet the
high capacity and performance demands of modern mobile communication.

Edge Computing

Edge computing is a paradigm that brings data processing and storage closer to the
location where it is needed, rather than relying on centralized data centers. This is
particularly important for applications requiring real-time data processing, such as
autonomous driving, industrial automation, and augmented reality.

The benefits of edge computing in 5G networks include:

• Reduced Latency: By processing data at the network edge, closer to the
end user, edge computing minimizes the time it takes for data to travel back
and forth between the user and the central data center. This is crucial for
latency-sensitive applications that require immediate responses.

5

2 Fundamentals

• Enhanced Privacy and Security: Processing data locally can mitigate the
risks associated with transmitting sensitive information over long distances. Edge
computing can also enable localized security measures, providing an additional
layer of protection.

• Improved Bandwidth Efficiency: Offloading data processing tasks to edge
nodes reduces the amount of data that needs to be transmitted over the core
network, freeing up bandwidth for other applications and improving overall
network efficiency.

Edge computing integrates with 5G networks through the deployment of edge nodes
or servers at strategic locations, such as base stations or regional data centers. These
edge nodes handle data processing tasks and provide services to users within their
vicinity, ensuring low-latency and high-performance experiences.

2.1.3 Software-Defined Networking (SDN) and Network Function
Virtualization (NFV)

SDN and NFV are key enablers of the flexibility and efficiency of 5G networks, allowing
for more dynamic and programmable network management.

Software-Defined Networking (SDN)

• Centralized Control: SDN separates the control plane from the data plane,
enabling centralized control and management of the network. This allows network
operators to dynamically adjust network configurations and policies in response
to changing demands and conditions.

• Programmability: SDN enables network programmability, allowing operators
to automate network management tasks, deploy new services quickly, and
optimize resource allocation. This flexibility is essential for supporting diverse
5G use cases and applications.

Network Function Virtualization (NFV)

• Virtualized Network Functions: NFV replaces traditional network appli-
ances, such as routers and firewalls, with software-based functions that run on
standard servers. This reduces the reliance on specialized hardware and enables
more efficient use of resources.

6

2 Fundamentals

• Scalability and Agility: NFV allows network functions to be deployed, scaled,
and managed dynamically, providing the agility needed to respond to varying
network conditions and user demands. Virtualized network functions can be
instantiated and terminated as needed, ensuring optimal performance and cost-
efficiency.

Together, SDN and NFV transform 5G networks into flexible, programmable, and
scalable infrastructures capable of meeting the diverse and evolving needs of modern
communication.

2.2 The Cloud Native Approach

The rise of cloud technologies has fundamentally altered our approach to hardware,
system management, and physical networking. Virtual machines have taken over
from physical servers, storage services have replaced discussions of hard drives, and
automation tools have become more prominent. This shift marked an early stage in
rethinking cloud technology. As we better understood the strengths and limitations of
this new model, it also began to reshape how we design applications and services.

Developers and operators started to rethink the strategy of creating large, monolithic
applications that run on powerful hardware. They saw the challenges in maintaining
data integrity while sharing data across various applications. Issues like distributed
locking, storage, and caching moved from academic discussion to mainstream challenges.
Software was increasingly broken into smaller, independent executables. As Brendan
Burns, the founder of Kubernetes, often states, "distributed computing has transitioned
from a specialized subject to a fundamental topic in computer science."

The concept of "cloud native" reflects this shift in perception towards an architecture
that leverages the cloud’s potential and limitations. Designing systems with cloud
capabilities and constraints in mind means creating cloud native systems.

In this section, some key components of the cloud native approach will be introduced,
as they are the basis for the following chapters.

2.2.1 Containers and Microservices

At the core of cloud native computing is the belief that it’s better to use multiple
small, standalone services rather than a single large service that manages everything.
Rather than creating a large application that handles everything from generating the
user interface to processing tasks and managing databases and caches, the cloud native

7

2 Fundamentals

philosophy advocates for developing a collection of specialized services. Each service
performs a specific function and they work together to fulfill a broader purpose. For
example, in such a setup, one service might exclusively manage a relational database.
Other services needing access to this data would interact with it via a representational
state transfer (REST) API, typically using JavaScript Object Notation (JSON) over
HTTP to fetch and update information.

This method allows developers to conceal complex underlying implementations and
focus on providing functionalities that align directly with the application’s business
goals.

Microservices

In traditional setups, an application might have been a single executable handling all
tasks, but in the cloud native landscape, applications are distributed across multiple
separate programs. Each program is responsible for one or a few specific tasks, yet
collectively, they constitute a single cohesive application.

To illustrate, consider an ecommerce website (as shown in the figure below). Various
tasks such as managing a product catalog, handling user accounts and shopping carts,
processing payments, and providing a customer interface could each be handled by
separate components. In the past, these tasks might have been integrated into a single
program running on robust hardware.

However, with a cloud native approach, this ecommerce system would be segmented
into distinct services: one for payment processing, another for the product catalog,
another for administration, and so forth. These services communicate over the network
using clearly defined REST APIs. As an example, see the picture [15] below for a
better understanding.

In its most extreme form, this approach breaks down an application into its smallest
functional units, each represented by a separate program. This is known as microservice
architecture. A microservice is designed to manage only a narrow aspect of the
application’s overall functionality, standing in stark contrast to the monolithic model.

The microservice approach has significantly shaped the development of cloud native
computing, particularly evident in the rise of container technology.

Containers

A common comparison in the tech world is between containers and virtual machines.
While a virtual machine hosts a full operating system in an isolated environment on a

8

2 Fundamentals

Figure 2.1: Microservices Architecture [15]

host machine, a container shares the host’s operating system kernel but maintains its
own filesystem.

Another way to think about containers—a perspective that may be more relevant to
our discussion—is as a method for encapsulating a program’s runtime environment.
This packaging ensures that all dependencies are met when the program is transferred
from one host to another.

This conceptualization introduces some non-technical limitations on how containers
are ideally used. Although it’s technically possible to run multiple programs 1 within
a single container, containers—particularly as designed by Docker—are intended to
house just one main program. [3]

Containers are ideally suited for microservices architecture. Each microservice, small
and self-contained, can be packaged into a container along with all its dependencies,
allowing easy transport from one host to another. Containers eliminate the need
for hosts to maintain all the necessary tools to run the programs they contain. For
instance, if a program requires Python 3, the host doesn’t need to install Python or
its libraries; everything is contained within the container.

1In this context, when we mention "programs," we’re referring to a concept more abstract than
just a binary file. For instance, a Docker container typically contains several executables that
support the main application, but these are secondary to the container’s primary function. A web
server might include additional utilities for startup or other low-level operations, yet the main
web server remains the focus of the container.

9

2 Fundamentals

This setup allows hosts to run multiple containers with differing requirements without
needing to manage these dependencies. For example, a Python 2 container can
run alongside a Python 3 container without any conflict or additional setup by
administrators.

All this changes led to a significant shift in the roles of administrators, operators,
and site reliability engineers (SREs). They are no longer burdened with managing
individual program dependencies. Instead, they can focus on allocating resources like
network, storage, and CPU more effectively for these containerized applications.

While isolation is a key feature of containers, often we need to expose certain aspects
of a container to the outside world, such as network access, storage, or specific
configurations. The container runtime handles these interactions, allowing a container
to integrate into a larger environment, which might include other containers on the
same host or services across the network.

Container Images and Registries Container technology extends into a sophisticated
realm of its own. A container is essentially a program packaged with its dependencies
and environment into a portable format known as a container image. These images
are not single binaries but are composed of layered segments, each identifiable by a
unique identifier. When an image needs to be transferred, only the missing layers need
to be fetched, streamlining the process significantly.

A pivotal component in this system is the image registry, a specialized storage solution
for housing container images. It enables hosts to upload and download container
images, managing the individual layers and ensuring that hosts only download the
layers they lack.

Registries identify images using three key pieces of information:

• Name: This can vary from simple (e.g., nginx) to complex personalized setups
including a dedicated registry URL (e.g., example.com/servers/nginx), depending
on the registry.

• Tag: Typically denotes the software version (e.g., v1.2.3), but can also be a
generic label like ’latest’ or ’stable’ to indicate the most current or production-
ready version.

• Digest: To ensure accuracy in version control, since tags can change, registries
also use a digest—a hash sum of the image’s layers—to pinpoint a specific
version.

10

2 Fundamentals

In summary, while container technology involves complex elements like images
and registries, these concepts set the stage for understanding more advanced
topics like Kubernetes, which we’ll explore in the context of schedulers.

However, containers and microservices brought a new challenge to system administra-
tors and IT technicians in general. How to manage and orchestrate all these containers
and microservices in a efficient and scalable way? This is where Kubernetes comes in,
and its fundamentals will be explained in the next section.

2.3 Kubernetes Fundamentals

Kubernetes, often abbreviated as K8s, is an open-source platform designed to automate
the deployment, scaling, and management of containerized applications. Originally
developed by Google, Kubernetes has become the de facto standard for container
orchestration, supported by a robust community and maintained by the Cloud Native
Computing Foundation (CNCF). This section delves into the fundamental concepts of
Kubernetes, providing a comprehensive understanding of its architecture, components,
and operational principles.

2.3.1 Background and Evolution

The shift towards containerization revolutionized software development and deployment
by enabling applications to run consistently across different environments. Containers
package an application and its dependencies into a single unit, ensuring that it behaves
the same, regardless of where it is deployed. This consistency addresses the common
"it works on my machine" problem, but managing containers at scale introduces
significant complexity. This complexity necessitated the development of container
orchestration platforms to handle tasks such as deployment, scaling, networking, and
storage.

Kubernetes emerged from Google’s extensive experience with container management
through its internal Borg system. Launched in 2014, Kubernetes has rapidly evolved
to offer a rich set of features addressing the complexities of container orchestration.
Its design principles emphasize scalability, resilience, and ease of use, making it the
preferred choice for modern cloud-native applications. Over the years, Kubernetes has
integrated numerous advanced features and maintained strong community support,
ensuring its relevance and adaptability in a rapidly changing technological landscape.

11

2 Fundamentals

2.3.2 Kubernetes Architecture

Kubernetes architecture is meticulously designed to ensure high availability, scalability,
and maintainability of containerized applications. It comprises several key components,
each playing a crucial role in the orchestration process, ensuring the smooth operation
and management of the cluster. The common architecture is that a kubernetes cluster
is composed by a control plane and multiple worker nodes. These concepts and its
main components will be described in the next sections and depicted in the following
figure

Figure 2.2: Kubernetes Architecture [12]

Control Plane

The control plane manages the overall state and operations of the Kubernetes cluster.
These components include:

API Server The API server acts as the central management point for the cluster,
exposing the Kubernetes API. It processes RESTful requests, validates them, and
updates the cluster’s state in the etcd store. The API server is designed to handle
large volumes of requests, ensuring responsive and efficient management. It serves
as the gateway through which all administrative tasks are performed, from creating
deployments to scaling applications.

12

2 Fundamentals

etcd etcd is a distributed key-value store that serves as the cluster’s backing store. It
stores all cluster data, including configuration details, state information, and metadata.
etcd is designed for high availability and consistency, ensuring that the cluster state
is reliably maintained. Its distributed nature ensures data redundancy and fault
tolerance, critical for the robust operation of the cluster.

Controller Manager The controller manager runs various controller processes that
regulate the state of the cluster. Controllers continuously monitor the cluster state
and make adjustments to ensure the desired state is maintained. For example, the
replication controller ensures the specified number of pod replicas are running at all
times. Other controllers manage tasks like node operations, endpoint tracking, and
namespace management, each contributing to the self-healing and adaptive nature of
Kubernetes.

Scheduler The scheduler is responsible for assigning newly created pods to nodes
within the cluster. It evaluates the resource requirements of the pods against the
available resources on the nodes, making decisions based on various factors such as
resource utilization, affinity rules, and constraints. The scheduler’s role is crucial for
optimizing resource use and ensuring that applications meet their performance and
resource requirements.

Node Components

Nodes are the worker machines in a Kubernetes cluster, where the containerized
applications run. Each node includes several critical components:

Kubelet The kubelet is an agent that runs on each node, responsible for ensuring
that containers are running in pods. It communicates with the API server to receive
instructions and manage the lifecycle of pods on its node. The kubelet ensures that
the correct containers are running and that they adhere to the defined specifications,
managing tasks such as health checks, logging, and container monitoring.

Kube-proxy Kube-proxy is a network proxy that runs on each node, managing
network communication for the pods. It maintains network rules on the nodes,
enabling communication between different pods within the cluster and managing
external access. Kube-proxy handles service discovery and load balancing, ensuring
that traffic is routed efficiently and correctly within the cluster.

13

2 Fundamentals

Container Runtime The container runtime is the software responsible for running
containers. Kubernetes supports various container runtimes, including Docker, con-
tainerd, and CRI-O. The container runtime pulls container images, starts, and stops
containers as instructed by the kubelet. This modularity allows Kubernetes to support
a range of container technologies, enhancing its flexibility and compatibility.

Kubernetes Objects and Resources

Kubernetes manages applications through a set of API objects, which represent the
desired state of various cluster resources. Key Kubernetes objects include:

Pod A pod is the smallest and simplest Kubernetes object. It represents a single
instance of a running process in the cluster. Pods can contain one or more containers,
which share the same network namespace and storage volumes. Pods are ephemeral,
meaning they can be created, destroyed, and recreated dynamically. This ephemeral
nature supports flexible scaling and rapid recovery from failures.

Service A service is an abstraction that defines a logical set of pods and a policy
for accessing them. Services provide stable endpoints for applications, decoupling the
client from the dynamic nature of pod IP addresses. They support load balancing,
ensuring even distribution of traffic across pods, and facilitate service discovery within
the cluster.

ReplicaSet A ReplicaSet ensures a specified number of pod replicas are running
at any given time. It provides self-healing capabilities, automatically creating new
pods to replace failed ones. ReplicaSets are often used indirectly through higher-level
abstractions like Deployments. They ensure that applications maintain their desired
state, even in the face of node failures or other disruptions.

Deployment A deployment is a higher-level abstraction that manages the lifecycle
of ReplicaSets and pods. It provides declarative updates, allowing users to define
the desired state of an application and handles rolling updates, rollbacks, and scal-
ing. Deployments make it easier to manage complex application updates and ensure
zero-downtime deployments, enhancing the reliability and agility of application man-
agement.

14

2 Fundamentals

StatefulSet A StatefulSet is similar to a Deployment but is designed for stateful
applications. It ensures that pod replicas have unique, stable identities and persistent
storage, making it suitable for applications like databases and distributed systems.
StatefulSets provide guarantees about the ordering and uniqueness of pods, essential
for applications that require stable network identifiers and storage persistence.

ConfigMap and Secrets ConfigMaps and Secrets are used to manage configuration
data and sensitive information, respectively. ConfigMaps store non-confidential config-
uration data as key-value pairs, while Secrets store sensitive data, such as passwords
and API keys, in a secure manner. These objects allow for dynamic configuration of
applications without the need to rebuild container images.

Operational Concepts

Effective operation of Kubernetes requires understanding several key concepts that
ensure the smooth functioning and management of the cluster.

Namespaces Namespaces provide a mechanism for isolating groups of resources
within a single Kubernetes cluster. They are useful for dividing cluster resources among
multiple users or teams, enabling resource allocation and access control. Namespaces
can also help prevent naming conflicts by creating distinct environments within the
cluster. This isolation supports multi-tenant environments and simplifies resource
management across diverse teams and projects.

Labels and Selectors Labels are key-value pairs attached to Kubernetes objects,
enabling users to organize and select subsets of objects based on specific criteria.
Selectors allow users to query and manage objects based on their labels. Labels and
selectors are fundamental for grouping and managing resources, facilitating operations
like scaling, updating, and monitoring. They provide a flexible way to organize
resources according to any dimension, such as environment, version, or application
component.

Resource Quotas and Limits Resource quotas and limits ensure fair resource allo-
cation and prevent resource exhaustion within a cluster. Quotas set constraints on the
number of resources that can be consumed by a namespace, while limits define the
maximum resources that individual pods or containers can use. These mechanisms
help maintain cluster stability and ensure that critical applications have the necessary

15

2 Fundamentals

resources to operate effectively. Resource quotas and limits are essential for preventing
resource contention and ensuring predictable performance across different workloads.

Role-Based Access Control (RBAC) RBAC is a security mechanism that regulates
access to Kubernetes resources based on user roles and permissions. It provides
fine-grained control over who can perform specific actions within the cluster. RBAC
policies define roles, which specify sets of permissions, and role bindings, which assign
roles to users or groups. Implementing RBAC helps secure the cluster and enforce
organizational policies. RBAC is crucial for maintaining a secure and compliant
Kubernetes environment, especially in multi-tenant and large-scale deployments.

Advanced Kubernetes Features

Kubernetes offers several advanced features that enhance its capabilities and support
complex application requirements.

Horizontal Pod Autoscaling Horizontal Pod Autoscaling (HPA) automatically ad-
justs the number of pod replicas based on observed metrics, such as CPU utilization
or custom metrics. HPA ensures that applications can scale dynamically in response
to changing workloads, maintaining performance and resource efficiency. This feature
is essential for applications with variable workloads, ensuring they can handle peak
demand without overprovisioning resources during low-usage periods.

Persistent Storage Kubernetes provides robust support for persistent storage, en-
abling stateful applications to retain data across pod restarts. Persistent Volume (PV)
and Persistent Volume Claim (PVC) abstractions decouple storage from individual
pods, allowing for flexible storage management. Kubernetes supports various storage
backends, including cloud storage services, network file systems, and local disks. This
flexibility ensures that applications can meet their data persistence requirements
regardless of the underlying infrastructure.

Ingress Ingress is a collection of rules that govern how external traffic is routed
to services within the Kubernetes cluster. It provides a way to expose HTTP and
HTTPS routes, enabling fine-grained control over traffic routing, load balancing, and
SSL termination. Ingress controllers, such as NGINX or Traefik, manage ingress
resources and ensure efficient traffic management. Ingress enhances the accessibility
and performance of applications by providing a unified approach to managing external
access.

16

2 Fundamentals

2.3.3 Custom Resource Definitions

Custom Resource Definitions (CRD) are a powerful feature of Kubernetes that allows
users to extend the Kubernetes API to support custom resources. This capability
provides a flexible mechanism to manage application-specific objects without modifying
the core Kubernetes code. By leveraging CRDs, organizations can tailor Kubernetes
to meet their unique requirements, creating custom workflows and integrations that
enhance the platform’s utility and adaptability.

At its core, a Custom Resource Definition is a specification that defines a new resource
type in the Kubernetes API. Once a CRD is registered, users can create and manage
instances of this new resource type, known as Custom Resources (CRs), in the same
way they manage built-in Kubernetes resources like Pods, Services, and Deployments.
This extensibility is crucial for supporting complex, domain-specific application needs
that are not covered by the default Kubernetes resource types.

Benefits of Using CRDs

By extending the Kubernetes’ API, developers team can easily adapt and fit their
own development and application into the kubernetes core, which has enabled the
community to deliver a great set of custom resources for different applications and use
cases, some of the best known are:

• Prometheus Operator: The Prometheus Operator is a popular CRD that
simplifies the deployment and management of Prometheus monitoring instances
in Kubernetes. It provides a declarative way to define monitoring configurations,
alerting rules, and service discovery, streamlining the monitoring setup process.

• Cert-Manager: Cert-Manager is a CRD that automates the management of
TLS certificates in Kubernetes. It enables users to request, issue, renew, and
revoke certificates from various certificate authorities, ensuring secure communi-
cation between applications and services.

• Istio: Istio is a service mesh platform that leverages CRDs to enhance traffic
management, security, and observability in Kubernetes clusters. It enables users
to define traffic routing rules, implement security policies, and collect telemetry
data using custom resources.

• Argo CD: Argo CD is a CRD that automates the continuous delivery of
applications in Kubernetes. It provides a declarative way to define application
manifests, synchronize them with a Git repository, and manage application
deployments across multiple clusters.

17

2 Fundamentals

The list can be further long, but the main idea is that CRDs are a powerful tool
for extending Kubernetes’ capabilities and adapting the platform to meet diverse
application requirements. By defining custom resources, users can create domain-
specific abstractions, automate complex workflows, and integrate third-party services
seamlessly into their Kubernetes environments.

At its core, a Custom Resource Definition is a specification that defines a new resource
type in the Kubernetes API. Once a CRD is registered, users can create and manage
instances of this new resource type, known as Custom Resources (CRs), in the same
way they manage built-in Kubernetes resources like Pods, Services, and Deployments.
This extensibility is crucial for supporting complex, domain-specific application needs
that are not covered by the default Kubernetes resource types.

Benefits of Using CRDs

CRDs offer several significant benefits:

• Extensibility: CRDs enable users to add new resource types to Kubernetes,
expanding its functionality to support custom use cases. This extensibility allows
Kubernetes to manage a broader range of applications and services.

• Declarative API: CRDs leverage the same declarative API model as built-in
resources. This consistency simplifies the management of custom resources and
integrates seamlessly with existing Kubernetes tools and practices.

• Automation with Custom Controllers: CRDs can be paired with custom
controllers to automate the lifecycle management of custom resources. Controllers
watch for changes to custom resources and reconcile their actual state with the
desired state, ensuring that applications behave as expected.

• Reusability and Sharing: Once defined, CRDs can be reused across multiple
clusters and shared within the community. This reusability promotes stan-
dardization and collaboration, enabling organizations to build on each other’s
work.

The process of creating and managing would be briefly described in future sections, as
this chapter is focused on the concepts and fundamentals of the technologies used in
the following chapters. Following another important concept for the purpose of this
project will be introduced, which is custom controllers.

18

2 Fundamentals

2.3.4 Custom Controllers

Custom controllers are an essential component when working with CRDs, as they
provide the automation needed to manage custom resources effectively. A custom
controller is a Kubernetes component that continuously watches for changes to custom
resources and takes appropriate actions to reconcile their actual state with the desired
state. This reconciliation process is at the heart of Kubernetes’ declarative model,
ensuring that the cluster operates as intended. Therefore, a custom controller is
the entity responsible for handling and preserving the control loop for a new custom
resource. The image below tries to interactively depict how the control loop works in
kubernetes:

Figure 2.3: Kubernetes Control Loop [7]

The controller must watch for changes in the custom resource, evaluate the current
state, and take actions to ensure that the resource remains in the desired state. This
process is repeated continuously to maintain the resource’s integrity and respond to any
changes or events that affect its state. Custom controllers are typically implemented
as Kubernetes controllers, which are control loops that watch for changes to resources
and take actions to reconcile their state. The controller pattern is a fundamental
concept in Kubernetes, enabling users to automate resource management and enforce
desired configurations.

To effectively manage custom resources, custom controllers follow a common pattern:

• Watch Custom Resources: The watching mechanism is a core part of the
custom controller’s functionality. Informers are used to monitor the state of
resources continuously. They watch for events such as resource creation, updates,
and deletions. When an event occurs, the informer notifies the controller, which
then processes the event. This continuous monitoring ensures that the controller
is always aware of the state of the custom resources it manages.

19

2 Fundamentals

Informers are efficient because they use mechanisms like caches to reduce the
load on the Kubernetes API server. They store a local copy of the resource state,
which they keep up-to-date by listening for changes. This reduces the need for
frequent API calls and improves the performance of the controller.

• Evaluate: Once the controller is notified of a change, it evaluates the current
state of the custom resource. This involves comparing the observed state (the
actual state of the resource in the cluster) with the desired state (the state
specified in the resource’s spec). The controller’s logic determines what actions,
if any, need to be taken to reconcile these two states.

This evaluation process often involves validating the resource against a set of
rules or policies. For example, the controller might check that the resource’s
configuration is valid, that required fields are present, and that the resource
conforms to any constraints defined by the application or system.

• Take Action: Based on the evaluation, the controller takes actions to reconcile
the observed state with the desired state. These actions can include creating,
updating, or deleting resources, as well as performing specific operations required
by the application. The actions are designed to ensure that the resource reaches
and maintains the desired state.

For instance, if a custom resource represents a database cluster and the desired
state specifies a certain number of replicas, the controller might create additional
replicas if there are too few, or delete replicas if there are too many. The
controller might also handle tasks such as updating configurations, performing
backups, or managing failover processes.

Custom controllers often use Kubernetes client libraries to perform these actions.
These libraries provide a set of functions and methods for interacting with the
Kubernetes API, making it easier to manage resources programmatically.

Another important concern while designing a custom controller is error handling.
Custom controllers should be robust and resilient to failures, ensuring that they can
recover from errors and continue operating effectively. This includes implementing
mechanisms for logging, monitoring, and handling exceptions, as well as incorporating
retry logic and backoff strategies to manage transient errors; but it is not directly
related to Kubernetes concepts, as it should be treated as another consideration during
software development process.

By introducing custom controllers, organizations can automate complex workflows,
enforce policies, and integrate custom logic into their Kubernetes environments.
Custom controllers are a powerful tool for extending Kubernetes’ capabilities and
adapting the platform to meet diverse application requirements. They enable users

20

2 Fundamentals

to define custom resources, automate lifecycle management, and implement domain-
specific functionality, enhancing the flexibility and utility of Kubernetes. In future
sections, a whole process of creating a custom controller for the particular use case of
setting up a virtual Traffic Access Point (vTAP) will be described and implemented.

2.4 Helm

Helm is usually defined as a package manager for Kubernetes, but it is much more than
that. Helm is a tool that streamlines the installation and management of Kubernetes
applications. It provides a templating engine to define Kubernetes manifests, enabling
users to create reusable, shareable, and version-controlled application packages. Helm
simplifies the deployment process by encapsulating application configurations and
dependencies into a single package, known as a chart. This section will provide an
overview of Helm’s key features and components, highlighting its role in managing
Kubernetes applications.

Similar to Linux package managers like APT or YUM, Helm simplifies the installation
and management of Kubernetes applications by providing a standardized way to define,
package, and deploy applications. Helm charts encapsulate all the necessary Kubernetes
resources, configurations, and dependencies required to deploy an application, making
it easy to share and distribute applications across different environments. Helm’s
templating engine allows users to define dynamic configurations, enabling the creation
of reusable and customizable charts that can be easily deployed and managed.

2.4.1 Helm’s Key Concepts

Helm introduces several key concepts that are essential to understanding its function-
ality and usage:

Helm Chart

In Helm’s terms, a Chart is a package and it streamlines the way a Kubernetes
application should be installed. A chart is a set of files and directories that adhere
to the chart specification for describing the resources to be installed into Kubernetes.
[3]

A Helm chart consists of the following components:

21

2 Fundamentals

• Chart.yaml: The Chart.yaml file contains metadata about the chart, including
the chart name, version, description, and other details. This file provides essential
information about the chart and its contents.

• Values.yaml: The Values.yaml file defines default configuration values for the
chart. These values can be overridden during installation, allowing users to
customize the chart’s behavior without modifying the chart itself. Values.yaml
is a key component of Helm’s templating engine, enabling dynamic configuration
based on user input.

• Templates: The Templates directory contains Kubernetes manifest files that
define the resources to be deployed. These manifest files can include deployments,
services, config maps, and other Kubernetes resources. Helm’s templating engine
processes these files, allowing users to define dynamic configurations and reusable
templates.

• Other files: Some other files include the NOTES.txt which is rendered and then
displayed after a successful installation, and some other auxiliary files that can
be used for testing purposes or streamlining some other processes.

Helm’s Resources, Installations and Releases

Helm manages Kubernetes applications through the concepts of resources, installations,
and releases:

Resources Resources are the Kubernetes objects that make up an application. It
could consists on just a few pods that expose a service and have a basic configuration,
or it could be a complex system with tens or even hundreds of resources coupled
together across many kubernetes clusters. By using helm, this application is handled
as a single Helm installation.

Installations It is a group of resources rolled out into a kubernetes cluster by a single
helm install command. Therefore, a user could have multiple installations of
the same application (i.e. a web server) across different namespaces or even different
clusters. Each installation is identified by a unique release name, which allows users
to manage and track the application’s lifecycle independently.

22

2 Fundamentals

Releases A helm release is an instance of a chart deployed into a Kubernetes cluster.
It represents a specific deployment of an application with a unique release name.
Releases are versioned and can be upgraded, rolled back, or deleted independently.
Helm tracks the state of each release, allowing users to manage and monitor their
applications effectively. A user could have, for example, the release 0.4.5 of a Open5Gs
helm chart, and then upgrade it to a new release by running the helm upgrade
command. Therefore, a user could easily roll out new versions of an application while
waiting for the old version to be deleted.

2.5 Network Monitoring

Network monitoring is an essential discipline within IT management, playing a crucial
role in ensuring the performance, security, and reliability of networked systems. By
continuously observing, measuring, and analyzing network traffic and performance
metrics, network monitoring allows administrators to detect anomalies, diagnose
issues, and maintain optimal network operations. This proactive approach is vital for
preemptively identifying and resolving problems, thereby minimizing downtime and
maintaining the quality of service for users and applications.

Network monitoring underpins several critical functions within an organization’s IT
infrastructure. Primarily, it enables performance optimization by providing insights
into key metrics such as bandwidth usage, latency, and packet loss. By monitoring
these metrics, administrators can optimize network configurations to ensure efficient
data flow and high performance.

Security is another vital aspect of network monitoring. Continuous observation helps
in detecting suspicious activities, such as unusual traffic patterns or unauthorized
access attempts, which may indicate security breaches or malicious activities. This
enables quick response to potential threats, enhancing the security posture of the
network.

2.5.1 Key Components of Network Monitoring

Network monitoring systems consist of several interconnected components. Monitoring
tools, either software applications or hardware devices, are responsible for collecting
and analyzing network data. These tools use protocols such as Simple Network
Management Protocol (SNMP), NetFlow, and sFlow to gather data from network
devices. Metrics and logs provide detailed records of network events and performance
indicators, such as bandwidth usage, latency, jitter, and error rates.

23

2 Fundamentals

Dashboards and alerting systems are integral to network monitoring, providing real-
time data visualizations and notifications. These tools help administrators interpret
network status at a glance and respond to significant events or threshold breaches
promptly. Effective network monitoring also relies on established protocols and
standards to ensure accurate and consistent data collection

In the context of this project, the network monitoring main concern is to provide
useful data for cybersecurity and forensic analysts, which will fed from the vTAPs
and other network monitoring tools to provide a comprehensive view of the network
traffic and events and be able to successfully determined which assets and attacker
could have either accessed, corrupted, encrypted; or in general, compromised, or
attempted to compromise. Since the study is focused on 5G virtual core network in a
Kubernetes environment, the main challenges of network monitoring in this context
will be described in the following sections.

2.5.2 Challenges of Network Monitoring in Kubernetes

Kubernetes has revolutionized the way applications are deployed and managed, provid-
ing a highly flexible and scalable platform for container orchestration. However, with
this flexibility comes a set of unique challenges, particularly in the realm of networking.
These challenges arise due to the dynamic, ephemeral, and highly distributed nature of
Kubernetes environments, necessitating robust and sophisticated networking solutions.
This section delves into the primary challenges of Kubernetes networking, exploring
the complexities and offering insights into potential strategies for mitigation.

Dynamic Nature of Kubernetes Environments

The dynamic nature of Kubernetes environments is one of the most significant chal-
lenges. In Kubernetes, applications are deployed as containers within pods, which can
be scaled up or down based on demand. This scaling is often automated, driven by
metrics such as CPU and memory usage. Additionally, pods can be rescheduled across
nodes in the cluster to optimize resource utilization or maintain high availability.

This constant flux creates challenges in maintaining consistent network configura-
tions and ensuring that network policies are correctly applied as pods come and go.
Traditional static IP addressing and network configurations are not feasible in such
an environment. Instead, Kubernetes uses a more dynamic approach, assigning IP
addresses to pods at the time of their creation, which requires sophisticated networking
solutions that can handle these changes seamlessly.

24

2 Fundamentals

Complex Microservices Architectures

Kubernetes is particularly well-suited for microservices architectures, where applica-
tions are broken down into smaller, independently deployable services. While this
architecture offers numerous benefits, including improved scalability and maintainabil-
ity, it also introduces significant networking challenges.

Microservices often communicate extensively over the network, leading to a substantial
amount of east-west traffic (internal traffic within the data center). Managing this
traffic efficiently is critical to maintaining application performance and reliability.
Network latency, jitter, and packet loss can significantly impact the performance of
microservices, especially those that require low-latency communications.

Moreover, the interdependencies between microservices can complicate network con-
figurations and troubleshooting. Understanding and managing these dependencies
requires comprehensive network monitoring and tracing capabilities to visualize service
interactions and identify potential bottlenecks or failure points.

Ephemeral Nature of Containers

The ephemeral nature of containers, which are designed to be transient and short-lived,
presents additional networking challenges. Containers can be created and destroyed
rapidly, often within seconds. This ephemerality is a key feature of containerized
applications, enabling rapid scaling and efficient resource utilization.

However, it also means that network configurations must be highly dynamic and
capable of adapting in real-time. Network policies, security rules, and monitoring
configurations must be consistently applied to new containers as they are created.
Ensuring that these configurations are automatically and accurately applied is crucial
for maintaining network security and performance.

Network Security Concerns

Network security is a paramount concern in Kubernetes environments. The dynamic
and distributed nature of Kubernetes clusters makes them particularly susceptible to
security threats, including unauthorized access, data breaches, and internal attacks.

Implementing robust network security measures is essential to protect sensitive data
and ensure compliance with regulatory requirements. This includes enforcing network
segmentation to isolate different workloads, applying network policies to control traffic
flow, and using encryption to secure data in transit.

25

2 Fundamentals

Kubernetes provides several built-in security features, such as Network Policies, which
allow administrators to define rules for controlling traffic between pods. However,
configuring these policies correctly can be complex, requiring a deep understanding of
both Kubernetes networking and the specific security requirements of the applications
being deployed.

Network Performance Optimization

Optimizing network performance in Kubernetes environments is another significant
challenge. The distributed nature of Kubernetes clusters, often spanning multiple
nodes and even data centers, can lead to performance issues such as high latency and
bandwidth constraints.

Effective network performance optimization involves several strategies, including:

• Efficient Routing: Ensuring that network traffic is routed efficiently within
the cluster to minimize latency and avoid bottlenecks.

• Load Balancing: Distributing traffic evenly across available resources to pre-
vent any single node or service from becoming a bottleneck.

• Quality of Service (QoS): Implementing QoS policies to prioritize critical
traffic and ensure that high-priority applications receive the necessary resources.

• Network Policies: Defining and enforcing network policies to control traffic
flow and prevent unauthorized access.

Observability and Troubleshooting

Achieving comprehensive observability and effective troubleshooting in Kubernetes
environments is essential for maintaining network health and performance. Given
the dynamic and distributed nature of Kubernetes, traditional monitoring and trou-
bleshooting tools may fall short.

Effective observability involves collecting and analyzing a wide range of metrics, logs,
and traces from various components of the Kubernetes cluster, including nodes, pods,
services, and network interfaces. This data provides insights into network performance,
identifies potential issues, and helps diagnose problems.

Advanced observability tools and techniques, such as distributed tracing and service
meshes, can provide deeper visibility into the interactions between microservices and
the flow of network traffic. These tools are invaluable for identifying performance

26

2 Fundamentals

bottlenecks, understanding service dependencies, and pinpointing the root cause of
network issues.

2.5.3 Strategies for Effective Kubernetes Network Monitoring

As in every solution in the IT world, there is not a single solution that fits all the cases,
and the same applies to network monitoring in Kubernetes environments. However,
there are several strategies and best practices that can help organizations effectively
monitor their Kubernetes networks and address the challenges outlined above. By
combining these strategies with the right tools and technologies, administrators can
gain comprehensive visibility into their network operations, optimize performance,
enhance security, and troubleshoot issues effectively.

Some of the best strategies for effective Kubernetes network monitoring include:

Integration with Kubernetes-Native Tools

Integrating with Kubernetes-native tools is a foundational approach to effective
network monitoring. Kubernetes provides built-in tools and APIs that facilitate
network monitoring. These native tools offer significant advantages, including seamless
integration with the Kubernetes ecosystem, reduced complexity, and improved visibility
into cluster operations. Some of the most relevant Kubernetes-native tools for network
monitoring include:

Kubernetes Metrics Server: The Kubernetes Metrics Server is a cluster-wide aggre-
gator of resource usage data. It provides metrics like CPU and memory usage for nodes
and pods. By deploying the Metrics Server, administrators gain access to real-time
resource usage statistics, which are essential for monitoring the overall health of the
cluster and for making informed decisions about scaling and resource allocation.

kubectl Top: kubectl top is a command-line utility that interfaces with the Metrics
Server to provide resource usage statistics directly in the terminal. It allows adminis-
trators to quickly check the resource consumption of nodes and pods, making it easier
to identify resource bottlenecks and high-utilization areas that might need attention.

27

2 Fundamentals

Kubernetes Dashboard: The Kubernetes Dashboard is a web-based user interface
that provides an overview of applications running in the cluster, as well as the
overall health of the cluster. It displays metrics collected by the Metrics Server,
giving administrators a visual representation of resource usage and performance. The
Dashboard also allows for direct interaction with Kubernetes objects, such as deploying
applications, monitoring workloads, and managing cluster resources.

Another interesting approach when the native tools are not enough is to use third-party
tools, which will be described in the following sections.

Leveraging Service Meshes

A service mesh is a software layer that handles all communication between services
in applications. Service meshes provide advanced networking features such as load
balancing, service discovery, encryption, and observability. They are particularly well-
suited for microservices architectures, where applications are composed of multiple
services that communicate over the network.

Service meshes are dedicated infrastructure layers [16] that manage service-to-service
communication within a microservices architecture. They provide advanced networking
features such as load balancing, service discovery, encryption, and observability.
Istio and Linkerd are two of the most popular service meshes used in Kubernetes
environments.

Istio: Istio is a service mesh—a modernized service networking layer that provides a
transparent and language-independent way to flexibly and easily automate application
network functions. It is a popular solution for managing the different microservices
that make up a cloud-native application. It includes traffic management, security, and
observability components. Istio’s observability features are particularly beneficial for
network monitoring. It collects telemetry data from the Envoy sidecars injected into
each service, providing metrics, logs, and traces that give detailed insights into the
interactions between services. Administrators can use this data to monitor service
performance, detect anomalies, and troubleshoot issues.

Linkerd: Linkerd is a lightweight service mesh designed for simplicity and perfor-
mance. It provides many of the same features as Istio, including observability, security,
and traffic management. Linkerd’s observability capabilities include automatic col-
lection of service metrics, such as request rates, success rates, and latencies. These
metrics are aggregated and exposed via a Prometheus-compatible endpoint, making it
easy to integrate with existing monitoring solutions.

28

2 Fundamentals

Prometheus and Grafana Prometheus and Grafana are widely used together to
provide a comprehensive monitoring and visualization solution for Kubernetes envi-
ronments.

• Prometheus: Prometheus is an open-source monitoring and alerting toolkit
designed for reliability and scalability. It collects metrics from various sources,
including Kubernetes nodes, pods, and services, and stores them in a time-
series database. Prometheus supports powerful querying capabilities through
its PromQL language, enabling detailed analysis of collected metrics. It also
includes an alerting mechanism that allows administrators to define alerting
rules based on specific conditions, ensuring that they are notified promptly of
any critical events.

• Grafana: Grafana is a powerful visualization tool that integrates seamlessly
with Prometheus. It allows administrators to create interactive and customizable
dashboards to visualize the metrics collected by Prometheus. Grafana supports
a wide range of graph types and visualization options, making it easy to create
detailed and informative dashboards. Additionally, Grafana’s alerting system can
trigger notifications based on predefined conditions, ensuring that administrators
are aware of any significant changes in the network’s state.

Logging: Effective logging involves collecting and storing logs from various sources,
including nodes, pods, and applications. The ELK stack (Elasticsearch, Logstash,
and Kibana) is a popular logging solution for Kubernetes. Fluentd is often used
to collect logs and forward them to Elasticsearch, where they can be indexed and
searched. Kibana provides powerful visualization and analysis capabilities, enabling
administrators to explore log data and identify issues.

Tracing: Distributed tracing tools, such as Jaeger and Zipkin, provide detailed
visibility into the flow of requests across microservices. They collect trace data from
applications and visualize it in a way that shows the end-to-end journey of a request.
This helps identify latency issues, understand service dependencies, and pinpoint the
root cause of performance problems. Integrating tracing with logging and metrics
provides a comprehensive observability solution, allowing administrators to correlate
data from different sources and gain deeper insights into network performance.

A final and brief introduction to virtualized 5G options will be provided in the following
section.

29

2 Fundamentals

2.5.4 Test Access Points (TAPs)

Test Access Points (TAPs) are network devices that provide a way to monitor and
capture network traffic for analysis and troubleshooting purposes. TAPs are commonly
used in network monitoring and security operations to gain visibility into network
traffic, detect anomalies, and investigate security incidents. By passively monitoring
traffic, TAPs enable administrators to analyze network behavior, identify performance
issues, and respond to security threats effectively.

TAPs operate by copying network packets from the network link and forwarding them
to monitoring tools, such as intrusion detection systems (IDS), packet analyzers, and
network performance monitoring tools. This copy-and-forward mechanism ensures
that monitoring tools receive an exact replica of the network traffic, without affecting
the original data flow. TAPs are typically deployed at strategic points in the network,
such as between switches, routers, or firewalls, to capture traffic from specific segments
or devices.

Some books state that the only valid form of TAP is an inline-placed devices [6] as
shown in the figure below, which are devices that are placed in the network path and
can actively block or modify traffic. However, for the purpose of this project, the term
TAP will be used to refer to any device that can capture and forward network traffic
for monitoring and analysis. But the industry has changed and with the shift to cloud
native applications, such a "device" could have multiple forms, as follows:

Figure 2.4: Direct cabling vs. TAP cabling [8]

Passive TAPs

It is only applicable for optical networks, as it is a passive TAP requires no power
of its own and does not actively interact with other components of the network. It
uses an optical splitter to create a copy of the signal and is sometimes referred to as a
“photonic” TAP. Most passive TAPs have no moving parts, are highly reliable and do
not require configuration.

30

2 Fundamentals

The idea is that the device is placed inside the optical path of the network, and it
acts as a passive splitter, meaning, it physically diverts a portion of the light from
its original source, so the actual physical data can be studied. Since it is a passive
device, it does not require power, and it does not introduce any latency or packet loss
to the network, however, it reduces the original signal power, so plenty of physical
layer conditions must be considered when deciding the use of this kind of TAP; like
the following:

• Transmit power (the starting light signal).

• Receiver sensitivity (residual light seen at the other end).

• Light loss within the cable plant (prior to TAP insertion).

• Impact of the TAP (the actual TAP signal loss).

Active TAPs

Active TAPs are devices that require power and actively interact with the network.
They are typically placed inline with the network link and can selectively copy and
forward traffic to monitoring tools. Active TAPs offer more flexibility and control
over the traffic being monitored, allowing administrators to filter, aggregate, and
manipulate packets before forwarding them to monitoring tools.

In the figure below, the basic functioning of an active TAP is shown, where the device
is placed in the network path and copies the traffic to the monitoring tool, while the
original traffic continues its path.

Figure 2.5: Active TAP functioning [8]

31

2 Fundamentals

As seen in the picture, every single packet gets copied from its origin, and sent out
to the monitoring tool, while the original packet continues its path. This is a very
useful tool for network monitoring, as it allows the network administrator to have
a full copy of the network traffic, and analyze it in real-time, without affecting the
original traffic.

Manufacturers claim, that TAP is a better solution for traffic monitoring that Switched
Port Analyzer (SPAN), due to the following reasons:

• Zero packet loss: TAPs provide a full copy of the network traffic, ensuring that
no packets are dropped or lost during monitoring. TAP as well ensures that even
faulty packets get copied, providing much more information for IT-Analysts.

• Complete visibility: TAPs capture all network traffic, including layer 1 and
layer 2 errors, which may not be visible in a SPAN port.

• Non-intrusive monitoring: TAPs operate passively and do not interfere with
the network, making them ideal for monitoring critical links without introducing
latency or packet loss.

• Security and compliance: TAPs provide a secure and reliable way to monitor
network traffic, ensuring compliance with security and regulatory requirements.

However, in real-world data networks (like 5G networks), the use of SPAN or traffic
mirror techniques in general is widely spread, since the huge amount of traffic provides
already a decent amount of data to analyze and the use of TAPs is not always possible
due to the physical constraints of the network.

2.5.5 Virtual Test Access Point (vTAP)

As the name suggests, a Virtual Traffic Access Point (vTAP) is a software-based
solution that replicates the functionality of a physical TAP in a virtualized or cloud
environment. vTAPs are designed to capture, monitor, and analyze network traffic
within virtualized infrastructure, providing visibility into virtual machines, containers,
and cloud-based workloads.

vTAPs operate by intercepting network traffic at the virtual network interface level,
copying packets, and forwarding them to monitoring tools or security appliances. By
replicating the functionality of a physical TAP in a virtual environment, vTAPs enable
administrators to monitor network traffic.

A very well known manufacturer as Gigamon Inc. [9] provides vTAP alternatives for
cloud-based solutions, offering a managed solution leveraging the user to focus on
monitoring tasks.

32

2 Fundamentals

The managed solution from Gigamon Inc. is called GigaVUE Cloud Suite and it
provides a comprehensive and seamless approach to mirror Kubernetes traffic, as well
as other cloud-based solutions, to the monitoring tools.

However, it is a paid solution, and for the purpose of this project, a custom vTAP
will be developed, leveraging the Kubernetes environment and the tools described in
the previous sections.

2.6 Virtualized 5G Networks

Virtualized 5G networks are a key enabler of next-generation telecommunications
services, offering increased flexibility, scalability, and efficiency compared to traditional
network architectures. By leveraging virtualization technologies, such as Network
Functions Virtualization (NFV) and Software-Defined Networking (SDN), virtualized
5G networks enable service providers to deliver innovative services and applications
with enhanced performance and agility.

Virtualized 5G networks are designed to support a wide range of use cases, including
enhanced mobile broadband, massive machine-type communications, and ultra-reliable
low-latency communications. These use cases require diverse network capabilities, such
as high bandwidth, low latency, and network slicing, which virtualized 5G networks
can provide through dynamic resource allocation and service orchestration.

In this section, the concepts of most widely used tools will be introduced, so there
is enough theoretical framework that can be studied and chosen in the following
chapters to simulate a 5G network and provide the necessary data for the network
traffic monitoring and tapping.

2.6.1 Open5Gs

Open5GS is a modern software implementation of 5G Core and EPC [14], providing
a comprehensive suite of functions that support the 4G and 5G core network infras-
tructure. The project adhered to the 3GPP Release 15 at the beginning, although it
now provides Release 17 compliance as well (from Release v2.6.1 on March 20232),
although in its latest standards and offers an open-source approach to deploying a 5G
core network. Open5GS is designed to provide a functional and testing platform that
can be used by researchers, developers, and telecommunications providers to innovate
and test new 5G-oriented services and applications.

2Github Release Notes v2.6.1 https://github.com/open5gs/open5gs/releases/tag/v2.6.1

33

https://github.com/open5gs/open5gs/releases/tag/v2.6.1

2 Fundamentals

Architecture of Open5GS

The Open5GS framework consists of several components, each corresponding to a
specific functional entity within the 4G LTE and 5G networks, like AMF, SMF, UPF,
UDM, PCF, and other essential functions as explained in section section 2.1.2.

A complete architecture of how these components interact with each other is shown in
the following figure:

Figure 2.6: Open5GS Architecture [14]

As seen in the picture these elements are interconnected via standardized interfaces,
facilitating a modular and scalable 5G core network system. The study of this kind of
interfaces and how they make communication between network functions possible, is
out of the scope of the current project, therefore they will not be covered.

34

2 Fundamentals

Open5GS set of features

Open5GS provides a comprehensive set of features that enable the deployment of a
functional 5G core network. Some of the key features include:

• PDU session establishment and session modification.

• Integration with multiple external systems, giving the possibility to deploy a
complete 5G network. To mention a few of them:

– IMS (IP Multimedia Subsystem): for delivering multimedia services.

– Existing LTE networks for NSA (Non-Standalone) deployments where 5G
enhancements are provided alongside 4G capabilities.

– SDN (Software Defined Networking) and NFV (Network Functions Virtual-
ization): technologies for enhanced network management and orchestration.

– Various virtualized RAN options like UERANSIM, srsRAN and others.

• Embedded 5G roaming implementation.

• Support for network slicing, enabling the creation of isolated virtual networks
tailored to specific use cases.

• IPv6 support, Support of USIM cards using Milenage confidentiality algorithm,
QoS implementation and more.

Inside the official Open5GS documentation3, there is already a lot of information
about how to deploy and configure the software. Given the objectives of the present
thesis, we will pay special attention to the deployment using Helm for a Kubernetes
cluster, which will be used and explained in the next chapter.

Open5GS has reached a clear maturity as an open source project as well, being
sponsored by emerging connectivity providers and supported by a large community
of developers and users. The project is actively maintained and updated, with new
features and improvements being added regularly responding to updates on 3GPP
releases and community feedback.

3https://open5gs.org/open5gs/docs/

35

https://open5gs.org/open5gs/docs/

2 Fundamentals

2.6.2 Free5GC

free5GC is an open-source initiative that also aligns with the 3rd Generation Part-
nership Project (3GPP) standards [18] (supported up until Release 15 according to
documentation [5]), providing a comprehensive toolkit for deploying a standalone 5G
core network that is adaptable, scalable, and forward-compatible.

Architecture of Free5GC

There is no actual architecture diagram provided in the official documentation, but
the components are similar to the ones provided by Open5GS, as they are based on
the same 3GPP standards, so all the network functions specified in 5G release 15 are
duly provided on Free5GC.

Free5GC set of features

free5GC offers a decent amount of features, some of them are:

• Provides the complete set for a 5G core network, including the AMF, SMF,
UPF, UDM, PCF, and other essential functions, does not provide 4G network
functions.

• Network Slicing support, allowing the creation of isolated virtual networks
tailored to specific use cases.

• Multiple UPF support, enabling the deployment of multiple UPFs to handle
different traffic types and requirements.

• OAuth 2.0 authentication and authorization support, ensuring secure connection
for new network functions.

The Free5GC project is sponsored by the National Chiao Tung University in Taiwan,
and it is actively maintained and updated by a team of developers. The project has
a growing community of users and contributors, and it is well-documented, making
it an accessible and reliable option for deploying a 5G core network. It has also
official tutorials to deploy a 5G core in Kubernetes clusters using tools like Helm and
Microk8s, although the community is not that much engaged and new releases are
slowly being published.

36

2 Fundamentals

2.6.3 UERANSIM

UERANSIM is an open-source 5G UE (User Equipment) simulator that provides a
virtualized environment for testing and developing 5G networks [19]. It allows users
to simulate 5G UEs and interact with 5G core networks, enabling testing of various
5G features and functionalities. UERANSIM is designed to be lightweight, easy to
deploy, and highly configurable, making it an ideal tool for researchers, developers,
and network operators working with 5G technologies.

UERANSIM is a very minimalistic tool, as it only provides two technologies:

• UE Simulation: UERANSIM simulates 5G UEs as Standalone (3GPP Access),
allowing users to create virtual UEs with specific configurations and behaviors.
Users can define parameters such as the UE’s identity, capabilities, and connection
settings, enabling detailed testing and analysis of 5G network interactions.

• 5G Standalone RAN (CU gNB): Provides a fully functional gNodeB in
order to register UEs and establish a connection with the 5G core network. This
allows users to emulate the end-to-end functionality of a 5G network, including
registration, authentication, and data transfer.

Along this technologies, UERANSIM provides the following interfaces to interact with
the 5G core network:

• Control Interface (between RAN and AMF): It provides the user two
main functional layers which are:

– Non-Access Stratum (NAS) Layer: It is responsible for the signaling between
the UE and the AMF. It is used to establish and release connections, perform
registration, and handle mobility events.

– Next Generation Application Protocol (NGAP) Layer: It is responsible for
the signaling between the RAN and the AMF. It is used to establish and
release connections, perform registration, and handle mobility events.

• User Plane Interface (between RAN and UPF): It is responsible for the
data transfer between the UE and the UPF. It is used to transmit user data
packets between the UE and the UPF. It implements GPRS Tunneling Protocol
(GTP) protocol for the data transfer.

37

2 Fundamentals

2.6.4 srsRAN

The srsRAN Project is a complete 5G RAN solution, featuring an ORAN-native
CU/DU developed by SRS. The solution includes a complete L1/2/3 implementation
with minimal external dependencies. Portable across processor architectures, the
software has been optimized for x86 and ARM. srsRAN follows the 3GPP 5G system
architecture implementing the functional splits between Distributed Unit (DU) and
Centralized Unit (CU). The CU is further disaggregated into control plane (CU-CP)
and user-plane (CU-UP).

srsRAN Project is a 5G CU/DU solution and does not include a UE application.
However, srsRAN 4G does include a prototype 5G UE (srsUE) which can be used for
testing. This application note shows how to create an end-to-end fully open-source 5G
network with srsUE, the srsRAN Project gNodeB and Open5GS 5G core network.

srsRAN features

The srsRAN Project provides 5G RAN solution, including (among others) the following
features:

• 3GPP release 17 aligned.

• FDD/TDD supported, all FR1 bands.

• Network Slicing.

• All physical channels including PUCCH Format 1 and 2, excluding Sounding-RS

As seen in the feature set, the srsRAN project aims to target users and researches
that are more interested into the physical layer of the 5G-RAN network portion, but
sadly it does not provide yet a fully functional 5G compliant User Equipment (UE).

2.7 Summary

This chapter provided an overview of the key concepts and technologies that form
the foundation of the present thesis. It introduced Kubernetes, Custom Resource
Definitions, Custom Controllers, Helm, Network Monitoring, Virtualized 5G Net-
works, Open5GS, and UERANSIM. These technologies and concepts are essential for
understanding the subsequent chapters, which focus on deploying a virtual Traffic
Access Point (vTAP) in a Kubernetes environment, monitoring network traffic, and
performing forensic analysis on 5G networks.

38

2 Fundamentals

Kubernetes is a powerful container orchestration platform that enables the deployment
and management of containerized applications. Custom Resource Definitions and
Custom Controllers extend Kubernetes’ capabilities by allowing users to define custom
resources and automate complex workflows. Helm simplifies the deployment of Kuber-
netes applications by providing a templating engine and package management system.
Network monitoring is crucial for ensuring the performance, security, and reliability of
networked systems. Virtualized 5G networks leverage NFV and SDN technologies to
deliver innovative services and applications with enhanced performance and agility.
Open5GS and UERANSIM are open-source tools for deploying and simulating 5G
core networks, providing a comprehensive suite of functions for testing and developing
5G services.

The following chapters will build on these concepts and technologies to deploy a
vTAP in a Kubernetes environment, monitor network traffic, and perform forensic
analysis on 5G networks. The practical implementation of these tasks will demonstrate
how Kubernetes, Open5GS, UERANSIM, and other tools can be used to create a
comprehensive network monitoring and forensic analysis solution for 5G networks.

39

3 Testbed Design and Implementation

3.1 Introduction

In this chapter, the design and implementation of the testbed used to evaluate the
performance of the proposed algorithms is presented.

The main goal is to provide an environment that allows easy experimentation, en-
compassing a 5G core network and a RAN portion as well, so the further options to
capture and monitor traffic are easy to test and evaluate. The testbed was designed
as well to allow the experimenters to easily scale and deploy multiple clusters at the
same time, so more than one tests can be carried out at the same time.

3.2 Overview of the Technology Stack

In this section, the technology stack which was chosen will be presented, as well as
the reasons behind the choices made.

3.2.1 Kubernetes

One could say that Kubernetes is the de facto standard for container orchestration, and
the rich set of features and concepts has been already described in section section 2.3.

Considering that the use and possible development that can be implemented on top of
Kubernetes for any kind of distributed system, it was chosen as the main platform to
deploy the 5G core network and the RAN portion. The wide support given by both
the cloud-native and the telecommunications industry makes Kubernetes the right
choice for this project. Since there is multiple tools already developed by multiple
providers that are already containerized.

There exist another alternatives to Kubernetes, like Docker Swarm, Mesos, or Nomad,
but Kubernetes is the most mature and feature-rich of them all and offers a broader
spectre of tooling that can be useful for future projects or developments. A table for
the most used container orchestration platforms is presented in appendix .1.1 The

40

3 Testbed Design and Implementation

table just solidifies the thought, that Kubernetes is the best choice, since the other
alternatives bring along more requirements like the need of a Zookeeper cluster for
Mesos, or the need of a Consul cluster for Nomad. Kubernetes is the most mature
and feature-rich of them all and offers a broader spectre of tooling that can be useful
for future projects or developments.

Important mention as well, is that the Kubernetes version used on the project is
1.27.1, which is the latest stable version at the time of writing.

3.2.2 Calico as Container Network Interface (CNI)

The Container Network Interface CNI chosen for the project is Calico. Calico is an
open-source networking and network security solution for containers, virtual machines,
and native host-based workloads. Calico provides a highly scalable networking and
network policy solution for connecting Kubernetes pods based on the same industry-
leading technology that powers some of the world’s largest and most secure networks.
There are some other excellent alternatives, like Cilium or Flannel. A comparison
with the other alternatives is provided in appendix .1.1

This comparison analysis was carried out actually with a pure research and theoretical
approach [17] [4], not from a practical test since it is not one of the goal of the
projects.

However, it is worth mentioning that at the final phase of the practical work of the
thesis, there was not still a CNI, based on extended Berkeley Packet Filter (eBPF) like
Cilium, that provides full support for Secure Control Transmission Protocol (SCTP)
in the Kubernetes cluster [2]. This is a feature that is needed for the 5G core network
to work properly, since the SCTP is the protocol used for the communication between
the AMF and the SMF (among others), and therefore it can’t be used in a 5G core
working on a Kubernetes cluster.

3.2.3 Container Runtime Interface

There is a great amount of options for CRI in the cloud-native community, being the
most used and well adopted containerd, CRI-O and docker (in that order).

A comparison in the most important features is provided in the following table in
appendix .1.1.

The Container Runtime Interface CRI chosen for this project is CRI-O. CRI-O is an
implementation of the Kubernetes Container Runtime Interface (CRI) to enable using
Open Container Initiative (OCI) compatible runtimes. Although the mostly wide

41

3 Testbed Design and Implementation

adopted option is containerd. The main reason for choosing CRI-O is that it is a much
lightweight alternative that is very stable and provide enough robustness for a 5G core
network to run on top of it. It is also one of the CRI options that is supported by
one of the virtual TAP alternatives to be studied in future chapters (kokotap, to be
described in chapter 4)

3.2.4 5G Simulation Tools

The 5G simulation tools picked for this master thesis project are Open5GS and
UERANSIM.

Open5GS for 5G Core Network

As described in sections section 2.6, both Open5GS and Free5GC (which can be
considered as the most adopted 5G implementations in the industry) provide a
complete 5G network architecture, being both a Open5GS is a complete open-source
implementation of the 5G core network. And a comparison table is provided as well
in appendix .1.1.

As described also in sections section 2.6.1 and section 2.6.2, the set of features is wide
for both tools, but Open5GS was chosen because it is more user-friendly, provides
great integration with most of the virtualized RAN simulation tools, and is more
suitable for educational and research purposes, such the current project objectives.

3.2.5 UERANSIM for RAN Simulation

As explained in sections section 2.6.3 and section 2.6.4, UERANSIM provides a much
more lightweight solution to simulate the RAN portion of the 5G network. It is a
great tool for testing and validating the 5G core network, and it is also very easy to
use and deploy. It is also the most used tool for the RAN simulation in the industry,
and it is also the most suitable for the current project objectives.

Since the actual purpose is to capture and mirror simulated user traffic, UERANSIM
is the most suitable option for this project.

42

3 Testbed Design and Implementation

3.3 Kubernetes Cluster Design

Cluster features

The testbed cluster was deployed in the Data Network Laboratory from the University
of Applied Sciences of Cologne with three virtual machines as follows:

• Control Plane Node: A single control plane node, 8 vCPUs, 32GB RAM, 150GB
SSD.

• Worker Node 1 and 2: Two worker nodes, each with 4 vCPUs, 16GB RAM,
100GB SSD.

• Collection endpoint: One additional endpoint, which will not be included in the
cluster but will be used to collect the mirror traffic and further remote testing.

The Collection endpoint is a VM with 4 vCPUs, 16GB RAM, 200GB SSD.

The chosen VM settings were chosen by oversizing the resources, so the cluster can
be used for multiple tests at the same time, and the performance of the cluster is
not affected by the resources. The cluster was deployed using the following software
versions:

• Operating System: Ubuntu 20.04 LTS.

• Kubernetes Version: 1.27.1.

• Container Runtime: CRI-O v1.26.4

• Container Network Interface: Calico v3.21.0

• Helm: v3.11.0

• Open5gs: version 2.7.0

• UERANSIM : version 3.2.6

All software versions were the latest at the moment of installation.

43

3 Testbed Design and Implementation

3.4 Deployment of the 5G Core and RAN in Kubernetes

The deployment of the 5G core network and the RAN portion was accomplished using
Helm Charts, which were developed and provided by Gradiant1 and include all the
necessary components to deploy the 5G core network and the RAN portion with
UREANSIM in a Kubernetes cluster. The rollout is pretty straightforward, and can
be accomplished with a single helm install command as shown below:

Listing 3.1: Helm installation for Open5GS and UERANSIM
andres@k8s -cp : ~$ helm install open5gs --namespace open5gs oci : //registry -1.

docker.io/gradiant/open5gs --version 2.2.0 --values https : // gradiant.
github.io/5g-charts/docs/open5gs -ueransim -gnb/5gSA -values.yaml

Pulled : registry -1. docker.io/gradiant/open5gs : 2.2.0
Digest : sha256 : 99 d49ab6c78be31dd2c3a99a0780de79bd22d0bfa9df734ca270594
NAME : open5gs
LAST DEPLOYED : Fri Nov 10 10 : 44 : 10 2023
NAMESPACE : open5gs
STATUS : deployed
REVISION : 1
TEST SUITE : None

andres@k8s -cp : ~$ helm install ueransim -gnb -n open5gs oci : //registry -1. docker.
io/gradiant/ueransim -gnb --version 0.2.6 --values https : // gradiant.github.
io/5g-charts/docs/open5gs -ueransim -gnb/gnb -ues -values.yaml

Pulled : registry -1. docker.io/gradiant/ueransim -gnb : 0.2.6
Digest : sha256 : feedcd66907e921775fc29065a54197c1ef66b13d62a6cb4cccbd42
NAME : ueransim -gnb
LAST DEPLOYED : Fri Nov 10 10 : 45 : 55 2023
NAMESPACE : open5gs
STATUS : deployed
REVISION : 1
TEST SUITE : None
NOTES :
ueransim -gnb successfully installed!
Check gnodeb log with :

‘‘‘
kubectl -n open5gs logs deployment/ueransim -gnb
‘‘‘

You have also deployed 2 ues. You can enter ues terminal with :

‘‘‘
kubectl -n open5gs exec -ti deployment/ueransim -gnb -ues -- /bin/bash
‘‘‘
There is a tun interface for each ue.

1https://www.gradiant.org/en/about/

44

https://www.gradiant.org/en/about/

3 Testbed Design and Implementation

You can bind your application to the interface to test ue connectivity.
Example :

‘‘‘
ping -I uesimtun0 gradiant.org
traceroute -i uesimtun0 gradiant.org
curl --interface uesimtun0 https : //www.gradiant.org/
‘‘‘

You can also deploy more ues connected to this gnodeb with gradiant/ueransim -
ues chart :

‘‘‘
helm install -n open5gs ueransim -ues gradiant/ueransim -ues --set gnb.hostname=

ueransim -gnb

As seen in the snippets above, Gradiant already includes some values to facilitate a
faster and ready-for-testing deployment of a complete 5G network. The values are
provided in the Helm Charts repository are included in the Attachments section of
this document.

Is worth mentioning that there is a special Kubernetes Deployment included in the
helm chart called "populate", which acts as a helper to initiate the MongoDB included
in Open5Gs, to include two users in the database, and to create the necessary
configuration files for the UERANSIM to connect to the Open5GS. This function has
the following setup, which is extracted by running the –dry-run option during the
helm installation:

Listing 3.2: Populate deployment from Helm Chart
Source: open5gs/templates/populate -deployment.yaml
apiVersion : apps/v1
kind : Deployment
metadata :

name : open5gs -populate
namespace : "open5gs"
labels :

spec :
template :
metadata :
spec :

initContainers :
- name : init
image : docker.io/gradiant/open5gs -dbctl : 0.10.3
imagePullPolicy :
env :
- name : DB_URI

value : mongodb : //open5gs -mongodb/open5gs
command :
- /bin/bash
- -c
- |

"open5gs -dbctl add_ue_with_slice "!! IMSI1" 465 B5CE8B199B49
E8ED289DEBA94 internet 1 111111 \

45

3 Testbed Design and Implementation

open5gs -dbctl add_ue_with_slice "!! IMSI2" 465 B5CE8B199B48
E8ED289DEBA95 internet 1 111111"

containers :
- name : populate
image : docker.io/gradiant/open5gs -dbctl : 0.10.3
imagePullPolicy :
env :
- name : DB_URI

value : mongodb : //open5gs -mongodb/open5gs
command :
- /bin/bash
- -c
- "tail -f /dev/null"

The populate function is a simple initContainer that runs the open5gs-dbctl com-
mand to add two users to the MongoDB database, which are used by the UERANSIM
to connect to the Open5GS.

3.5 Testing and Validation

As show in 3.1, the UERANSIM installation already provides some verification commands,
to check if the deployment is successful and the Open5GS core is working as expected
and the UEs are registered and connected to the gNB. Some test are shown below:

Listing 3.3: Testing the Open5GS and UERANSIM deployment
Check gNB and UE registration
andres@k8s -cp : ~$ kubectl -n open5gs logs deployment/ueransim -gnb
N2_BIND_IP : 10.42.5.48
N3_BIND_IP : 10.42.5.48
RADIO_BIND_IP : 10.42.5.48
AMF_IP : 10.105.163.52
Launching gnb : nr-gnb -c gnb.yaml
UERANSIM v3.2.6
[2024 -06 -08 11 : 31 : 05.029] [sctp] [info] Trying to establish SCTP connection ...

(10.103.83.127:38412)
[2024 -06 -08 11 : 31 : 05.038] [sctp] [info] SCTP connection established

(10.103.83.127 : 38412)
[2024 -06 -08 11 : 31 : 05.039] [sctp] [debug] SCTP association setup ascId [14]
[2024 -06 -08 11 : 31 : 05.040] [ngap] [debug] Sending NG Setup Request
[2024 -06 -08 11 : 31 : 05.049] [ngap] [debug] NG Setup Response received
[2024 -06 -08 11 : 31 : 05.049] [ngap] [info] NG Setup procedure is successful
[2024 -06 -08 11 : 31 : 06.492] [rrc] [debug] UE[1] new signal detected
[2024 -06 -08 11 : 31 : 06.492] [rrc] [debug] UE[2] new signal detected
[2024 -06 -08 11 : 31 : 06.495] [rrc] [info] RRC Setup for UE[1]
[2024 -06 -08 11 : 31 : 06.495] [rrc] [info] RRC Setup for UE[2]
[2024 -06 -08 11 : 31 : 06.495] [ngap] [debug] Initial NAS message received from UE

[2]
[2024 -06 -08 11 : 31 : 06.495] [ngap] [debug] Initial NAS message received from UE

[1]

46

3 Testbed Design and Implementation

[2024 -06 -08 11 : 31 : 06.630] [ngap] [debug] Initial Context Setup Request
received

[2024 -06 -08 11 : 31 : 06.665] [ngap] [debug] Initial Context Setup Request
received

[2024 -06 -08 11 : 31 : 06.725] [ngap] [info] PDU session resource(s) setup for UE
[2] count [1]

[2024 -06 -08 11 : 31 : 06.756] [ngap] [info] PDU session resource(s) setup for UE
[1] count [1]

Connectivity test from UEs to the internet

andres@k8s -cp : ~$ kubectl -n open5gs exec -ti deployment/ueransim -gnb -ues -- /
bin/bash

bash -5.1# ping -I uesimtun0 www.th-koeln.de
PING www.th-koeln.de (139.6.10.199) : 56 data bytes
64 bytes from 139.6.10.199 : seq=0 ttl =251 time =6.042 ms
64 bytes from 139.6.10.199 : seq=1 ttl =251 time =4.076 ms
64 bytes from 139.6.10.199 : seq=2 ttl =251 time =4.248 ms
64 bytes from 139.6.10.199 : seq=3 ttl =251 time =3.762 ms
64 bytes from 139.6.10.199 : seq=4 ttl =251 time =8.056 ms
64 bytes from 139.6.10.199 : seq=5 ttl =251 time =4.037 ms
64 bytes from 139.6.10.199 : seq=6 ttl =251 time =3.666 ms
64 bytes from 139.6.10.199 : seq=7 ttl =251 time =3.671 ms
^C
--- www.th -koeln.de ping statistics ---
8 packets transmitted , 8 packets received , 0% packet loss
round -trip min/avg/max = 3.666/4.694/8.056 ms

cURL test

bash -5.1# curl --interface uesimtun1 -svo /dev/null https ://www.fastly.com/
* Trying 146.75.117.57 : 443 ...
* Connected to www.fastly.com (146.75.117.57) port 443 (#0)
* ALPN : offers h2
* ALPN : offers http /1.1
* CAfile : /etc/ssl/certs/ca-certificates.crt
* CApath : none
} [5 bytes data]
* TLSv1 .3 (OUT), TLS handshake , Client hello (1) :
} [512 bytes data]
* TLSv1 .3 (IN), TLS handshake , Server hello (2) :
{ [122 bytes data]
* TLSv1 .3 (IN), TLS handshake , Encrypted Extensions (8) :
{ [19 bytes data]
* TLSv1 .3 (IN), TLS handshake , Certificate (11) :
{ [2537 bytes data]
* TLSv1 .3 (IN), TLS handshake , CERT verify (15) :
{ [264 bytes data]
* TLSv1 .3 (IN), TLS handshake , Finished (20) :
{ [36 bytes data]
* TLSv1 .3 (OUT), TLS change cipher , Change cipher spec (1) :
} [1 bytes data]
* TLSv1 .3 (OUT), TLS handshake , Finished (20) :
} [36 bytes data]
* SSL connection using TLSv1.3 / TLS_AES_128_GCM_SHA256

47

3 Testbed Design and Implementation

With the tests above, one can conclude that the Open5GS core network is working as
expected, and the UEs are connected to the gNB and can access the internet. The next
step is to capture the traffic from the UEs and mirror it to the collection endpoint.

48

4 Proposed Solutions

After the previous analysis of several In this chapter, the following solutions which
were picked as the best fit for the problem are presented.

• Kokotap as CLI tool

• Istio Service Mesh + Kiali

• Kokotap as Kubernetes Operator

These solutions are described in detail, and further analysis will be introduced in the
next chapter.

4.1 Kokotap as CLI tool

The first solution is to use the standard, out-of-the-box Kokotap, which works as a
command-line interface (CLI) tool. According to its documentation, "kokotap provides
network tapping for Kubernetes Pod. kokotap creates VxLAN interface to target
Pod/Container then do packet mirroring to the VxLAN interface by tc-mirred. kokotap
can also create VxLAN interface to Kubernetes target node (e.g. ’kube-master’) to
capture the traffic or you can specify specific IP addresses for non Kubernetes node for
capture." It is a tool initially developed by Red Hat, while pursuing early improvements
and monitoring tools to an emerging orchestration tool like Kubernetes was at that
time (around year 2018).

It is written in Go, and it is available as a binary file, which can be downloaded from
the official GitHub repository. The tool is easy to use, and it is well documented. The
user can create a new tap by running the command kokotap create, and then the
user can specify the target pod or node, and the target interface. The tool will then
create a new VxLAN interface, and it will start mirroring the traffic to that interface.
The user can then use any packet capture tool, like Wireshark, to capture the traffic.

The main features that can add value to the purpose of the project are the following:

• Easy to use: as it is a single binary file, it is fairly simple to install, use and
even extend the functionalities.

49

4 Proposed Solutions

• Choose the target: Kokotap gives the user the chance to send the captured
traffic to a specific cluster node, or to an external endpoint (meaning outside of
the cluster).

• Useful arguments: the user must provide the following mandatory arguments:
target pod, target interface on pod, namespace of the pod, mirror type (ingress,
egress or both), destination node and IP address. Some other optional arguments
are also available, like the VxLAN ID, the MTU, the source IP address, the
source port, interface among others.

Those arguments scope perfectly the target that an operator would like to
monitor, and enables a precise network traffic analysis.

• Single binary file developed using Go: The user could even extend the code to
add new features or to fix bugs.

But there are some key disadvantages that shall be pointed out:

• Lack of maintenance and community: the last commit on the GitHub repository
was made in 2018, and there are no signs of recent updates or maintenance. This
has led into some compatibility issues with latest Kubernetes versions, that were
met during the research phase.

There is no visible sign of a community around the project, which means new
features or bug fixes are unlikely to be handled, so the tool would eventually
become obsolete.

• Poor documentation: the documentation is not very detailed and even inaccurate
in some parts, which prevents a new user from understanding how the tool works.

• Limited Container Runtime Interface support: The broader Kubernetes com-
munity is moving towards containerd as the default CRI, and kokotap does not
support it. (Kokotap only supports Docker and CRI-O).

• Security concerns: kokotap requires the user to handout the kubeconfig file,
which contains sensitive information about the Kubernetes cluster like certificates,
context information and more. This is an important security concern, as the
user must trust the tool to not misuse the information.

Since one of the requirements is to capture the traffic from a Pod, and to send this
traffic to an external endpoint, the first thing is to choose the right arguments for the
kokotap create command. The arguments that were chosen are the following:

• –pod=: the target pod name.

• –interface: the target interface on the pod.

50

4 Proposed Solutions

• –namespace: the namespace of the pod.

• –mirror-type: the type of traffic to mirror, the option chosen was both.

• –destination-ip: the destination IP address.

• –dest-ip: the destination IP address (of the external endpoint).

• –kubeconfig: the path to the kubeconfig file, so the tool is authorized to manage
kubernetes resources. This is specified as optional, but after initial testing and
by analyzing the code it was found that it is mandatory.

4.1.1 Kokotap way of working

To properly use kokotap out-of-the-box, the user must follow the following steps:

1. Clone their Github repository https://github.com/redhat-nfvpe/kokotap, af-
terwards the user can either add the cmd directory to the PATH environment
variable, or run the binary file directly from the kokotap directory.

2. Run the ./kokotap command, and provide arguments accordingly.

3. Capture the traffic in the destination, normally using a tcpdump command with
appropriate filters and usually store it in a .pcap file.

What kokotap does in the background for the user is the following:

• Looks fot the provided pod and namespace, and retrieves the container ID and
the IP address of the kubernetes node on which the pod is running.

• Dumps a YAML file with the necessary to create a pod, known as sender pod,
which will be used to mirror the traffic.

• Creates a new pod on the same node, which will be used to mirror the traffic.

• Creates a new VxLAN tunnel interface, with the vxlanID provided by the user,
and using as source the IP address of the node and as destination the IP address
of the external endpoint (provided by the user as well).

• Mirrors the traffic from the pod’s interface and sends its through the VxLAN
tunnel.

An example of the output of the kokotap command is shown below:

51

4 Proposed Solutions

Listing 4.1: Output of the kokotap command
andres@k8s -cp : ~/koko/kokotap ./ kokotap --pod=pods_name --vxlan -id=ID --

mirrortype=both --dest -ip=external_ip --namespace="pod_namespace" --
kubeconfig="/path/to/kubeconfig_file"

apiVersion : v1
kind : Pod
metadata :

name : kokotap -pods_name -sender
spec :

hostNetwork : true
nodeName : k8s -w1.5g.dn.th-koeln.de
containers :

- name : kokotap -pods_name -sender
image : quay.io/s1061123/kokotap : latest
imagePullPolicy : Always
command : ["/bin/kokotap_pod"]
args : ["--procprefix =/host", "mode", "sender", "--containerid=cri -o

://6636", #shortened for brevity
"--mirrortype=both", "--mirrorif=eth0", "--ifname=mirror",
"--vxlan -egressip=pod_nodes_name", "--vxlan -ip=external_ip", "--

vxlan -id=ID",
"--vxlan -port =4789"]

securityContext :
privileged : true

volumeMounts :
- name : var -crio

mountPath : /var/run/crio/crio.sock
- name : proc

mountPath : /host/proc
volumes :

- name : var -crio
hostPath :

path : /var/run/crio/crio.sock
- name : proc

hostPath :
path : /proc

It is important to point out, that in this case the container runtime being used is
CRI-O, and the pod is being created in the same node as the target pod. The user
must have the necessary permissions to create pods in the cluster, and the kubeconfig
file must be provided to the tool.

Since kokotap only dumps a YAML file to create a new pod, the user can use this
output to create a new pod directly, by piping the output to the kubectl apply -f
- command. This is useful for debugging purposes, and to understand how the tool
works.

Listing 4.2: Creating a new pod using the output of kokotap
andres@k8s -cp : ~/koko/kokotap ./ kokotap --pod=pods_name --vxlan -id=ID --

mirrortype=both --dest -ip=external_ip --namespace =" pod_namespace" --
kubeconfig ="/ path/to/kubeconfig_file" | kubectl apply -f -

52

4 Proposed Solutions

pod/kokotap -pods_name -sender created

To delete the pod, one just needs to pipe the output to the kubectl delete -f -
command. This is recommended to do after the user has finished capturing the traffic,
as the pod will keep running until it is manually deleted.

Listing 4.3: Deleting a pod using the output of kokotap
andres@k8s -cp : ~/koko/kokotap ./ kokotap --pod=pods_name --vxlan -id=ID --

mirrortype=both --dest -ip=external_ip --namespace =" pod_namespace" --
kubeconfig ="/ path/to/kubeconfig_file" | kubectl apply -f -

pod/kokotap -pods_name -sender created

As seen in the code snippets, and in the dumped YAML file, a new sender pod is
created, with the binary kokotap_pod running as the main process. This binary is
responsible for two main tasks:

1. Build VXLAN interface: Creates a new VxLAN interface, with the provided
vxlanID, and the source IP address of the node and the destination IP address
of the external endpoint. This is accomplished by using the kokotap api go
package which has pre-built functions to create VxLAN interfaces accordingly
to the user’s passed arguments.

2. Mirror traffic: The binary uses the tc command to mirror the traffic from the
target interface to the VxLAN interface. This is done by using the tc-mirred
action, which is a Linux kernel module that allows to mirror traffic from one
interface to another.

Kokotap as CLI tool - Test

The testbed with the inclusion of kokotap looks like the following:

As seen in the figure, one can pick any pod running in the kubernetes cluster to mirror
traffic, and kokotap will build the machinery behind to enable capture traffic from the
pod selected interface and send it to an external endpoint.

Multiple tests were carried out to verify the functionality of kokotap, and the results
were as expected. The tool was able to create a new pod, and to mirror the traffic from
the target pod to the VxLAN interface. The user was able to capture the traffic using
tcpdump, and to analyze it using Wireshark. The tool was able to mirror both ingress
and egress traffic, and the user was able to specify the destination IP address.

In the figure below one can see how the kokotap sender pod is created:

53

4 Proposed Solutions

Figure 4.1: Testbed with kokotap

Listing 4.4: Kokotap pod creation
andres@k8s -cp : ~/koko/kokotap$ kubectl get pod kokotap -ueransim -gnb -ues -6

c7d5c7bfb -rb4q6 -sender -o yaml
apiVersion : v1
kind : Pod
metadata :

annotations :
kubectl.kubernetes.io/last -applied -configuration : ## skipped for breviety

creationTimestamp : "2024 -05 -31 T07 : 55 : 58Z"
name : kokotap -ueransim -gnb -ues -6c7d5c7bfb -rb4q6 -sender
namespace : default
resourceVersion : "80379625"
uid : d6e07e10 -30ae -4dfd -9b1a -5 f3250c1869b

spec :
containers :
- args :

- --procprefix =/host
- mode
- sender
- --containerid=cri -o : //6636 da5dc808a # shortened to fit
- --mirrortype=both
- --mirrorif=eth0
- --ifname=mirror
- --vxlan -egressip =192.168.1.108
- --vxlan -ip =192.168.1.109
- --vxlan -id =1100
- --vxlan -port =4789
command :

54

4 Proposed Solutions

- /bin/kokotap_pod
image : quay.io/s1061123/kokotap : latest
imagePullPolicy : Always
name : kokotap -ueransim -gnb -ues -6c7d5c7bfb -rb4q6 -sender
resources : {}
securityContext :

privileged : true
terminationMessagePath : /dev/termination -log
terminationMessagePolicy : File
volumeMounts :
- mountPath : /var/run/crio/crio.sock

name : var -crio
- mountPath : /host/proc

name : proc
- mountPath : /var/run/secrets/kubernetes.io/serviceaccount

name : kube -api -access -xstsp
readOnly : true

dnsPolicy : ClusterFirst
enableServiceLinks : true
hostNetwork : true
nodeName : k8s -w1.5g.dn.th-koeln.de
preemptionPolicy : PreemptLowerPriority
priority : 0
restartPolicy : Always
schedulerName : default -scheduler
securityContext : {}
serviceAccount : default
serviceAccountName : default
terminationGracePeriodSeconds : 30
tolerations :
- effect : NoExecute

key : node.kubernetes.io/not -ready
operator : Exists
tolerationSeconds : 300

- effect : NoExecute
key : node.kubernetes.io/unreachable
operator : Exists
tolerationSeconds : 300

volumes :
- hostPath :

path : /var/run/crio/crio.sock
type : ""

name : var -crio
- hostPath :

path : /proc
type : ""

name : proc
- name : kube -api -access -xstsp

projected :
defaultMode : 420
sources :
- serviceAccountToken :

expirationSeconds : 3607
path : token

- configMap :
items :
- key : ca.crt

path : ca.crt

55

4 Proposed Solutions

name : kube -root -ca.crt
- downwardAPI :

items :
- fieldRef :

apiVersion : v1
fieldPath : metadata.namespace

path : namespace
status :

conditions :
- lastProbeTime : null

lastTransitionTime : "2024 -05 -31 T07 : 55 : 58Z"
status : "True"
type : Initialized

- lastProbeTime : null
lastTransitionTime : "2024 -05 -31 T07 : 56 : 03Z"
status : "True"
type : Ready

- lastProbeTime : null
lastTransitionTime : "2024 -05 -31 T07 : 56 : 03Z"
status : "True"
type : ContainersReady

- lastProbeTime : null
lastTransitionTime : "2024 -05 -31 T07 : 55 : 58Z"
status : "True"
type : PodScheduled

containerStatuses :
- containerID : cri -o : // b6a9e51d00b0d05acca5f82 # shortened to fit

image : quay.io/s1061123/kokotap : latest
imageID : quay.io/s1061123/kokotap@sha256 : 25 d2255dc2b07 # shortened to fit
name : kokotap -ueransim -gnb -ues -6c7d5c7bfb -rb4q6 -sender
ready : true
restartCount : 0
started : true
state :

running :
startedAt : "2024 -05 -31 T07 : 56 : 02Z"

hostIP : 192.168.1.108
phase : Running
podIP : 192.168.1.108
podIPs :
- ip : 192.168.1.108
qosClass : BestEffort
startTime : "2024 -05 -31 T07 : 55 : 58Z"

The host that is receiving the mirrored traffic must have previously created the VXLAN
interface, and the user must have the necessary permissions to create the interface.

56

4 Proposed Solutions

The user can use the ip command to create the interface, and to set the necessary
parameters, as shown below:

Listing 4.5: Setting up the VxLAN interface
andres@vtap -endpoint : ~$ sudo ip link add vxlan0 type vxlan id 1100 dev ens160

dstport 4789
andres@vtap -endpoint : ~$ sudo ip link set up vxlan0

With the kokotap sender created and the VXLAN properly created in the receiving
host, the packet capture can already begin, by runnning a tcpdump command,

Look into captured pods traffic Normally, a production 5G cluster would generate
a huge amount of traffic itself, but for the sake of this test, the user can log into the
pod and generate traffic with a simple ping command, and also a cURL request to
www.google.com, as described below:

Listing 4.6: Generating traffic in the pod
andres@k8s -cp : ~$ kubectl exec -ti pods/ueransim -gnb -ues -6c7d5c7bfb -mgnfp -- /

bin/bash
bash -5.1#
bash -5.1#
bash -5.1# ip a | grep mirror ## check if the mirror interface is up
126 : mirror@if126 : <BROADCAST ,MULTICAST ,UP,LOWER_UP > mtu 1450 qdisc noqueue

state UNKNOWN group default qlen 1000
bash -5.1#
bash -5.1#
bash -5.1# ping 4.2.2.2 -I uesimtun0 # generate ICMP traffic with ping command
PING 4.2.2.2 (4.2.2.2) : 56 data bytes
64 bytes from 4.2.2.2 : seq=0 ttl=55 time =10.743 ms
64 bytes from 4.2.2.2 : seq=1 ttl=55 time =9.947 ms
64 bytes from 4.2.2.2 : seq=2 ttl=55 time =9.905 ms
64 bytes from 4.2.2.2 : seq=3 ttl=55 time =9.767 ms
64 bytes from 4.2.2.2 : seq=4 ttl=55 time =10.080 ms
64 bytes from 4.2.2.2 : seq=5 ttl=55 time =9.856 ms
64 bytes from 4.2.2.2 : seq=6 ttl=55 time =14.076 ms
64 bytes from 4.2.2.2 : seq=7 ttl=55 time =24.281 ms
64 bytes from 4.2.2.2 : seq=8 ttl=55 time =11.874 ms
64 bytes from 4.2.2.2 : seq=9 ttl=55 time =15.944 ms
64 bytes from 4.2.2.2 : seq =10 ttl =55 time =9.861 ms
64 bytes from 4.2.2.2 : seq =11 ttl =55 time =11.487 ms
64 bytes from 4.2.2.2 : seq =12 ttl =55 time =9.460 ms
^C
--- 4.2.2.2 ping statistics ---
13 packets transmitted , 13 packets received , 0% packet loss
round -trip min/avg/max = 9.460/12.098/24.281 ms

bash -5.1# curl www.google.com --interface uesimtun0
<!doctype html ><html itemscope ="" itemtype ="http : // schema.org/WebPage" lang="

de">
output skipped for brevity

57

4 Proposed Solutions

&ei="+b+"& tgtved ="+f+"& jsname ="+(a||""))}}else I=a,H=[b]} window.document.
addEventListener (" DOMContentLoaded",function (){document.body.
addEventListener ("click",J)});}).call(this);</script ></body ></html >

bash -5.1#

The user can use the tcpdump command to capture the traffic already in the external
host, this is shown below:

Listing 4.7: Capturing the traffic in the external host
$sudo tcpdump -vvvi vxlan0 -s 65535 -w kokotap -cli -test.pcap
tcpdump : listening on vxlan0 , link -type EN10MB (Ethernet), capture size 65535

bytes
^C171 packets captured
175 packets received by filter
0 packets dropped by kernel

The user can then analyze the captured traffic using Wireshark, and the results should
be similar to the ones shown in the figure below. For the sake of proving the test, a
filter was applied to only show GTP traffic, which is the protocol used in 5G networks
to encapsulate user data.

Figure 4.2: Wireshark capture of the traffic, filtered to show only GTP

The test as shown was successful, the objective of sending "live" traffic to an external
endpoint was duly accomplished.

4.2 Extending Kubernetes API with Kokotap CRD

The second solution is to use Kokotap as a Kubernetes Operator. As explained in
section 2.3, Operators are software extensions to Kubernetes that make use of custom
resources to manage applications and their components. Operators follow Kubernetes
principles, notably the control loop.

58

4 Proposed Solutions

4.2.1 Motivation for Kokotap CRD

The current state of the art in Kubernetes is to use Operators to manage applications
and their components. As seen in the previous section 2.3.3, Custom Resource
Definitions (CRDs) are used to extend the Kubernetes API, and to create new
resources. Operators are software extensions to Kubernetes that make use of custom
resources to manage applications and their components. Operators follow Kubernetes
principles, notably the control loop.

As described in the previous section "insertarreferencia", kokotap comes as a CLI tool
which highly relies on the user installing go in its local system (or in the system where
the tool is going to be used). This is a limitation, as the user must have the necessary
permissions to install software in the system, and to run the tool. It is also an external
tool not embedded into kubernetes, wich also poses as a disadvantage taking out the
flexibility of kuberentes to provide easy access for user to their resources that they
want to build.

It would be much better for a kubernetes administrator (or anyone on an IT-team,
that must manage kubernetes clusters and capture traffic as this project requests) to
have a tool that is in-band-managed by kubernetes itself, even most commmonly, by
pure and easy kubectl commands. This is where the idea of extending the kubernetes
API with a CRD comes in.

Designing the Kubernetes’ CRD and Custom Operator

The process of designing a custom resource definition (CRD) requires a clear under-
standing of the problem that the CRD is trying to solve, and the resources that the
CRD is going to manage. In this case, the CRD is going to manage the resources
that are necessary to capture the traffic from a pod, and to send it to an external
endpoint.

A very practical approach was taken to design the CRD, and it is described as follows:

• Extend Kokotap as a Custom Resource: As analyzed before, kokotap
creates a pod which contains a binary that handles all the logic behind the traffic
mirroring. Since there is already a container image built with the kokotap_pod
binary, the idea is to create this pod on a more automated fashion, with a custom
kubernetes controller and manage it with a custom resource.

• Define the Custom Resource: The custom resource must contain all the
necessary information to create the kokotap_pod pod. This includes the target
pod, the target interface, the mirror type, the destination IP address, the

59

4 Proposed Solutions

destination node, the VxLAN ID, the MTU, the source IP address, the source
port, and the interface. The custom resource must also contain the status of the
pod, and the status of the VxLAN interface.

• Define the Custom Controller: The custom controller must watch for
changes in the custom resource, and it must create the kokotap_pod pod ac-
cordingly. By handling out this responsability to a controller, the user can easily
create, update and delete the custom resource, and the controller will take care
of creating, updating and deleting the pod.

Since all the necessary information is already provided by the kokotap tool, the custom
resource can be designed to contain all the necessary information to create the pod.
The custom resource can be defined as follows:

Implementing Kokotap CRD

There is a few tools that are recommended to be used when creating a new CRD in
kubernetes. The most used in the community are:

• Kubebuilder: A framework for building Kubernetes APIs using custom resource
definitions (CRDs). It provides a way to define the API, the controller, and the
webhook in a single project. It is a very powerful tool, but it is also complex
and it has a steep learning curve.

• Operator SDK: A framework that uses Kubebuilder under the hood, but it
provides a simpler way to create a new CRD. It is a very powerful tool, and it is
easier to use than Kubebuilder.

• Kustomize: A tool that provides a way to customize Kubernetes resources
using patches. It is a very powerful tool, and it is easy to use, but lacks some of
the features of Kubebuilder and Operator SDK when creating a new CRD.

The chosen tool was Operator SDK, as it provides a much simpler way to create a
new CRD, and it is easier to use than Kubebuilder. One can state that Operator SDK
is a wrapper around Kubebuilder, as it generates all the necessary files to define a
new CRD with the Kubebuilder logic, in a much more intuitive way by taking core of
all the scaffolding and boilerplate code that is needed to create a new CRD.

Now another choice needs to be made, as Operator SDK offers three options to the
user, on which language to use to create the new CRD. The options are:

• Go: The most used language to create Kubernetes operators. It is the most
powerful language, and it is the most used in the community.

60

4 Proposed Solutions

• Ansible: A configuration management tool that can be used to create Kuber-
netes operators. It is a simpler way to create operators, but it is less powerful
than Go.

• Helm: A package manager for Kubernetes that can be used to create Kubernetes
operators. It is a very simple way to create operators, but it is less powerful
than Go and Ansible.

From now on, the process of creating the CRD will be described, and the necessary
steps to create the custom resource and the custom controller will be shown. All of
this based on Go programming language.

After installing the Operator SDK, the user can create a new project with the following
commands:

Listing 4.8: Creating a new project with Operator SDK
$operator -sdk init --domain dn-lab.io --repo github.com/netand593/dn -vtap
Writing kustomize manifests for you to edit ...
Writing scaffold for you to edit ...
Get controller runtime :
$ go get sigs.k8s.io/controller -runtime@v0 .15.0
Update dependencies :
$ go mod tidy
Next : define a resource with :
$ operator -sdk create api

The user can then create a new API with the following command:

Listing 4.9: Creating a new API with Operator SDK
$operator -sdk create api --group networking --version v1alpha1 --kind Kokotap

--resource --controller
Writing kustomize manifests for you to edit ...
Writing scaffold for you to edit ...
api/v1alpha1/kokotap_types.go
api/v1alpha1/groupversion_info.go
internal/controller/suite_test.go
internal/controller/kokotap_controller.go
Update dependencies :
$ go mod tidy
Running make :
$ make generate
mkdir -p /home/andres/az -projects/dn -vtap/bin
test -s /home/andres/az-projects/dn-vtap/bin/controller -gen && /home/andres/az

-projects/dn-vtap/bin/controller -gen --version | grep -q v0 .12.0 || \
GOBIN =/home/andres/az-projects/dn -vtap/bin go install sigs.k8s.io/controller -

tools/cmd/controller -gen@v0 .12.0
/home/andres/az -projects/dn -vtap/bin/controller -gen object : headerFile="hack/

boilerplate.go.txt" paths="./..."
Next : implement your new API and generate the manifests (e.g. CRDs ,CRs) with :
$ make manifests

61

4 Proposed Solutions

All this previous commands generate the directory structure shown in the picture
below:

Figure 4.3: Directory structure generated by Operator SDK

This is the directory structure generated by Operator SDK, and it contains all the
necessary files to define a new CRD. As seen, most of the scaffolding and boilerplate
code is already generated, which leverages the user to focus on the logic behind
the CRD, and not on the structure of the project or which files are (or are not)
indispensable.

By following the documentation from operator SDK1 one can continue in a step-by-step
fashion to create the custom resource and the custom controller.

Going into details of how the CRD is defined, the following files must be modified to
fulfill the objectives:

• api/v1alpha1/kokotap_types.go: This file contains the definition of the cus-
tom resource, and it must be modified to contain all the necessary information
Spec and Status fields.

1https://sdk.operatorframework.io/docs/building-operators/golang/

62

https://sdk.operatorframework.io/docs/building-operators/golang/

4 Proposed Solutions

• controllers/kokotap_controller.go: This file contains the logic behind the
custom controller, and it must be modified to create the kokotap_pod pod
accordingly to the custom resource.

The kokotap_types.go file will then contain the following Spec fields:

Listing 4.10: Kokotap CRD Spec fields
type KokotapSpec struct {
// INSERT ADDITIONAL SPEC FIELDS - desired state of cluster
// Important: Run "make" to regenerate code after modifying this file

// Pod’s name in which the packet capture should be done
PodName string ‘json:" podName"‘
// IP address of the host which will receive the captured packets
TargetIP string ‘json:" destIp"‘
// VXLAN ID
VxLANID int32 ‘json:" vxlanID"‘
// Namespace of the pod
Namespace string ‘json:" namespace"‘
// Type of mirror traffic
MirrorType string ‘json:" mirrorType"‘
// Pod Interface to do the tapping (mirror traffic)
PodInterface string ‘json:" podInterface"‘
// Image to be used for the kokotap container
Image string ‘json:"image"‘
// +kubebuilder:validation:Enum=UDP;TCP

}

They are similary tailored as in the previous section section 4.2.1 The comments shown
in the code are intentionally left there, as they are result from the scaffolding process
from Operator SDK, and they are useful to understand the purpose of each field.

The Status fields are also defined in the same file, and they are shown below:

Listing 4.11: Kokotap CRD Status fields
// KokotapStatus defines the observed state of Kokotap
type KokotapStatus struct {
// INSERT ADDITIONAL STATUS FIELD - define observed state of cluster
// Important: Run "make" to regenerate code after modifying this file
Conditions [] metav1.Condition ‘json:"conditions ,omitempty"␣patchStrategy :"

merge"␣patchMergeKey :"type"␣protobuf :"bytes ,1,rep ,name=conditions"‘
}

//+kubebuilder:object:root=true
//+kubebuilder:subresource:status

In this case, the standardized Conditions slice from the metav1.Condition struct
is used to define the status of the custom resource. This is a common practice in
Kubernetes, and it is used to define the status of the custom resource.

63

4 Proposed Solutions

The kokotap_controller.go file will contain the logic to create the kokotap_pod
pod, and it will be triggered by changes in the custom resource.

The control loop and how the newly kubernetes resource called Kokotap is broken
down into pieces for better understanding and is shown below:

1. func GetPodInfo: This method fetches the pod information given the pod’s
name and namespace. It returns pod’s containerID, and also the node’s IP
address (nodeIP) and node’s name nodeName on which the pod is running, as
well as the container runtime interface CRI being used in the cluster. All this
information is needed afterwards to create kokotap resource.

2. func CreateKokotapPod: This method creates the kokotap_pod pod, and it
is triggered by changes in the custom resource. It uses the kokotap container
image, and it sets the necessary arguments to create the pod. The pod is created
in the same node as the target pod, and it is used to mirror the traffic from
the target pod, build the VxLAN tunnel and mirror the traffic to the external
endpoint.

3. func Reconcile: This method reconciles the custom resource, it checks if the
declared Kokotap resource needs to be created, deleted or updated and it calls
other methods accordingly.

4. func ReconcileNormal: This method takes care of the creation of the pod
that will execute the kokotap_pod binary. It creates the pod, and it sets the
necessary arguments, specified in the kokotap resource Specs. It also sets
the finalizer to the Kokotap resource, so the pod is not deleted until the
finalizer is removed.

5. func ReconcileDelete: Handles the deletion state of the Kokotap resource,
removing the finalizer and then the pod.

6. func SetupWithManager: This method sets up the custom controller with the
manager, and it watches for changes in the custom resource. It is the main
method that sets up the custom controller, and it is called by the main function.

The code snippets are shown below. First a snippet of Reconcile method:

Listing 4.12: Reconcile Method in controller.go file
func (r ∗KokotapReconci ler) Reconc i l e (ctx context . Context , req c t r l . Request) (

r e s u l t c t r l . Result , e r rRe su l t error) {
l o gg e r := log . FromContext (ctx)
l o gg e r . In f o ("Reconciling␣Kokotap")

// Fetch the Kokotap instance
kokotap := &networkingv1alpha1 . Kokotap{}
i f e r r := r . Get (ctx , req . NamespacedName , kokotap) ; e r r != ni l {

64

4 Proposed Solutions

i f ap i e r r o r s . IsNotFound (e r r) {
l o gg e r . In f o ("Kokotap␣resource␣not␣found.␣Ignoring␣since␣object␣must␣be␣

deleted")
return r e c o n c i l e . Result {} , ni l

}
l ogg e r . Error (err , "Failed␣to␣get␣Kokotap␣object")
return c t r l . Result {} , e r r

}

// Check if the Kokotap instance is marked to be deleted

i f kokotap . GetDeletionTimestamp () != ni l {
i f c o n t r o l l e r u t i l . Conta in sF ina l i z e r (kokotap , Final izerName) {

l ogg e r . In f o ("Kokotap␣Marked␣for␣deletion ,␣deleting")
return r . Reconc i l eDe l e t e (ctx , kokotap)

}
}

// Reconcile the Kokotap instance

return r . Reconci leNormal (ctx , kokotap)

}

Then a short snippet of the ReconcileNormal method:

Listing 4.13: Reconcile Normal Method
// ReconcileNormal is the function that will be called when the resource is

not being deleted or updated
func (r ∗KokotapReconci ler) Reconci leNormal (ctx context . Context , kokotap ∗

networkingv1alpha1 . Kokotap) (c t r l . Result , error) {
l o gg e r := log . FromContext (ctx)
kokotapPod := &corev1 . Pod{}
e r r := r . Get (ctx , types . NamespacedName{Name : "kokotapped -" + kokotap . Spec .

PodName , Namespace : kokotap . Spec . Namespace } , kokotapPod)
i f e r r != ni l {

i f ap i e r r o r s . IsNotFound (e r r) {
l o gg e r . In f o ("Kokotap␣Pod␣not␣found.␣Creating␣one")
_, e r r = r . CreateKokotapPod (ctx , kokotap)
i f e r r != ni l {

l ogg e r . Error (err , "Failed␣to␣create␣Kokotap␣Pod")
return c t r l . Result {} , e r r

}
l o gg e r . In f o ("Created␣Kokotap␣Pod␣successfully")
// Add finalizer to the Kokotap Custom Resource becasue the Kokotap Pod

has been created
i f ! c o n t r o l l e r u t i l . Con ta in sF ina l i z e r (kokotap , Final izerName) {

c o n t r o l l e r u t i l . AddFina l i zer (kokotap , Final izerName)
e r r = r . Update (ctx , kokotap)
i f e r r != ni l {

l ogg e r . Error (err , "Failed␣to␣add␣finalizer␣to␣Kokotap")
return c t r l . Result {} , e r r

}
l o gg e r . In f o ("Added␣finalizer␣to␣Kokotap")

}
return c t r l . Result {} , ni l

65

4 Proposed Solutions

}
// Todo: Handle other errors
l o gg e r . Error (err , "Failed␣to␣fetch␣Kokotap␣Pod")
return c t r l . Result {} , e r r

}
return c t r l . Result {} , ni l

}

And finally the ReconcileDelete method:

Listing 4.14: Reconcile Delete Method

// ReconcileDelete deletes the kokotap_pod and removes the label from the
tapped pod

func (r ∗KokotapReconci ler) Reconc i l eDe l e t e (ctx context . Context , kokotap ∗
networkingv1alpha1 . Kokotap) (c t r l . Result , error) {

l o gg e r := log . FromContext (ctx)

// Delete the kokotap_pod and remove label from the tapped pod

podname := "kokotapped -" + kokotap . Spec .PodName
pod := &corev1 . Pod{}
e r r := r . Get (ctx , types . NamespacedName{Name : podname , Namespace : kokotap . Spec .

Namespace } , pod)
i f e r r != ni l {

l ogg e r . Error (err , "Failed␣to␣get␣Pod")
return c t r l . Result {} , e r r

}

// Check kokotap status to handle deletion
i f pod . Status . Phase == corev1 . PodRunning {

i f e r r := r . De lete (ctx , pod) ; e r r != ni l {
l ogg e r . Error (err , "Failed␣to␣delete␣Pod")
return c t r l . Result {} , e r r

}
l o gg e r . In f o ("Deleted␣Pod␣successfully")

}

// Remove the label from the tapped pod
tappedpod := &corev1 . Pod{}
e r r = r . Get (ctx , types . NamespacedName{Name : kokotap . Spec .PodName , Namespace :

kokotap . Spec . Namespace } , tappedpod)
i f e r r != ni l {

l ogg e r . Error (err , "Failed␣to␣get␣Pod")
return c t r l . Result {} , e r r

}
tappedpod . Labels ["dn -vtap"] = "not -tapped"
i f e r r := r . Update (ctx , tappedpod) ; e r r != ni l {

l ogg e r . Error (err , "Failed␣to␣update␣Pod")
return c t r l . Result {} , e r r

}

// Remove the finalizer from the Kokotap CR

c o n t r o l l e r u t i l . RemoveFinal izer (kokotap , Final izerName)

66

4 Proposed Solutions

i f e r r := r . Update (ctx , kokotap) ; e r r != ni l {
l ogg e r . Error (err , "Failed␣to␣remove␣finalizer␣from␣Kokotap")
return c t r l . Result {} , e r r

}
l o gg e r . In f o ("Removed␣finalizer␣from␣Kokotap")

return c t r l . Result {} , ni l
}

The whole code repository will be attached in the appendix, and the user can check
the full code in the repository. The code is also available in the following link:
https://github.com/netand593/dn-vtap

Deploying the Custom Resource Definition

After defining the custom resource and the custom controller, the user can deploy the
custom resource definition to the Kubernetes cluster. Following the Operator SDK
documentation. This will, once again, scaffold all the manifests that the controller
needs, to be able to manage the new kubernetes resource. Some important files that
are generated are:

1. config/crd/bases/networking.dn-lab.io_kokotaps.yaml: This file contains
the definition of the custom resource, and it must be deployed to the Kubernetes
cluster with a simple kubectl apply -f command.

2. config/samples/networking_v1alpha1_kokotap.yaml: This file contains a
sample of the custom resource, and it can be used to test the custom resource in
the Kubernetes cluster.

3. config/rbac: This directory contain multiple files to create Kubernetes security
objects according to the CRD and best practices. To name some objects it
creates a ClusterRole, a ClusterRoleBinding and a ServiceAccount for the
operator, so it is actually authorized to handle the newly created resource.

The user can deploy the custom resource definition to the Kubernetes cluster with the
following command:

Listing 4.15: Deploying the Custom Resource Definition
$ kubectl apply -f config/crd/bases/networking.dn -lab.io_kokotaps.yaml
customresourcedefinition.apiextensions.k8s.io/kokotaps.networking.dn-lab.io

created

The user can then create a new custom resource with the following command:

67

https://github.com/netand593/dn-vtap

4 Proposed Solutions

Listing 4.16: Creating a new Custom Resource
$ kubectl apply -f networking_v1alpha1_kokotap.yaml
kokotap.networking.dn-lab.io/kokotap -sample created

A sample of how the YAML file for the custom resource looks like is shown below:

Listing 4.17: Sample of the Kokotap CRD
apiVersion : networking.dn -lab.io/v1alpha1
kind : Kokotap
metadata :

labels :
app.kubernetes.io/name : kokotap
app.kubernetes.io/instance : kokotap -sample
app.kubernetes.io/part -of : dn-vtap
app.kubernetes.io/managed -by : kustomize
app.kubernetes.io/created -by : dn-vtap

name : kokotap -test -1
spec :

podName : "ueransim -gnb -57674 b4b94 -pv5rn"
destIp : "192.168.1.109"
vxlanID : 1100
namespace : "default"
mirrorType : "both"
podInterface : "eth0"
image : "netand593/kokotap : 2.0-beta"

The user can then check the status of the custom resource with the following com-
mand:

Listing 4.18: Checking the status of the Custom Resource
$ kubectl get kokotap
NAME AGE
kokotap -test -1 6m30s

All the commands for a common, predefined kubernetes resource could be use here,
like kubectl describe, kubectl edit, kubectl delete and so on.

Similarly as explained in section 4.1.1, the custom controller will in this case create
the kokotap capturing or mirroring pod, and the user can then check the status of
the pod with the following command:

Listing 4.19: Checking the status of the Kokotap Pod
$ sudo tcpdump -vvvi vxlan0 -s 65535 -w kokotap -crd -test -1-gnb.pcap
[sudo] password for andres :
tcpdump : listening on vxlan0 , link -type EN10MB (Ethernet), capture size 65535

bytes
^C323 packets captured
325 packets received by filter
0 packets dropped by kernel

68

4 Proposed Solutions

Some test traffic was generated as well from the UE pod, and this traffic is being
intercepted in the gNB pod, and then sent to the external endpoint. The user can then
analyze the captured traffic using Wireshark, and the results should be similar to the
ones shown in the figure below. For the sake of proving the test, a filter was applied
to only show GTP traffic, which is the protocol used in 5G networks to encapsulate
user data.

The capture is shown in the figure below:

Figure 4.4: Wireshark capture of the traffic, filtered to show only GTP. Captured
using Kokotap CRD.

The test as shown was successful, the objective of sending "live" traffic to an external
endpoint was duly accomplished.

4.3 Istio Service Mesh with Kiali

As seen in section 2.5.3 the Istio service mesh is a powerful tool to manage and monitor
the traffic in a Kubernetes cluster. Istio provides a lot of features to manage the traffic,
and it is a very powerful tool to monitor the traffic in a Kubernetes cluster. One of
the most powerful tools that Istio provides is Kiali, which is a graphical user interface
to monitor the traffic in a Kubernetes cluster.

69

4 Proposed Solutions

4.3.1 Motivation for Istio and Kiali

Istio provides an additional plugin for monitoring the traffic in a Kubernetes cluster,
and it is called Kiali. Kiali is an observability console for Istio service mesh, providing
detailed insights into the service mesh components. [11] It helps in visualizing the
service mesh topology, understanding the health of the services, and managing traffic
between the services. Kiali integrates seamlessly with Istio, leveraging its capabilities
to monitor and manage microservices. Kiali takes advantage of Istio’s sidecar injection
feature, which injects a sidecar container into each pod, and it provides a lot of features
to monitor the traffic in a Kubernetes cluster. The most important features that can
contribute to fulfill objectives are:

• Service Graph: Kiali provides a service graph that shows the topology of the
services in the Kubernetes cluster. The service graph shows the services of the
application and how they are functionally connected to each other, meaning how
they are exchanging traffic.

• Connect tracing services: Kiali provides seamless integration with tracing
services like Jaeger, which is a distributed tracing system, and it is used to
monitor and troubleshoot microservices-based distributed systems. Jaeger could
serve as a way to keep track of flows of traffic across the cluster and to identify
anomalous behavior.

4.3.2 Deploying Istio and Kiali

The deployment of Istio and Kiali is a complex process, as it requires first to install
and configure the Service Mesh from Istio and then deploy a custom controller for
Kiali, that integrates and sets up all the functionalities for Traffic Monitoring and the
integration with Jaeger distributed tracing services. The user can follow the official
documentation to deploy Istio and Kiali in a Kubernetes cluster which provides enough
information to carry out the process.2

Istio is easily installed with the proper helm chart, it can be accomplished as follow:

Listing 4.20: Installing Istio with Helm
andres@k8s -cp : ~/ kiali$ helm install istio -base istio/base -f istio -change.yaml

--reuse -values -n istio -system
Release "istio -base" has been upgraded. Happy Helming!
NAME : istio -base
LAST DEPLOYED : Tue Jan 23 22 : 56 : 15 2024
NAMESPACE : istio -system
STATUS : deployed

2https://istio.io/latest/docs/setup/getting-started/

70

https://istio.io/latest/docs/setup/getting-started/

4 Proposed Solutions

REVISION : 3
TEST SUITE : None
NOTES :
Istio base successfully installed!

And the Custom Controller, which is a very important part of the deployment is
installed by applying the following yaml file:

Listing 4.21: Installing Kiali Custom Controller
apiVersion : kiali.io/v1alpha1
kind : Kiali
metadata :

name : kiali
namespace : istio -system

spec :
auth :

strategy : "anonymous"
deployment :

accessible_namespaces : [" bookinfo", "open5gs "]
view_only_mode : false
service_type : "LoadBalancer"

server :
web_root : "/kiali"

external_services :
tracing :

Enabled by default. Kiali will anyway fallback to disabled if
Jaeger is unreachable.
enabled : true
provider : "jaeger"
if you set "use_grpc" to false.
in_cluster_url : "http : //jaeger -query.istio -system : 16686"
use_grpc : true
auth :

ca_file : ""
insecure_skip_verify : false
password : ""
token : ""
type : "none"
use_kiali_token : false
username : ""

After several test the user can get a visual representation of the traffic in the Kubernetes
cluster, and the user can see the services that are exchanging traffic, and how they
are connected to each other. Please refer to the following figure to see how the Kiali
dashboard looks like:

71

4 Proposed Solutions

Figure 4.5: Kiali Dashboard showing the traffic in the Kubernetes cluster

The user can see the services that are exchanging traffic, and how they are connected
to each other, by using the graphic view:

72

4 Proposed Solutions

Figure 4.6: Kiali Graph showing the services in the Kubernetes cluster

By clicking on one individual Kubernetes Service, the administrator can take a look
into the several important metrics, like Inbound and Outbound traffic, logs received
from the pod associated with the service, like shown below:

73

4 Proposed Solutions

Figure 4.7: Kiali Service View showing the metrics of the service

If we refer to Figure 4.5, in the left side menu there is a button to access the Tracing
view, which is a very powerful tool to monitor the traffic in the Kubernetes cluster.
This leads to the Jaeger dashboard, which shows all the traces of the traffic in the
Kubernetes cluster, in a per-service fashion, as shown in the figure below:

74

4 Proposed Solutions

Figure 4.8: Jaeger Tracing showing the traces of the traffic in the Kubernetes cluster

75

4 Proposed Solutions

4.4 Comparison of the Strategies

The three strategies presented in this chapter are valid tools that accomplish the
objective of the project, and provide flexibility for future works to choose any of
them, depending on the approach that the developer or the user in general wants to
incorporate in future works. A comparison of the three strategies is shown below:

Strategy Pros Cons Use Case
Kokotap CLI Easy to use

Rapid deployment
Single binary that

executes from the CP
node

Not K8s managed
Ephemeral nature (not
resilient to changes)
Limited CRI support
Very few development

Quick tests
Dev clusters

Kokotap CRD In-band management
(kubectl commands)
Non-ephemeral behavior
Flexible and multiple

deployments

Relies on Kokotap
development (very poor)

Initial complex
development

Security needs to be
refined

Prod and dev clusters

Istio Service Mesh Consolidated product
Broader support by

companies and CNCF
Rich set of features

Complex setup
Sidecar injection adds

complexity and
management workload
Some paid features
SCTP support not

provided

Production clusters
Highly scalable clusters

Table 4.1: Comparison of the Strategies

4.4.1 Evaluation of Strategies

The virtual TAP and monitoring strategies are evaluated based on the following
criteria:

• Ease of Use: The ease of use of the strategy, and how easy it is to deploy and
manage the strategy.

• Deployment Time: The time it takes to deploy the strategy, and how fast it
is to deploy the strategy.

• Development: The development of the strategy, and how easy it is to develop
the strategy.

• 5G compatibility: Meaning how well does the strategy adapts to the 5G setup.

Regarding the easiness of use, the Kokotap CLI strategy is the easiest to use, as it is
a single binary that can be executed from the CP node. The Kokotap CRD strategy

76

4 Proposed Solutions

is also easy to use, as it is managed by Kubernetes, and it can be deployed with
kubectl commands. The Istio Service Mesh strategy is the most complex to use, as it
requires a lot of setup and configuration, as well as much more flexible communication
between services inside the cluster, therefore influencing the initial design of the 5G
core deployment or maybe bring additional workload to deployments which are already
in production.

In the matter of deployment time, again Kokotap CLI is the quickest way, as it
only requires to download the binaries from Github and execute it as expected. The
Kokotap CRD on the other hand, required more effort as it is a newly designed
solution, but the use and deployment was very quick once the tests were successful, as
it is just another kubernetes resource which is administrated via kubectl commands.
The Istio Service Mesh with Kiali and Jaeger plugins, although it is more complex,
didn’t require much time to deploy, since it is a very well documented product and the
community around it provide excellent tutorials and quick support for any questions.

In the development aspect, the Kokotap CLI strategy is the most limited, as it has
been abandoned by its developers and the community has not showed further interest
in keeping it alive and available for production clusters, and it is not managed by
Kubernetes. The Kokotap CRD arises a development concern as well, since it is
a brand new development for this particular thesis and also relies on the kokotap
binaries and container images, although could be pushed forward by future works. The
Istio Service Mesh strategy relies on the constant updates and feature releases that
the Istio community and development team provide, and it is a very well maintained
product, with a lot of features and a lot of support from the community. It is also
offered as a managed solutions in some public cloud solutions like Google Cloud
Platform and IBM Cloud.

In the 5G compatibility aspect, being one of the most important for the project; both
Kokotap CLI and CRD fit the 5G setup, as they are agnostic to the type of traffic
to be analyzed, while on the other hand Istio with Kiali and Jaeger pose a huge
limitation for 5G traffic, as it only cares about much more common traffic to be found
in Kubernetes applications as HTTP, gRPC and TCP traffic.

77

5 Conclusions and Future Work

As a brief summary, in this thesis the evaluation of virtual TAP and monitoring
alternatives for 5G virtualized environments was carried out by following the following
very general steps:

1. Literature Review: A comprehensive literature review was conducted to
understand the state-of-the-art in 5G networks, virtualization, monitoring, and
TAP technologies.

2. Requirements Analysis: The requirements for a 5G monitoring solution were
identified and documented.

3. Design and Implementation: A testbed was designed and implemented to
evaluate the performance of virtual TAP and monitoring alternatives for 5G
networks.

4. Proposed solutions: Three main solutions were proposed to address the
challenges of virtual TAP and monitoring in 5G networks.

5. Evaluation: The performance of the proposed solutions was evaluated in terms
of throughput, latency, and scalability.

After the evaluation of the proposed solutions, the following conclusions can be
drawn:

5.1 Conclusions

The results of the evaluation showed that the proposed solutions can provide a viable
alternative to traditional TAP and monitoring solutions for 5G networks. The proposed
solutions were able to achieve high throughput, low latency, and good scalability,
which are essential for monitoring high-speed 5G networks. The proposed solutions
can be easily integrated into existing 5G networks and can be used to monitor the
performance of 5G networks in real-time.

The contributions of this thesis can be summarized as follows:

78

5 Conclusions and Future Work

- Since there is a very strong trend to move all possible applications to the cloud,
the mobile networks as a service are also moving to the cloud. Most of the
top-tier operators across the world are trying to accelerate their migration to
public and private cloud environments, and locally in Germany are also heading
to this transformation. Given the numerous set of alternatives to offer a fully
functional 5G Network in the cloud, that follow a Microservices architecture,
Kubernetes is the top-choice when deploying an application in the cloud, since
it orchestrates such architectures in a very consistent way and encompass a very
large set of tools to monitor and manage the network, all supported by a very
active multidisciplinary community.

Given the security concerns that a cloud deployment in general bring up, in
conjunction with the delicate nature (security-wise) of mobile networks, it is an
absolute necessity to provide a traffic analysis solution that adapts to such a
scenario accordingly.

- The proposed solutions can provide a viable alternative to traditional TAP and
monitoring solutions for 5G networks. The proposed solutions were able to
achieve high throughput, low latency, and good scalability, which are essential
for monitoring high-speed 5G networks. The proposed solutions can be easily
integrated into existing 5G networks and can be used to monitor the performance
of 5G networks in real-time.

- The Kokotap CLI solution is a very quick alternative to spin up a virtual tap in
test clusters. It relies also on the feasibility of creating a VXLAN that connects
the worker node on which the target pod is running and the external node or
collector that will receive the traffic. However, the solution is not easily scalable,
since it requires a manual intervention to create the VXLAN interfaces, and
has been abandoned by its developer team. It wouldn’t fit well in production
environmets, given that multiple pods would require a manual intervention
to create the VXLAN interfaces. Some adjustments to the code was actually
necessary to make it compatible with the latest versions of Kubernetes.

- The monitoring alternatives provided by a service mesh like Istio are very
powerful. It not only provides a very detailed view of the network, but also
the alternative to incorporate multiple tracing like Jaeger and Grafana Tempo
to collect and analyze the data. Istio and Kiali can offer a graphical view of
the network, even with the type of traffic flowing through network functions
within the 5G core, which can benefit network operators and specialist to better
comprehension of the network.

However, for this particular case of a 5G network, the Istio and Kiali do not
offer monitor or traceability of the control plane traffic, since most of it consist

79

5 Conclusions and Future Work

of SCTP and GTP packets, which are not yet supported by the service mesh. It
must be considered too, that the service mesh itself is a complex solution, which
requires additional computing resources to be used and comprehension of the
concept of sidecar injection, and includes an additional layer of management
workload for the cluster.

- The proposed solution of creating a new CRD is a very powerful alternative to
create a virtual TAP in Kubernetes. It is very scalable, since it can be easily
integrated with the Kubernetes API, and can be used to mirror traffic on a
per-pod basis. The main benefit of this solution is that the user doesn’t depend
on a single binary executing in the control plane node of the cluster, it can
be easily managed by any user with the right permissions to create a custom
resource in the cluster. At the same time, a lightweight, written in go, kubernetes
controller, makes it in-band managed by Kubernetes, following the cloud native
approach and the Kubernetes philosophy (all managed through the kubernetes
API). It still depends on the feature offered by Kokotap, since the mirroring-pod
is still reliant on the kokotap code, but it can be easily extended as it is written
in go too.

Summarizing the results of the evaluation, it can be concluded that the solution that
best fits the requirements of a 5G network is the one that uses a CRD to create a
virtual TAP in Kubernetes, and future work could even improve and lead to a more
robust solution, that could be used in production environments.

5.2 Future Work

The proposed solutions can be further improved and extended in several ways. Some
of the possible future work includes:

- Support for control plane traffic: The proposed solutions do not support
monitoring of control plane traffic, which is an essential part of a 5G network.
Future work could focus on extending the solutions to support monitoring of
control plane traffic.

- Extend kokotap code further: Kokotap source code needs to be extended
and maintained to be always compatible with new versions of kubernetes, maybe
not major changes would occur soon, but some minor adjustments might break
the functionality of both Kokotap CLI and CRD. Future work could focus on
integrating all CRI in the market (now it only supports CRI-O and docker),
better error logging and handling, and a more robust way to create the VXLAN
interfaces. Even look into alternatives for traffic mirror than tc-mirred, a good

80

5 Conclusions and Future Work

approach would be to create gRPC calls to the control plane node to mirror the
traffic.

- Investigate eBPF alternatives: The use of eBPF to create a virtual TAP
in Kubernetes is a very promising alternative. Future work could include the
development of a custom controller that uses eBPF to define rules for mirroring
traffic in Kubernetes.

Since eBPF is a tool built on Linux kernel that allows the very powerful tool, it
can be used to create a very efficient and scalable solution for monitoring 5G
networks. The approach could go in two different ways: the first one, to work
on adding SCTP support to Cilium, which is a CNI alternative that brings
excellent observability and monitoring tools (among many others) that a 5G core
could benefit from. The second one, to create a new eBPF program that could
be used to mirror traffic in Kubernetes, and wrap it into a custom controller
that can be easily deployed and managed via kubectl commands.

- Research Kubernetes Gateway API option: Gateway API is another
native tool offered by Kubernetes, which establishes a new method to manage
and route traffic from service to service within the cluster [13]. In this case a
very interesting solution would be to create rules to mirror traffic from a pod to
another gateway or the control plane node itself and analyze the traffic further.
Another more robust solution would be a custom controller that manages the
Gateway API resources and creates/deletes/modifies the capturing rules as
needed.

- Integration with 5G network functions: The proposed solutions could be
further extended to integrate with 5G network functions. Future work could focus
on developing a custom controller that can be used to monitor the performance
of 5G network functions in real-time. In a very ambitious approach this can be
accomplished by adding this feature into service meshes solutions like Istio or
Linkerd, which currently does not support the monitoring of control plane traffic
(from 5G core, not to be confused with control plane node from a kubernetes
cluster).

81

Bibliography

The following sources were cited alongside the writting.

[1] Brendan Burns et al. Kubernetes: up and running. " O’Reilly Media, Inc.", 2022.

[2] Cilium. Cilium SCTP Support (beta). Online; accessed 2023-12-15. 2023. url:
https://docs.cilium.io/en/latest/configuration/sctp/.

[3] Matt Farina and Josh Dolitsky. Learning Helm. O’Reilly, 2022.

[4] Cloud-Native Computing Foundation. Cluster Networking. Online; accessed
2023-12-15. 2023. url: https://kubernetes.io/docs/concepts/cluster-
administration/networking/.

[5] Free5GC. Free5GC Documentation. Online; accessed 2024-02-12. 2023. url:
https://www.free5gc.org/docs/.

[6] Evan Gilman and Doug Barth. Zero trust networks. O’Reilly Media, Incorporated,
2017.

[7] Michael Hausenblas and Stefan Schimanski. Programming Kubernetes: Develop-
ing cloud-native applications. O’Reilly Media, 2019.

[8] Gigamon Inc. Direct cabling vs. TAP cabling. Online; accessed 2023-12-12. 2023.
url: https://www.gigamon.com/content/dam/website-assets/network-
diagrams/WP-Understanding-Network-TAPs-10.19_06-Diagram-1-600x314.
jpg.imgo.jpg.

[9] Gigamon Inc. Understanding Network TAPs. Online; accessed 2023-12-14. 2023.
url: https://www.gigamon.com/products/access-traffic/network-taps.
html.

[10] Google Inc. Istio Service Mesh. Online; accessed 2024-03-07. 2022. url: https:
//cloud.google.com/learn/what-is-istio.

[11] Alice Jones and Bob Smith. “Visualizing and Managing Microservices with Kiali”.
In: Journal of Microservices 12.3 (2021). Accessed: 2024-06-09, pp. 45–56. url:
https://journals.microservices.com/kiali-2021.

[12] Kubernetes. Cluster Architecture. Online; accessed 2024-03-15. 2022. url: https:
//kubernetes.io/docs/concepts/architecture/.

82

https://docs.cilium.io/en/latest/configuration/sctp/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://www.free5gc.org/docs/
https://www.gigamon.com/content/dam/website-assets/network-diagrams/WP-Understanding-Network-TAPs-10.19_06-Diagram-1-600x314.jpg.imgo.jpg
https://www.gigamon.com/content/dam/website-assets/network-diagrams/WP-Understanding-Network-TAPs-10.19_06-Diagram-1-600x314.jpg.imgo.jpg
https://www.gigamon.com/content/dam/website-assets/network-diagrams/WP-Understanding-Network-TAPs-10.19_06-Diagram-1-600x314.jpg.imgo.jpg
https://www.gigamon.com/products/access-traffic/network-taps.html
https://www.gigamon.com/products/access-traffic/network-taps.html
https://cloud.google.com/learn/what-is-istio
https://cloud.google.com/learn/what-is-istio
https://journals.microservices.com/kiali-2021
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/architecture/

Bibliography

[13] Kubernetes. Gateway API. Online; accessed 2023-12-15. 2023. url: https:
//kubernetes.io/docs/concepts/services-networking/gateway/.

[14] Open5GS. Open5GS Documentation. Online; accessed 2024-02-12. 2023. url:
https://open5gs.org/open5gs/docs/.

[15] Chris Richardson. Microservice Architecture pattern. Online; accessed 2023-08-12.
2023. url: https://microservices.io/patterns/microservices.html.

[16] Amazon Web Services. What is a Service Mesh? Online; accessed 2024-03-07.
2023. url: https://aws.amazon.com/what-is/service-mesh/?nc1=h_ls.

[17] James Strong and Vallery Lancey. Networking and Kubernetes. " O’Reilly Media,
Inc.", 2021.

[18] Paul Sutton and srsRAN comitte. srsRAN Project. Online; accessed 2024-02-10.
2024. url: https://github.com/srsran/srsRAN_Project.

[19] ueransim. ueransim GitHub Repository. Online; accessed 2024-02-13. 2023. url:
https://github.com/aligungr/UERANSIM.

83

https://kubernetes.io/docs/concepts/services-networking/gateway/
https://kubernetes.io/docs/concepts/services-networking/gateway/
https://open5gs.org/open5gs/docs/
https://microservices.io/patterns/microservices.html
https://aws.amazon.com/what-is/service-mesh/?nc1=h_ls
https://github.com/srsran/srsRAN_Project
https://github.com/aligungr/UERANSIM

Appendix

.1 Appendix A

.1.1 Tables

84

Appendix

Comparison of Kubernetes, Mesos, and Nomad as Container Orchestration
Tools

85

Appendix

Table .1: Comparison of Kubernetes, Mesos, and Nomad as Container Orchestration
Tools

Feature Kubernetes Mesos (Apache
Mesos)

Nomad

Architecture Master-worker
architecture with
high availability.
Complex setup but
robust in handling
large clusters.

Master-agent archi-
tecture that can run
other frameworks
such as Marathon.
Suited for very large
and heterogeneous
clusters.

Single binary that
can run as both
server and client.
Simple architecture
ideal for both small
and large deploy-
ments.

Scalability Designed to han-
dle up to thousands
of nodes seamlessly.
Auto-scaling capabil-
ities are built-in.

Excellently scales up
to tens of thousands
of nodes. Known
for managing mas-
sive scale deploy-
ments.

Scales well and is ef-
ficient in resource us-
age, though gener-
ally considered be-
hind Kubernetes in
maximum capacity.

Usability Complex setup
with a steep learn-
ing curve. Rich
feature set that
requires deeper
understanding.

Complex because it
can run multiple
types of workloads
and can integrate
with other frame-
works.

Simple and straight-
forward to setup
and use, with less
complexity in oper-
ations.

Ecosystem Extensive ecosystem
with a wide range
of tools and integra-
tions developed by
a large community
and significant cor-
porate backing.

Good ecosystem
with support for
many cluster-level
applications and
frameworks but less
vibrant compared to
Kubernetes.

Smaller ecosystem
but growing. Fo-
cuses on simplicity
and integrability.

Workload
Diversity

Supports a wide
variety of work-
loads, including
stateless, stateful,
and data-processing
workloads.

Originally designed
for data-heavy and
compute-intensive
applications but
supports a vari-
ety of tasks via
frameworks.

Primarily focused
on containerized and
non-containerized
applications. Less
native support
for complex data
processing unless
integrated with
other tools.

License Open-source under
the Apache License
2.0.

Open-source under
the Apache License
2.0.

Open-source under
the Mozilla Public
License 2.0.

86

Appendix

Comparison of CNIs for Kubernetes: Calico, Cilium, and Flannel

87

Appendix

Table .2: Comparison of CNIs for Kubernetes: Calico, Cilium, and Flannel
Feature Calico Cilium Flannel
Network Model Layer 3 based net-

working that sup-
ports advanced rout-
ing options. No over-
lay by default, sup-
ports BGP.

Layer 3/4 network-
ing that supports ad-
vanced routing and
direct connectivity
with BPF and XDP.

Simple overlay net-
work that uses either
VXLAN or UDP to
encapsulate IPIP
packets.

Network Policies Supports stan-
dard Kubernetes
network policies
and extends them
with Calico-specific
enhancements.

Offers extensive
network security
options, including
identity-based se-
curity policies via
BPF.

Basic support for
Kubernetes network
policies but lacks
advanced features
found in Calico or
Cilium.

Performance Very high perfor-
mance in native
networking environ-
ments, potentially
reduced in overlay
configurations.

Extremely high per-
formance, especially
in environments that
leverage BPF for
data plane opera-
tions.

Generally good
performance, best
suited for smaller
or simpler deploy-
ments.

Ease of Use Moderate complexity
due to advanced fea-
ture set. Steeper
learning curve for
full feature utiliza-
tion.

Complex setup due
to advanced capabil-
ities and dependen-
cies on newer kernel
features.

Easy to set up and
use, with minimal
configuration re-
quired. Ideal for
beginners or simple
use cases.

Integration Deep integration op-
tions with standard
Kubernetes environ-
ments and cloud-
native ecosystems.

Advanced integra-
tions, particularly
in security-focused
environments, with
strong ties to cloud-
native security
tools.

Limited integration
capabilities com-
pared to Calico and
Cilium.

Use Case Suited for large-scale,
security-sensitive,
or performance-
intensive deploy-
ments.

Ideal for security
and performance-
intensive applica-
tions, especially
those requiring deep
packet inspection.

Best for smaller, less
complex networks or
for users just starting
with Kubernetes.

88

Appendix

Comparison of Container Runtimes for Kubernetes: Docker, cri-o, and
containerd

89

Appendix

Table .3: Comparison of Container Runtimes for Kubernetes: Docker, cri-o, and
containerd

Feature Docker cri-o containerd
Kubernetes Compatibility Initially the de-

fault in Kuber-
netes; now Ku-
bernetes has dep-
recated Docker in
favor of runtimes
that use the Con-
tainer Runtime
Interface (CRI).

Designed specifi-
cally to integrate
with Kubernetes,
fully compatible
as a direct CRI.

Also uses CRI,
making it fully
compatible with
Kubernetes.
Derived from
components of
Docker.

Performance Good perfor-
mance, but can
be heavier due
to additional
features not
required by
Kubernetes.

Lightweight
and optimized
for Kubernetes,
potentially of-
fering better
performance,
developed by
RedHat.

Lightweight and
efficient, similar
to cri-o, as it
focuses only on
core container
runtime tasks.

Security Features Provides com-
prehensive
security fea-
tures, but some
are dependent
on enterprise
editions.

Minimal attack
surface due to a
narrower scope of
functionality, en-
hancing security.

Shares similar
security benefits
with cri-o by
focusing on
simplicity and
minimalism.

Community Support Very large com-
munity support,
extensive docu-
mentation, and
a wide ecosystem
but deprecated.

Growing com-
munity, with
support primar-
ily driven by
Kubernetes users
and Red Hat.

Strong commu-
nity support,
governed by the
Cloud Native
Computing
Foundation
(CNCF) along
with Kubernetes.

Use Case Suited for
development
environments
and smaller
production en-
vironments not
strictly using
Kubernetes.

Best for those
fully invested
in Kubernetes,
needing a
tailored and opti-
mized runtime.

Ideal for users
who need a
simple, robust,
and Kubernetes-
focused container
runtime with-
out additional
overhead.

90

Appendix

Comparison of Open5GS and Free5GC for 5G Core Network Implementation

91

Appendix

Table .4: Comparison of Open5GS and Free5GC for 5G Core Network Implementation
Feature Open5GS Free5GC
Architecture Implements both 4G (EPC)

and 5G (5GC) core network
functionalities. Modular de-
sign with individual net-
work functions (NFs) that
can be deployed indepen-
dently.

Focused primarily on 5G
core network functions. Im-
plements a comprehensive
set of 5G NFs, adhering
closely to 3GPP standards.

Ease of Use User-friendly with detailed
documentation and guides.
Suitable for both educa-
tional and production envi-
ronments.

More complex to set up
due to its focus on 5G, but
extensive documentation is
available. Better suited for
research and advanced test-
ing.

Performance Optimized for both devel-
opment and production use,
with a balance between sim-
plicity and performance.

High performance in 5G sce-
narios, often used for re-
search projects that require
detailed protocol adherence
and testing.

Network Functions (NFs) Supports a wide range of
NFs including allowing 5G
Stand-Alone and Non Stan-
dalone deployments.

Comprehensive support for
5G Standalone-compliant
NFs such as AMF, SMF,
UPF, AUSF, UDM, PCF,
NSSF, NRF, etc.

Community and Support Active community with ex-
tensive support through
GitHub, mailing lists, and
forums. Frequently up-
dated with new features and
fixes.

Strong community presence,
particularly in academic
and research circles. Sup-
port is available through
GitHub and other online re-
sources.

Deployment Can be deployed on various
platforms including Docker,
Kubernetes, and bare-metal
servers. Detailed Helm
charts available for Kuber-
netes deployments.

Primarily targeted at re-
search and testing environ-
ments, with support for
Docker and Kubernetes de-
ployments. Helm charts
and scripts are available for
easier deployment.

Use Case Ideal for both educational
purposes and real-world
production deployments.
Flexible and modular, mak-
ing it suitable for various
scales of deployment.

Best suited for research, de-
velopment, and testing of
5G networks. Highly de-
tailed implementation for
in-depth protocol study and
experimentation.

92

Declaration

I declare that I have written this thesis independently. I have labelled all passages
that are taken verbatim or in spirit from published or unpublished works by others
or by the author him/herself as having been taken. All sources and aids that I have
used for the work are indicated. The work has not yet been submitted to any other
examination authority with the same content or in essential parts.

Location, Date Signature

93

Cologne, 10.06.2024

	Titelseite
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Objectives

	2 Fundamentals
	2.1 5G network fundamentals
	2.1.1 Core Concepts of 5G Technology
	2.1.2 5G Network Concepts
	2.1.3 Software-Defined Networking (SDN) and Network Function Virtualization (NFV)

	2.2 The Cloud Native Approach
	2.2.1 Containers and Microservices

	2.3 Kubernetes Fundamentals
	2.3.1 Background and Evolution
	2.3.2 Kubernetes Architecture
	2.3.3 Custom Resource Definitions
	2.3.4 Custom Controllers

	2.4 Helm
	2.4.1 Helm's Key Concepts

	2.5 Network Monitoring
	2.5.1 Key Components of Network Monitoring
	2.5.2 Challenges of Network Monitoring in Kubernetes
	2.5.3 Kubernetes Network Monitoring
	2.5.4 Test Access Points (TAPs)
	2.5.5 Virtual Test Access Point (vTAP)

	2.6 Virtualized 5G Networks
	2.6.1 Open5Gs
	2.6.2 Free5GC
	2.6.3 UERANSIM
	2.6.4 srsRAN

	2.7 Summary

	3 Testbed Design and Implementation
	3.1 Introduction
	3.2 Overview of the Technology Stack
	3.2.1 Kubernetes
	3.2.2 Calico as Container Network Interface (CNI)
	3.2.3 Container Runtime Interface
	3.2.4 5G Simulation Tools
	3.2.5 UERANSIM for RAN Simulation

	3.3 Kubernetes Cluster Design
	3.4 Deployment of the 5G Core and RAN in Kubernetes
	3.5 Testing and Validation

	4 Proposed Solutions
	4.1 Kokotap CLI
	4.1.1 Kokotap Way of Working

	4.2 Kokotap Custom Resource and Operator
	4.2.1 Motivation for Kubernetes Custom Operator

	4.3 Istio Service Mesh with Kiali
	4.3.1 Motivation for Istio and Kiali
	4.3.2 Deploying Istio and Kiali

	4.4 Comparison of the Strategies
	4.4.1 Evaluation of Strategies

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	Bibliography
	Appendix
	.1 Appendix A
	.1.1 Tables

