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1 Introduction

5G, the fifth generation of wireless technology, represents a monumental leap forward
in the realm of communications. It promises gigabit speeds, ultra-low latency, and
massive connectivity. Besides the traditional use case of multimedia applications,
5G aims to enable new applications and services, ranging from autonomous vehicles
and remote surgery to immersive augmented reality experiences.

With 5G came a paradigm shift towards an open Radio Access Network (RAN).
Unlike traditional proprietary systems, Open RAN (O-RAN) embraces open inter-
faces and standardized protocols. It introduces a disaggregated approach to network
architecture and decouples hardware and software components, fostering interoper-
ability and innovation. Driven by the need for agility, vendor neutrality, and accel-
erated innovation cycles, network operators and vendors increasingly turn to open
RAN solutions for their network infrastructure. According to the O-RAN Alliance,
32 mobile network operators have committed to the open RAN, and there exist more
than 300 O-RAN companies in total [1]. This transition departs from the traditional
vendor lock-in, enabling collaboration and community-driven development. O-RAN
enables researchers worldwide to participate in RAN development without access to
costly proprietary solutions. Companies like Software Radio Systems (SRS) started
to develop open-source RAN solutions based on O-RAN specifications.

1.1 Goals

This work implements a 5G network based on open-source software. In addition
to a 5G core network, this includes a RAN and a simulated User Equipment (UE)
based on the srsRAN software to achieve End-to-End connectivity. End-to-End
connectivity means a UE can reach the internet over a simulated radio connection
with packets sent over the RAN into the 5G core network, which forwards them to
the internet. This work aims to provide a functional 5G RAN deployment, which
other researchers can use in the future. Potential research areas that benefit from
a test network like this include RAN security research, training machine learning
models for network management, and xApp development. This work also evaluates
the current state of open-source O-RAN solutions and compares two RAN Intelligent
Controllers (RICs): FlexRIC and the O-RAN Software Community (O-RAN SC)
RIC.
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The following goals are defined for the test network implemented in this work:

1. End-to-End connectivity - A simulated UE should have internet connectivity
via the simulated RAN.

2. RAN Intelligent Controller - A near-real-time RIC (Near-RT RIC) should be
part of the test network, and it should be possible to read RAN Key Perfor-
mance Measurements (KPMs) from xApps.

3. Easy and portable deployment - The test network should run on general-
purpose hardware on a Linux operating system.

4. Visibility - RAN metrics, logs, and packet captures should be exposed to gain
insights into the test network.

5. Well documented - The test network architecture and deployment should be
properly explained so that future researchers can use it as a foundation.

6. Open-source O-RAN compatible software - No commercial software solutions.

7. Reproducible deployments - Upstream dependency updates should not lead to
different or broken deployments.

8. Extendability and integration - It should be possible to upgrade existing and
integrate new RAN components in the future.

9. External Near-RT RIC and core - It should be possible to integrate an exter-
nally deployed Near-RT RIC and 5G core into the test network.

1.2 Project partners

The University of Applied Sciences (TH) Cologne research group for data networks
(DN.Lab) provided the server hardware for this work. The DN.Lab operates a 5G
core network and a O-RAN SC Near-RT RIC for the 5G-FORAN project. The
project is a collaboration between TH Cologne and PROCYDE GmbH, supported
by the Federal Office for Information Security. It aims to address security challenges
in O-RANs. The project is divided into two sub-projects: 5G-FORAN-ATTACK,
which simulates possible attack scenarios, and 5G-FORAN-DFIR, which tries to
detect and mitigate attacks. This work contributes to the 5G-FORAN project by
providing a more complete 5G network deployment. The deployment is meant to be
extended with a gNodeB and simulated UEs based on the results of this work. This
enables more extensive security research by making it possible to perform attacks
from a UE, perform attacks against gNodeB components and UEs, and analyze how
attacks targeting the 5G core network impact RAN components and end users.
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1.3 Structure

Chapter 2 explains 5G fundamentals. Chapter 3 explains the concept behind O-
RAN, while chapter 4 is about RICs. Chapter 5 introduces software components
and fundamentals used to build the test network. Chapter 6 is about the practical
part of this work. It describes the design of the test network and explains deployed
network services. Chapter 7 explains how UE traffic flows through the network.
Expanding the test network by RICs is described in chapter 8. Chapter 9 concludes
this work and gives an outlook into the future development of srsRAN and O-RAN
in general.
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2 5G Fundamentals

The requirements for mobile networks are rising. There is a need for increased
bandwidth, lower latency, and the possibility to connect up to one million devices
per square kilometer. 5G aims to fulfill these requirements. Three main use cases
have been defined by the International Telecommunication Union (ITU) for 5G [2]:

• enhanced Mobile broadband (eMBB) - minimum user experienced data rate of
100 Mbit/s downlink, 50 Mbit/s uplink

• massive machine-type communication (mMTC) - ability to connect at least
1 000 000 devices per km2

• ultra-reliable low-latency communication (uRLLC) - 99.999% probability of
transmitting a layer 2 protocol data unit (PDU) of 32 bytes successfully within
1ms

The test network implemented in this work is not meant to fulfill any of the before-
mentioned goals.

2.1 Standardization

Standards are technical specifications that are

• accessible to the public,

• developed through cooperation and consensus of all involved parties

• based on well-established scientific and technical results,

• aimed at wide support and social welfare,

• supported by a regional, national, or international institution [3].

Standards are essential in mobile networks, where devices of different manufactur-
ers should be compatible across different network operators worldwide. They enable
global roaming and ensure quality. The complex standardization process involves re-
gional and global regulatory bodies, national administrators, and industry forums.
The 3rd Generation Partnership Project (3GPP) is a worldwide standardization
body for the standardization of mobile radio systems. It was founded in 1999 and
developed standards like GSM/EDGE and LTE. Seven telecommunication stan-
dard development organizations worldwide are united under the 3GPP: ARIB, atis,
CCSA, ETSI, tsdsi, TTA, and TTC. Regarding 5G, the 3GPP and ITU are the two
essential organizations that define 5G. ITU is a specialized agency of the United
Nations for information and communication technologies. It is responsible for defin-
ing 5G requirements and spectrum regulation globally. Work on 5G specifications
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is still ongoing. Release 15 is the first 5G release and was approved in March 2017.
Releases 16 and 17 followed in June 2018 and December 2019. Release 18 is expected
to be approved in June 2024 [4]. This work is based on 3GPP Release 17.

2.2 New Radio

5G New Radio (NR) is the global standard for 5G wireless technology. It is de-
signed to offer faster download and upload speeds, lower latency, and support more
connected devices than previous generations of wireless technology. 5G NR in-
troduces new technologies such as massive multiple-input multiple-output (MIMO),
network-based sensing, machine learning-based digital signal processing, and the us-
age of diverse frequency bands. These technologies enable higher data rates, greater
capacity, lower latency, and more efficient spectrum utilization and power usage.
Additionally, 5G NR has the potential to enable new use cases such as self-driving
cars, smart cities, and remote healthcare. A wide range of advanced technologies
have been introduced that enable higher data rates, greater capacity, lower latency,
and more efficient spectrum utilization and power usage.

2.3 Mobile protocol stack

This section provides an overview of the 5G protocol stack. Understanding the in-
dividual layers is crucial to understanding how the 5G Base Station (BS) is split
into multiple components, as explained in chapter 3.3. A 5G BS is referred to as
gNodeB. Figure 1 contains a visual representation of the mobile protocol stack.

The Radio Frequency (RF) layer is responsible for the transmission and reception
of wireless signals over the air interface between the UE and the BS. It is responsi-
ble for handling the electromagnetic waves that carry the data transmitted between
the UE and the BS. The RF layer consists of several components, including the
antennas, the amplifiers, and the transmitters and receivers. The antennas transmit
and receive electromagnetic waves, while the amplifiers amplify the signals to en-
sure they can travel long distances. The transmitters and receivers are responsible
for the modulation and demodulation of the signals to ensure that the data can be
transmitted and received correctly. [5]

The physical layer is responsible for transmitting and receiving data over the air
interface between the UE and the BS. It provides modulation and coding schemes
to convert digital data into analog signals that can be transmitted over the air. The
physical layer also handles functions such as channel coding, modulation, and de-
modulation, as well as the management of radio resources. [5] The RF and physical
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layers are emulated in this work as described in chapter 5.6.

The Medium Access Control (MAC) layer controls access to the network and pro-
vides the necessary control mechanisms for accessing the network. It is responsi-
ble for the allocation of radio resources, the scheduling of transmissions, and the
management of the power control mechanisms. The MAC layer also handles error
control, flow control, and congestion control functions. [5]

The Radio Link Control (RLC) layer is responsible for several functions, including
segmentation and reassembly of data packets, error correction, and flow control. It
is responsible for breaking down the data packets into smaller segments to enable
efficient transmission over the air interface and then reassembling them at the re-
ceiving end. The RLC layer also provides error correction mechanisms to detect
and correct any errors that may occur during transmission, ensuring that the data
is transmitted reliably and without loss. In addition, the RLC layer provides flow
control mechanisms to ensure that the data is transmitted at an appropriate rate
for the receiving end. This helps to prevent congestion and ensure that the network
is used efficiently. [5]

The Packet Data Convergence Protocol (PDCP) layer is responsible for the com-
pression and decompression of the IP packets transmitted between the UE and the
core network. It handles header compression and decompression functions, encryp-
tion and decryption, packet reordering, and duplication detection. The PDCP layer
also provides the necessary mechanisms to differentiate the different types of traffic,
such as voice, video, and data. [5]

The Service Data Adaptation Protocol (SDAP) layer maps data flows between the
UE and the core network. It manages the Quality of Service (QoS) parameters, in-
cluding prioritization, scheduling, and allocating resources to different flows. The
SDAP layer also handles functions such as the header compression and decompres-
sion and the multiplexing and demultiplexing of data flows. [5]

The Radio Resource Control (RRC) layer is responsible for the establishment, main-
tenance, and release of radio connections between the UE and the BS. It handles
functions such as the configuration of radio bearers, the management of handovers,
and the management of the radio resource allocation. The RRC layer is also respon-
sible for the signaling messages that control the RAN. [5]

The Non-access stratum (NAS) layer enables authentication, security, and idle pro-
cedures such as paging. It operates between the Access and Mobility Management
Function (AMF) and the UE. [5]



2 5G Fundamentals 7

Figure 1 5G mobile protocol stack [5]

2.4 New Generation RAN

In addition to the improved radio protocol, 5G introduces a new core architec-
ture. The 5G core network is responsible for End-to-End connection setup, packet
forwarding, mobility management, authentication, charging, and more. 5G uses
software-defined networking (SDN) to abstract physical networking resources. The
control and user plane are separated to allow independent scaling and evolution.
5G introduces network function virtualisation (NFV): on-demand, individually scal-
able network functions, which run on Commercial off-the-shelf (COTS) hardware.
Each network function is responsible for a different 5G service. Chapter 6.2 gives
an overview of different 5G network services.

Network slicing allows the provision of multiple virtual networks on top of a shared
physical network. This allows to provide different functionalities and resources per
customer. Network slicing is supported using the Network Slice Selection Assistance
Information (NSSAI) header. It is split into the Slice/Service Type (SST) and Slice
Differentiator (SD). The SST refers to one of the three main use cases of 5G: eMBB,
uRLLC, and mMTC. The SD is used to differentiate slices of the same type.

Many existing network providers decided to deploy 5G Non-Standalone (NSA) as
a bridge technology. They use 5G Base Stations but keep the existing 4G core
network. This allows an easier and more cost-effective migration towards 5G. NSA
does not support NSSAI, which results in network slicing not being supported. In
Germany, most providers started with 5G NSA but are now rolling out 5G Stan-
dalone (SA) for their customers. Teléfonica and Vodafone have already deployed 5G
SA for non-business customers and refer to it as 5G+ in their marketing strategy
[6], [7]. Deutsche Telekom is rolling out 5G SA for non-business customers this year
[8]. Because NSA only serves as a bridge technology and is missing important 5G
features, this work focuses on 5G SA.
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2.5 GTP Tunnelling

Like previous generations, 5G uses the General Packet Radio System (GPRS) Tun-
nelling Protocol (GTP). It is used at multiple interfaces in a 5G system that trans-
port user data, including F1-u, Xn, N3, N9, and N19 interfaces. GTP encapsulates
IP packets sent either in the downlink direction from the external network to the
UE or in the uplink direction from the UE to the external network. [9]
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3 Open Radio Access Network

Today, the RAN mainly consists of proprietary hardware and software from a limited
number of vendors. Network operators see these solutions as black-box solutions
that implement every layer of the cellular protocol stack, which comes at the cost
of limited reconfigurability and vendor lock-in. [10] This is starting to change as
new specifications standardize RAN technology and enable interoperability between
different vendors.

3.1 O-RAN Alliance

A significant player towards the shift to an open RAN is the O-RAN Alliance.
The O-RAN Alliance "aims to drive the mobile industry towards an ecosystem of
innovative, multi-vendor, interoperable, and autonomous RAN, with reduced cost,
improved performance, and greater agility" [1]. It was founded in 2018 by leading
mobile network operators, such as AT&T, China Mobile, and Deutsche Telekom.
Eleven technical working groups are working on different topics, such as overall
architecture, RIC, interface specification, cloudification, and security. They provide
standardizations, white papers, and resources for the open RAN. The standards
published by the O-RAN Alliance aim to be compatible with 3GPP standards. [1]
Based on O-RAN specifications, multiple open-source solutions from third parties
have emerged that provide O-RAN compatible implementations. In addition to
that, the O-RAN SC is working on reference implementations for the specifications
published by the O-RAN Alliance.

Figure 2 O-RAN Architecture Overview [11]
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3.2 O-RAN Architecture Overview

O-RAN Work Group 1 defines the overall architecture of O-RAN. Figure 2 gives
an overview of the O-RAN architecture. The BS is split into Central Unit (CU),
Distributed Unit (DU), and Radio Unit (RU) as specified by 3GPP [12]. In the
context of O-RAN, the RU is referred to as O-RAN Radio Unit (O-RU), the DU is
referred to as O-RAN Distributed Unit (O-DU), and the CU is further divided into
O-RAN Central Unit - Control Plane (O-CU-CP) and O-RAN Central Unit - User
Plane (O-CU-UP). This split is further described in chapter 3.3. 3GPP interfaces
connect the O-CU-CP, O-CU-UP, and O-DU to a 5G Core network, as specified
in TS 23.501 [13]. In addition to that, the O-RAN E2 interface connects them to
the Near-RT RIC. The components to which the Near-RT RIC connects via the E2
interface are called E2 nodes.

The Near-RT RIC enables near real-time control over connected E2 nodes. E2 nodes
collect KPMs, such as throughput, channel quality, or amount of connected UEs.
The Near-RT RIC hosts multiple xApps, which can subscribe to these KPMs and
perform various actions based on available data and configuration, including net-
work slicing and scheduling. [11] RAN analytics services are exposed via the Y1
interface to authorized consumers [14].

The Service Management and Orchestration Framework (SMO) hosts the non-real-
time RIC (Non-RT RIC). It provides policy-based guidance and enrichment infor-
mation to the Near-RT RICs. Similar to the Near-RT RIC, it hosts rApps that
leverage functionality of the SMO and Non-RT RIC to perform radio resource man-
agement, data analytics, and provide enrichment information. [15]

The O-Cloud refers to a cloud computing platform that provides the infrastructure to
host the O-RAN architecture. It provides necessary software components, including
but not limited to a virtual machine hypervisor, operating systems, and a container
runtime. The O2 interface exposes infrastructure management capabilities. This
includes discovering existing infrastructure, deploying new RAN components on de-
mand, scaling them as needed, and managing configuration. This allows O-RAN
to manage its own deployment. The O-eNB can optionally be deployed for LTE
support, which is out of the scope of this work. [11]

Figure 3 shows how the architecture of O-RAN differs from traditional approaches.
O-RAN uses a tiered architecture. RICs are hosted in a regional O-Cloud, while
O-CU-UP, O-CU-CP, and O-DU are hosted in an O-Cloud on the edge, which is
physically more close to the cell sites. This is required because a high-bandwidth
and low-latency connection is required between the O-DU and O-RU. The cell sites
contain the O-RU, the only component that cannot be virtualized in cloud architec-
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ture.

Figure 3 Evolution of traditional black-box base station solutions towards an open RAN
[10]

3.3 Disaggregated gNodeB architecture

The 5G BS is a logical component called gNodeB. To accommodate increased com-
plexity, the gNodeB is split into different functional units. Instead of implementing
the whole mobile protocol stack on the cell site, higher-layer functionality is moved to
a virtualized cloud environment. This makes it easier and more cost-efficient to main-
tain cell sites [10]. Figure 3 illustrates the disaggregated gNodeB architecture. The
O-RAN Central Unit (O-CU) implements the higher level of the protocol stack and
is split into the control plane and the user plane. The control plane implements the
RRC and PDCP layers. The user plane implements the SDAP and PDCP layers.
The DU implements the RLC and MAC layer. The physical layer is split using Open
Fronthaul (OFH) option 7.2 as explained in chapter 3.3.1.

A cell site is connected to a single O-DU, and each O-DU is managed by a single
O-CU. A single O-CU can manage multiple O-DUs, and a single O-DU can be con-
nected to multiple cell sites, creating a tree-like network topology.

Figure 4 shows the disaggregated gNodeB architecture in more detail. It shows the
different components and the mobile protocol stack layers they implement. Internal
interfaces interconnect the gNodeB components, and external interfaces that con-
nect the gNodeB to external network services are visible. Compared to figure 3,
the O-DU is further split into O-DU-high and O-DU-low. O-DU-high contains the
RLC and MAC functionality while O-DU-low is only responsible for the physical
layer. The following sections describe the gNodeB internal interfaces and the NG
interface. The external O2 and E2 interfaces are explained in chapter 4.
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Figure 4 Disaggregated gNodeB architecture

3.3.1 Open Fronthaul interface

The OFH interface standardizes the communication between the DU and RU. The
interface allows for advanced coordination and optimization techniques between the
DUs and RUs, enhancing network efficiency, capacity, and coverage, thus improving
the overall performance of the 5G network. The standardization process is primarily
carried out by the 3GPP and O-RAN Work Group 4: The Open Fronthaul Inter-
faces Work Group. The interface is divided into two main planes: Control, User,
Synchronization (CUS) plane, and Management (M) plane.

The OFH initially inherited aspects from Common Public Radio Interface (CPRI)
and its more flexible and bandwidth-efficient version, eCPRI. These protocols define
the connectivity for passing CUS data. OFH standardizes split points, indicating
where the division of baseband processing tasks occurs between the DU and RU.
Each of these split options presents a tradeoff between complexity, performance, and
the cost of the transport network required to connect the DU and RU. Higher-level
splits tend to reduce the bandwidth requirements on the fronthaul network but may
increase the processing workload on the CUs. Conversely, lower-level splits demand
more from the fronthaul regarding bandwidth and latency. However, they can offer
better performance in terms of network efficiency and capability to support advanced
features like beamforming and MIMO. There exist many different split options. This
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work uses split option 7.2, recommended by O-RAN. In split option 7.2 shown in fig-
ure 3, the physical layer is split into PHY-high implemented on the DU and PHY-low
implemented on the RU. The DU is responsible for frequency-domain functionalities,
including scrambling, modulation, layer mapping, and precoding. The RU only per-
forms time-domain functionalities like Fast Fourier Transform (FFT), cyclic prefix
operations, and beamforming, which makes it inexpensive and easy to deploy. [16]

The OFH M-plane supports NETCONF/YANG-based configuration of O-RUs. As
shown in figure 2, it allows an SMO and O-DU to communicate with O-RUs. The
OFH M-plane supports management features like startup installation and enables
Fault, Configuration, Accounting, Performance and Security (FCAPS) functionality.
[17]

3.3.2 F1 interface

The F1 interface connects the O-DU to the O-CU-CP and O-CU-UP. Specifically,
the F1-u interface connects to the user plane, while the F1-c connects to the control
plane. The application protocol F1AP is implemented on top of Stream Control
Transmission Protocol (SCTP). Its main functions are UE context management,
RRC message transfer, warning message transmission, system information, and pag-
ing. [18]

3.3.3 E1 interface

The E1 interface is a point-to-point interface between CU user plane and control
plane. The application protocol is called E1AP and uses the SCTP protocol on
top of IP. The interface exchanges signaling information between the endpoints and
separates the control and data plane. [19], [20]

3.3.4 FAPI+ interface

The FAPI+ interface connects the O-DU-high and O-DU-low. It is responsible for
communication between the physical and MAC layer. It specifies the interface for
configuration, control, and data plane services between the layers. Splitting the
O-DU into high and low has the advantage that different 5G PHY implementations
from different vendors can be used.

3.3.5 NG interface

The NG interface connects the gNodeB to the 5G core network, specifically to the
AMF. It is split into two subinterfaces.

The NG-c interface connects the O-CU-CP to the AMF. It is responsible for signaling
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and controlling information and uses the NGAP protocol. It establishes and manages
user sessions, mobility management, and authentication. [21] The NG-c interface is
also referred to as the N2 interface.

The NG-u interface connects the O-CU-UP to the AMF. It carries the user data
traffic from the gNodeB to the 5G core. A GTP tunnel between the gNodeB and
the User Plane Function (UPF) is established per session to forward user data. The
interface between the gNodeB and the UPF is called the N3 interface. The gNodeB
is not connected directly to the UPF. All traffic flows through the AMF.
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4 RAN Intelligent Controller

The O-RAN Alliance introduces RICs, which are programmable, logical controllers.
Data pipelines stream and aggregate KPMs from all RAN components. Together
with contextual information about the network infrastructure, this grants a central-
ized view of the network. Network operators can deploy RIC applications, which
can automatically optimize the network. This includes network and RAN slicing,
load balancing, handovers, and scheduling policies. There are two types of RICs:
the Non-RT RIC and the Near-RT RIC. [10] They are explained in more detail in
this chapter.

4.1 Near-RT RIC

The Near-RT RIC enables network control in near-real-time, typically in the range
of 10ms to 1s. It is deployed at the edge and terminates the O1, A1, Y1, and E2
interface (see figure 2). It is connected to a single Non-RT RIC via the A1 interface
and to the SMO framework via the O1 interface. Multiple Y1 consumers can be
connected via the Y1 interface. A single Near-RT RIC is connected to multiple E2
nodes via the E2 interface. The Near-RT RIC is programmable using xApps.

Figure 5 shows the architecture of a Near-RT RIC. It provides an internal messaging
infrastructure for communication across the Near-RT RIC and xApps. It connects
interface terminations, platform services, and xApps with each other. Subscription
management provides functionality for xApps to perform E2 subscriptions. It con-
trols which xApps can access which E2 messages and deduplicates multiple identical
subscription requests. The security subsystem is meant to detect malicious xApps
and prevent the leakage of sensitive RAN information. The conflict mitigation gets
active when multiple xApps try to apply different, conflicting configurations. A
Shared Data Layer (SDL) stores information on the RAN, e.g., a list of registered
E2 nodes and connected users. [22]

The following sections describe the function of each interface, as well as xApps.
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Figure 5 Near-RT RIC architecture

4.1.1 E2 interface

The E2 interface, defined by the O-RAN Alliance, connects the Near-RT RIC with
the disaggregated E2 node: O-CU-CP, O-CU-UP, and O-DU. It is a point-to-point
interface for exchanging information between the Near-RT RIC and the E2 node.
The transport protocol used by the E2 interface is SCTP. The application protocol
is called E2AP. For an E2 node, the E2 connection is optional, meaning the gNodeB
should continue to work even when the E2 connection fails or is not configured. The
O-RAN alliance defines E2 Service Models (E2SMs). These are function-specific
protocols that are implemented on top of E2AP. An E2SM defines contracts between
xApps and E2 nodes. One example is the E2SM-KPM, which defines the KPMs an
E2 node might expose. [23]

4.1.2 E2 setup process

For an E2 node to be able to connect to the Near-RT RIC, it needs to be precon-
figured with the Near-RT RIC address, information about which RIC services are
supported (e.g., E2SM-KPM to expose RAN KPMs), and E2 information, such as
the gNodeB ID. The E2 node then establishes a SCTP connection with the Near-RT
RIC. After establishing the connection, it sends an E2SetupReqest message contain-
ing the preconfigured list of supported services and E2 information. The Near-RT
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RIC answers with an E2SetupResponse, which acknowledges the configuration and
includes a list of accepted services. At this point, the E2 connection is established.

4.1.3 E2 subscription process

Once the E2 setup process has been completed, xApps can initiate subscriptions
via the Near-RT RIC. The subscription specifies an action that should be performed
and a trigger that defines when the action should be performed. One possible action
is report, which indicates that the E2 node should send information like KPMs to
the Near-RT RIC. The trigger can be a specific event or a timer. Once the specified
trigger is detected by the E2 Node (e.g., a timer expires), a RIC indication message
is sent to the Near-RT RIC containing the requested information. This process
allows xApps to receive the information they need when they need it.

Figure 6 shows the setup process on the left and the subscription process on the
right.

Figure 6 E2 Setup and Subscription process [10]

4.1.4 xApps

An xApp is an application designed to run on a Near-RT RIC. It may consist of
multiple microservices and utilizes the APIs and internal messaging infrastructure
that the Near-RT RIC provides. Third parties can provide xApps, which extend
RAN functionality. xApps receive data from the RAN via E2 subscribptions, such as
KPMs, user, and cell info. The xApp could store this data in an external database
for future analysis. Example use cases are to present the data in dashboards to
analyze RAN health or to train Machine-Learning models that predict radio traffic.
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An xApp can also use the data it receives from the RAN to compute control actions
sent back to the RAN via the E2 interface for radio resource management. A sample
use case would be to enable additional cells during peak traffic times. [22]

xApps enable closed-loop control of the RAN in the time scale of 10ms to 1s [10].

4.1.5 Y1 interface

The Near-RT RIC implements the Y1 interface. It exposes a RESTful HTTP API.
Data is serialized using JSON. Multiple authorized Y1 consumers can connect to the
Y1 interface to receive RAN Analytics Information (RAI). There are two services
for retrieving RAI: [14]

1. Y1_RAI_Subscription - Consumers create a subcription for a specific RAI
type. The information can be further filtered, e.g., by specific UEs or net-
work slices. Consumers specify a target address to which the Near-RT RIC
should send the information and notification criteria, indicating the timing or
condition when the information is sent. Whenever the notification criteria are
met, the Near-RT RIC sends the information to the target address. Upon
registration, the consumer receives a subscription ID, which can later be used
to modify or delete the subscription.

2. Y1_RAI_Query - Similar to Y1_RAI_Subscription, consumers can specify a
RAI type and filter. The requested information will be returned immediately
if available. When the consumer wants updated information, it needs to query
again - no subscription gets created.

The Y1 interface is interesting but is yet to be implemented in the Near-RT RICs
evaluated in this work.
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4.2 Non-RT RIC and SMO Framework

The goal of the SMO is to be an intelligent automation platform for the RAN that
can improve network performance and minimize RAN operational costs. Figure 7
shows the architecture of the SMO Framework. The SMO hosts the Non-RT RIC.
They share an internal messaging infrastructure and terminate the A1, O1, and O2
interfaces. Multiple Near-RT RICs are connected to the SMO and receive policies
from it. The Non-RT RIC is programmable using rApps. It enables closed-loop
control of the RAN with timescales larger than 1s (non-real-time). [10], [17]

The Non-RT RIC and SMO Framework are described to understand the concept
of O-RAN and to get an insight into the complete architecture. While providing
additional functionality and management capabilities, they are not required for a
network to function. A Near-RT RIC works without connecting to a Non-RT RIC.
The SMO Framework and Non-RT RIC are out of scope for the test network imple-
mented in this work.

The following sections describe the function of each interface, as well as rApps.

Figure 7 SMO Framework architecture
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4.2.1 A1 interface

The A1 interface connects the Non-RT RIC with the Near-RT RIC. It enables radio
resource management based on A1 policies. Both endpoints of the A1 interface
expose a RESTful HTTP API that uses JSON payloads [10]. The Non-RT RIC
deploys A1 policies to the Near-RT RIC, that define high-level optimization goals,
called the RAN Intent. The RAN Intent defines QoS targets, or Key Performance
Indicator (KPI) goals. The policy syntax is based on a JSON schema and can refer to
a group of UEs or even to a single specific UE. There are various policies, each serving
a different use case, such as QoS targets, traffic steering configuration, or throughput
maximization. Finally, the Non-RT RIC can provide A1 Enrichment Information
(EI) - additional information that comes from sources outside the RAN, e.g., traffic
forecasts based on events like a football game. This information is exposed via the
A1 interface and can be used by xApps in the Near-RT RIC. [24]

4.2.2 O1 interface

The O1 interface connects the SMO Framework to the Near-RT RIC and the ele-
ments of the gNodeB (O-CU-CP, O-CU-UP, O-DU). It enables FCAPS functions.
Provisioning is done using the NETCONF protocol. Configuration changes are
propagated using a RESTful HTTP API with data modeled using YANG. [25]

4.2.3 O2 interface

The O2 interface connects the SMO with the O-Cloud. It enables the SMO to
manage cloudified network functions. This includes deployment, termination, and
scaling of network functions, as well as FCAPS functionality for abstract infras-
tructure resources. The O-Cloud and O2 interfaces are built on top of existing
technology like Kubernetes or Open Stack. [26]

4.2.4 rApps

Like xApps, rApps are modular applications that provide additional services to RAN
operation. They run on the Non-RT RIC and leverage the functionality provided by
the R1 interface. Compared to xApps, rApps operate on a time scale usually greater
than 1s. rApps perform tasks like defining A1 policies, generating A1 Enrichment
Information, or recommending configuration that may be applied over the O1 and
O2 interfaces. [10]



5 Software components and fundamentals 21

5 Software components and fundamentals

This chapter describes the test network’s software components and fundamentals
before discussing its design details in the next chapter.

5.1 Containers

A container can be seen as a lightweight virtual machine that runs container im-
ages. Container images package software into standardized units, which can easily
be distributed and deployed. Compared to virtual machines, containers share the
system kernel of the host, which makes them more lightweight and efficient while
providing security measurements to protect the host operating system.

Virtualization is a great focus of O-RAN. Every component (except the O-RU) can
be deployed as a container or virtual machine running on cloud infrastructure. A
set of tools is needed to work with containers, which allows the building of container
images, provides a runtime engine to run the containers, and provides a CLI or API
to deploy and manage containers.

The Docker platform is used for the test network to build, run, and manage con-
tainers. It was chosen over other container platforms, such as Podman or LXC, due
to its maturity, widespread usage, and rich feature set.

5.2 Container Images

A Dockerfile contains instructions on how to build a container image. Appendix
B shows an example Dockerfile to build the FlexRIC Near-RT RIC. A container
image is usually based on another image, like Ubuntu Jammy. In several steps,
a Dockerfile describes which steps must be run to build the image. This usually
involves installing dependencies via a package manager, cloning source code, and
building the program for the target operating system. The CMD line defines what
is executed when a container is started using the image.

In some cases, it was not possible to use container images that are already published
to a registry, like the O-RAN SC container registry [27] or Docker Hub [28]. Either
because changes were required to the images or because they were not published.
The /docker directory in the git repository (appendix A) contains modified Dock-
erfiles from upstream repositories like Open5GS, srsRAN, or FlexRIC. For most
images, the source code cloned to build the image has been fixed to a specific com-
mit. This avoids inconsistent builds and possible regressions when new commits get
added to the upstream repository. The tradeoff is that updates need to be imple-
mented manually. Table 1 gives an overview of custom-built docker images used to
run the test network.
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Table 1 Custom container images used to run the test network

5.3 Docker Compose

Docker provides a tool called Docker Compose, which defines multi-container appli-
cations with a single YAML configuration file. Appendix C shows a sample Docker
Compose file, which deploys the time-series database InfluxDB, the monitoring so-
lution Prometheus, and Grafana for dashboards. At the top of the file, the Compose
syntax version is specified. The second line defines the name of the Compose appli-
cation. By default, all containers that are part of this application are prefixed by
this name.

A Compose application consists of one or more services. A service refers to one or
more containers running the same image with the same configuration. Services can
be scaled up or down to multiple replicas as needed. By default, only a single replica
is deployed. All services are configured under the services map in the Compose file.
The key refers to the name of the service, in this case, influxdb, prometheus, and
grafana. The value is a map of container options, including the image, mounted
volumes, ports, environment, and network configuration. The container name can
optionally be overwritten, as shown in the example for the influxdb service. Other-
wise, it would default to shared_influxdb.

In addition to services, a Compose application can define Docker networks and vol-
umes. As shown in the example, environment variables can be used to substitute
configuration values of the Compose application, such as the network name or sub-
net. This allows different configurations on different host systems without changing
the Compose file.

When a Compose application is started using docker compose up, all the networks,
volumes, and containers get created with a single command. The command docker
compose down can be used to remove the application and all of its components. The
ability to quickly deploy multi-container applications on a single host system makes
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Docker Compose an excellent choice for implementing the test network. Deploy-
ments are portable to different host systems just by sharing the Compose file.

5.4 Open5GS

L. Mamushiane, A. Lysko, H. Kobo, and J. Mwangama compared projects focused
on 3GPP-compliant 5G Core Network implementations [29]. Based on their work,
Open5GS was chosen in favor of alternatives like Magma, Free5GC, or OpenAirIn-
terface 5GC. Open5GS is an open-source 4G / 5G Core implementation, following
the 3GPP Release-17 specification. It is implemented using the C-language and is
available on GitHub [30]. The project is funded by sponsors, e.g., on OpenCollective
[31]. Open5GS supports both 5G NSA and 5G SA. 5G NSA is a bridge technology
for providers to reuse their existing 4G core network. 5G NSA cores are already get-
ting replaced by 5G SA cores. Therefore, a 5G SA core network is used in this work.
This enables easier deployment and allows future researchers to test 5G features not
supported by NSA, such as network slicing.

5.5 srsRAN

srsRAN is open source 4G and 5G RAN software developed by SRS. srsRAN_Project
is an O-RAN compatible 5G CU / DU solution available on GitHub [32]. srsRAN_4G
is the predecessor of srsRAN_Project, which implements a 4G radio suite [33]. Even
though 4G is not used in this work, the srsRAN_4G project is still relevant because
it implements a simulated UE called srsUE that can connect to 5G networks.

srsRAN was chosen in favor of OpenAirInterface due to its capability of emulating
a radio channel and not requiring actual radio hardware, excellent documentation,
and community support, and easier deployment [29].

srsRAN employs the disaggregated gNodeB architecture explained in chapter 3.3.
However, starting the CU and DU individually is currently impossible. The gNodeB
is started using a single binary, which contains both components. A CU / DU split
deployment is on the roadmap [34]. The O1 interface is currently not implemented
by SRS and is therefore not further evaluated.

5.6 ZeroMQ

ZeroMQ is a high-performance asynchronous messaging library. It is open-source
and provides APIs in various languages. ZeroMQ allows the implementation of com-
mon messaging patterns over a variety of transports. Compared to other messaging
solutions, it does not require a message broker and, therefore, does not introduce
additional latency. This makes it possible to use ZeroMQ to simulate a point-to-
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point radio channel. [35]

To simulate a radio channel using zeroMQ, 2 TCP connections are established be-
tween the communication partners. The simulated radio channel is limited to 2
communication partners. This is contrary to the nature of a radio channel. Chapter
6.5.2 explains how this limitation can be circumvented to some degree. Both com-
munication partners (in this case, a gNodeB on one side and a UE on the other side)
have two ports: one for transmitting data (TX) and one for receiving data (RX).
Figure 8 shows the underlying zeroMQ connections for the simulated radio channel.
There is one TCP connection from gNodeB to UE and a second one from UE to
gNodeB. The startup procedure is identical for the gNodeB and the UE. On startup,
a zeroMQ socket is started using zmq_bind() for the TX port. This will listen on
the provided address using the TCP protocol. At the same time, zmq_connect()
is called for the RX port to connect to the TX port of the communication partner.
Socket connections would typically fail at this point unless both communication
partners start simultaneously and the socket of the communication partner is al-
ready available when zmq_connect() gets called. zeroMQ differs in this case from
traditional socket connections. When connecting to another socket, the other socket
is not required to be already running. Instead, messages are stored in a message
queue, and once the connection is established, all messages from the queue start to
transmit. This makes it possible to start the UE and gNodeB after one another,
even if they require a duplex point-to-point connection. [36]

UE 
172.22.0.20

gNodeB 
172.22.0.10

Simulated radio channel
TX

zmq_bind( 
tcp://
172.22.0.10:
2000 

)

TX

zmq_bind( 
tcp://
172.22.0.20:
2001 

)

RX

RX

zmq_connect( 
tcp://
172.22.0.10:
2000 

)

zmq_connect( 
tcp://
172.22.0.20:
2001 

)

RX connects to TX, and reads messages from TX

Figure 8 Simulated radio channel using duplex zeroMQ point-to-point connection

Figures 9 and 10 show how the simulated radio channel is configured in the
srsRAN gNodeB and the simulated srsUE. The configuration matches the diagram
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shown in figure 8. Both SRS projects have the concept of radio drivers. A radio
driver is responsible for receiving and transmitting packets over a physical link. SRS
supports the USRP Hardware Driver for using actual radio hardware and zeroMQ
for simulated channels. The device driver is set to zmq for the gNodeB and the
UE. It is required to build srsRAN using the -DENABLE_ZEROMQ=ON flag to
use the zeroMQ driver. libzmq must be installed on the system during build- and
runtime. This is ensured using the srslte and srsran docker images (see table 1).
The zmq driver is configured using multiple arguments:

• tx_port - The TCP address and port to listen on for the TX port. zmq_bind()
is called with the given address.

• rx_port - The TCP address and port for the TX port of the communication
partner. zmq_connnect() is called with the given address.

• id - an optional parameter only used by the UE. It avoids duplicate connections
when accidentally starting the srsUE twice.

• base_srate - The sampling rate of the radio channel in MHz. It must match
the value of srate configured in the gNodeB.

ru_sdr :
dev ice_dr iver : zmq
device_args :

tx_port=tcp : / / 1 7 2 . 2 2 . 0 . 1 0 : 2 0 0 0 , rx_port=tcp : / / 1 7 2 . 2 2 . 0 . 2 0 : 2 0 0 1 ,
base_srate =23.04 e6
s r a t e : 23 .04

Figure 9 gNodeB zeroMQ driver configuration

device_name = zmq
device_args =

tx_port=tcp : / / 1 7 2 . 2 2 . 0 . 2 0 : 2 0 0 1 , rx_port=tcp : / / 1 7 2 . 2 2 . 0 . 1 0 : 2 0 0 0 ,
id=ue , base_srate =23.04 e6

Figure 10 srsUE zeroMQ driver configuration
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6 Test Network Design

This chapter is about the design of the test network. It explains the deployed services
and how they are configured to fulfill the goals set for the test network. Appendix
D contains a diagram showing the architecture of the test network.

6.1 Hardware requirements

The server that runs the test network has the following requirements:

1. At least 8 CPU threads

2. At least 16 GB of memory

3. At least 40 GB of storage for dependencies and logs

4. Sufficient bandwidth to fetch multiple GBs of git repositories and dependencies

5. Ability to run a recent Linux operating system

6. Ability to run Docker - requires CPU support for virtualization

The DN.Lab provided a virtual machine with 8 CPU threads, 16 GB of memory,
80 GB of storage, and Ubuntu 22.04 LTS installed. Because the radio channel is
emulated, no additional radio hardware or UE is required.

6.2 Network services

As explained earlier, a 5G network consists of multiple parts, e.g., a 5G control
plane and user plane, monitoring infrastructure, RICs, and the cell sites. In a pro-
duction environment, there would be separate subnets for different network parts.
Routing and firewalls must be configured to ensure packets are properly forwarded,
and security policies are applied. Building a secure 5G network is out of the scope
of this work. For ease of use, all services are deployed to the same subnet. The test
network uses the 172.22.0.0/24 address range. Table 2 shows the services deployed
in the test network along with their container image and IP address. Note that
some IP addresses are skipped. This is because they belong to unused components
used in a 5G NSA core. The goal was not to create a gap-free subnetting strategy
that uses as few addresses as possible. Because this is a private IPv4 address space,
IPv4 address scarcity is ignored.

Services are grouped into different applications. Each application is defined by a
docker-compose.yaml file in the git repository (appendix A) and can be started in-
dividually. See the README.md file in the repository for details. The applications
that make up the test network are:
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• Shared - Contains services consumed by the other applications, e.g., databases
and monitoring services. They are defined in the 0-shared folder.

• Open5GS - Contains the 5G SA core network. Defined in the 1-core folder.

• srsRAN - Contains the gNodeB’s and simulated UEs. Defined in the 3-srsran
folder. See chapter 6.5 for details.

• FlexRIC and O-RAN SC RIC - Discussed in chapter 8.

Table 2 Monitoring and Open5GS deployment

The shared monitoring services are explained in more detail in chapter 6.6. The
details of a 5G SA core network are not the focus of this work. Therefore, the
services and interfaces connecting them are not described in detail. Figure 11 shows
the test network’s 5G SA architecture. The following list gives an overview of the
deployed 5G core components and their function:
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• mongo - MongoDB is a document-oriented NoSQL database. It is used to
store subscriber information.

• smf - The Session Management Function manages data sessions and controls
the data plane functions.

• amf - The Access and Mobility Management Function handles user authenti-
cation, mobility management, and session establishment.

• ausf - The Authentication Server Function validates user identities and pro-
vides authentication credentials.

• nrf - The NF Repository Function stores network function profiles and assists
in the discovery and selection of network functions.

• udm - The Unified Data Management provides a centralized repository for
subscriber data, including subscription information and authentication cre-
dentials.

• udr - The Unified Data Repository stores user-related data for services and
applications, including user profiles and policies. It reads from the MongoDB.

• pcf - The Policy and Charging Function enforces network polcies related to
QoS, charging, and access control.

• nssf - The Network Slice Selection Function selects and allocates network slices
based on service requirements and network conditions.

• bsf - The Binding Support Function manages the binding between user plane
and control plane entities. It helps to maintain continuity during UE handover.

• scp - The Service Communication Proxy enables indirect communication be-
tween 5G network functions.

• upf - The User Plane Function forwards user data packets between the gNodeB
and the internet.

• webui - Provides a web interface for managing subscriber information.
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Figure 11 5G SA core architecture

6.3 gNodeB configuration

A srsRAN gNodeB is configured using a YAML configuration file. Figure 12 gives
an overview of the gNodeB configuration file. The gNodeB connects to the 5G core
component AMF via the NG interfaces. Therefore, the AMF IP address needs to be
configured in the gNodeB. In addition to that, every gNodeB has an id and a RAN
node name assigned to it. These are used to identify the gNodeB in the 5G core.
Furthermore, the identifiers can be used by xApps or rApps to filter information
for a single gNodeB. The cell configuration sets frequency, bandwidth, Public Land
Mobile Network (PLMN), and other essential cell parameters. It is possible to span
multiple cells using a single gNodeB, which makes sense when using tri-sector or
similar antennas. For the test network, each gNodeB creates a single cell. The
RU configuration of a gNodeB has already been explained in chapter 5.6. The E2
configuration is explained in chapter 8. The pcap, log, and metrics configurations
are explained in the following sections of this chapter.
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gnb_id : 1 # Sets the numerica l ID a s s o c i a t ed with the gNB.
ran_node_name : gnb1 # Sets the text ID a s s o c i a t ed with the gNB.

amf :
addr : 1 7 2 . 2 2 . 0 . 1 0 # The address or hostname o f the AMF.
bind_addr : 1 72 . 2 2 . 0 . 1 01 # A l o c a l IP that the gNB binds to f o r

t r a f f i c from the AMF.

c e l l_c f g : # Ce l l c on f i gu r a t i on . A s i n g l e c e l l i s used here .
dl_arfcn : 368500 # ARFCN of the downlink c a r r i e r ( c en t e r f requency ) .
band : 3 # The NR band .
channel_bandwidth_MHz : 20 # Bandwith in MHz.
common_scs : 15 # Subca r r i e r spac ing in kHz used f o r data .
plmn : "00101" # PLMN broadcasted by the gNB.
tac : 1 # Tracking area code ( needs to match the core c on f i gu r a t i on ) .
pc i : 1 # Phys i ca l c e l l ID .

ru_sdr : # Explained in the zeroMQ chapter
e2 : # Explained in the RIC chapter
l og : # Explained in the Logs chapter
pcap : # Explained in the Packet captures chapter
metr i c s : # Explained in the Monitoring chapter

Figure 12 gNodeB configuration overview

For full configuration, see the gnb_zmq.yml files in the /3-srsran/*/config/gnb-*/
subdirectories of the git repository (appendix A).

6.4 UE and subscriber configuration

When connecting to a 5G network, the UE must authenticate with the 5G core
network. Therefore, each simulated UE is preconfigured with Subscriber Identity
Module (SIM) credentials. This includes:

• Operator Code - A 128-bit key that identifies a mobile network operator. The
test network uses 11111111111111111111111111111111.

• Subscriber Authentication Key - A randomly generated 128-bit subscriber key.

• International Mobile Subscriber Identity (IMSI) - A 15 digit number, which
uniquely identifies every SIM card. It is composed of the Mobile Country Code
(MCC), Mobile Network Code (MNC), and a Mobile Subscriber Identification
Number (MSIN). The MCC and MNC make up the PLMN. The test network
uses the international test PLMN 001/01. Therefore, the IMSI needs to start
with 00101, followed by the MSIN, which is a unique number for every SIM
card.
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• International Mobile Equipment Identity (IMEI) - Usually unique 15 digit
numeric identifier for mobile phones. The simulated UEs use 353490069873319.
This default value is provided by SRS and refers to an LG Nexus 5.

SIM credentials are configured in the srsUE main configuration file under the usim
section (see figure 13). The UE credentials used in the test network can be found in
the .env file.

[ usim ]
mode = s o f t
a lgo = mileage
op = UE_OP
k = UE_KI
ims i = UE_IMSI
imei = 353490069873319

Figure 13 srsUE configuration overview

For full configuration, see the *.conf files in the /3-srsran/*/config/ue-*/ subdirec-
tories of the git repository (appendix A).

The 5G core has a subscriber database that contains every UE that is allowed
to connect to the network, along with configuration like QoS values or bandwidth
limits. For a UE to successfully connect to the network, it must be added to the
subscriber database. Open5GS provides a web interface to manage the subscriber
database. Figure 14 shows the subscriber configuration for a UE. The IMSI, Sub-
scriber Authentication Key (K), and Operator Code (OP) need to match the values
configured for the simulated UE. Details on accessing the Web interface and adding
the subscriber data are available in the README.md file (appendix A).
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Figure 14 Open5GS Subscriber Configuration

6.5 Deployment scenarios

The test network provides five different standalone deployment scenarios for srsRAN.
Each scenario deploys a gNodeB and one or more UEs with a unique configuration.
Each scenario uses different IDs for UEs and gNodeB’s, which allows multiple sce-
narios to co-exist and be deployed simultaneously using a shared 5G core network.
The following subchapters describe each deployment scenario. Instructions on how
to start individual deployment scenarios are available in the README.md file (ap-
pendix A).

After registration with the gNodeB, an additional IP address from the 192.168.100.0/24
subnet is dynamically assigned to a UE. This IP address is used for communication
over the simulated radio channel. Docker services to which this applies are marked
with an asterisk (*) in the following tables. The addresses listed in the tables are
used for communication over the docker network.
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6.5.1 Single UE

Table 3 srsRAN deployment scenario 1 - Single UE

This is the most straightforward deployment scenario. A gNodeB is deployed with-
out a connection to a Near-RT RIC. A single UE is connected to the gNodeB. Table
3 shows the docker services used in this deployment scenario.

6.5.2 Multiple UEs

Table 4 srsRAN deployment scenario 2 - Multiple UEs

A gNodeB without a connection to a Near-RT RIC is deployed in this deployment
scenario. Multiple UEs are connected to the gNodeB. The simulated radio channel is
shared between all UEs. Table 4 shows the docker services used in this deployment
scenario. As stated earlier in chapter 5.6, the zeroMQ-based radio channel uses
a duplex point-to-point connection. Out of the box, it is not possible to connect
multiple UEs to a single gNodeB. To workaround this limitation, the software GNU
Radio Companion is used. It is an open-source visual programming tool for signal
processing. Flow graphs (.grc files) describe the flow of radio signals. The GNU
Radio Companion cannot be launched in a headless server environment, requiring
a graphical user interface. Therefore, this deployment scenario has an additional
requirement for the host: a graphical user interface needs to be installed. gnome-
remote-desktop has been installed on the test server. In addition to that, the xrdp
package has been installed and configured, which allows the server to accept Remote
Desktop Protocol (RDP) connections.
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GNU Radio Companion
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Figure 15 Multiple UE architecture using GNU Radio Companion

Figure 15 shows the multi UE architecture. At the center of the figure is the
GNU flow graph. It determines how zeroMQ connections are proxied and how signal
processing is applied to multiplex and combine signals. A slightly modified version
of the flow graph provided by srsRAN [37] is used. It is available in the git repository
under 3-srsran/2-multi-ue/multi-ue-broker.grc (appendix A). The gNodeB and UE
no longer connect directly. Instead, they connect to zeroMQ endpoints launched by
the GNU Radio Companion. The radio broker receives the Downlink signal from
the gNodeB and sends a copy to every connected UE. All Uplink signals from the
connected UEs are aggregated, and the aggregated signal is sent to the gNodeB.
gnb-2 and the UEs are inside the docker network, as indicated by the blue dotted
rectangles. The GNU Radio Companion is running on the host network, as indicated
by the red dotted rectangle. The black and green arrows outside the flow graph
indicate which side initiates the connection. As explained in chapter 5.6, RX ports
initiate a connection to the TX port of the communication partner. The ZMQ REP
Sinks start a zeroMQ socket with zmq_bind() using the provided address on the
host. In this case, * is the address to bind on all interfaces. The ZMQ REQ Sources
initiate a zeroMQ connection using zmq_connect() to the TX ports of the gNodeB
and UEs. The TX port addresses are exposed from the Docker network to the host
network using Docker port forwarding. This makes it possible to use the loopback
address 127.0.0.1 in the flow graph to connect to the containers running in the docker
network.
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After the flow has been started in GNU Radio Companion, a settings panel
gets opened, which allows to change the path loss value for each UE (see figure
16). srsUE allows to enable tracing, which prints measurements for signal, uplink,
and downlink every second. Tracing is enabled by attaching to a srsUE container
using Docker, followed by typing t. The traces include a measurement for Reference
Signal Received Power (RSRP). Increasing the path loss value for a UE results in a
decreased RSRP, visible in the srsUE traces.

Figure 16 GNU Radio Companion settings panel

6.5.3 FlexRIC

Table 5 srsRAN deployment scenario 3 - Flexric

This deployment scenario is the same as scenario 1, except that the gNodeB is
configured to connect to FlexRIC. Table 5 shows the docker services used in this
deployment scenario. It requires FlexRIC to be deployed. Details around FlexRIC
and this deployment scenario are available in chapter 8.2.

Due to an issue with FlexRIC, it crashes when decoding the RICIndication message
from srsRAN. This is a known problem and has already been reported to the FlexRIC
developers. Until the issue is fixed, it is required to use a patched version of srsRAN,
which does not include the granul_period field that causes FlexRIC to crash [38].
Therefore, this deployment uses a patched image of srsRAN.
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6.5.4 O-RAN SC Near-RT RIC

Table 6 srsRAN deployment scenario 4 - O-RAN SC Near-RT RIC

This deployment scenario is the same as scenario 1, except that the gNodeB is
configured to connect to the O-RAN SC Near-RT RIC. Table 6 shows the docker
services used in this deployment scenario. It requires deploying the O-RAN SC
Near-RT RIC. Details around the O-RAN SC Near-RT RIC and this deployment
scenario are available in chapter 8.3.

6.5.5 External O-RAN SC Near-RT RIC

Table 7 srsRAN deployment scenario 5 - External O-RAN SC Near-RT RIC

This deployment scenario is similar to scenario 4, except that the gNodeB is config-
ured to connect to an external O-RAN SC Near-RT RIC running on another host.
Table 7 shows the docker services used in this deployment scenario. Details are
available in chapter 8.3.

6.6 Monitoring

A monitoring stack is deployed to gain insights into the test network. Grafana allows
data visualization using dashboards and various panels, such as gauges, bar charts,
or line charts. It connects to data sources like Prometheus or InfluxDB. Prometheus
is an open-source monitoring and alerting toolkit. It collects and stores metrics as
time series data, i.e., metrics information is stored with the timestamp at which it
was recorded, alongside optional key-value pairs called labels. Like Prometheus, In-
fluxDB is a time-series database that allows for the storage, aggregation, and query
of metrics.

Open5GS components AMF, SMF, PCF, and UPF expose Prometheus-compatible
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HTTP endpoints that expose core network metrics. Prometheus is configured to
scrape these endpoints every 5 seconds. The resulting metrics are stored in the
Prometheus database.

The srsRAN project provides a metrics server that receives metrics data from a
running gNodeB and sends it to InfluxDB. The TESTBED environment variable
defines how the metrics server labels incoming data. Labeling the data differently
depending on which gNodeB sends the data to the metrics server is currently im-
possible. It is, therefore, required to use a separate metrics server per gNodeB so
that metrics data can be queried based on the gNodeB that produced them. The
test network contains one metrics server per gNodeB, i.e., gnb-1 sends its metrics
to metrics_server-1, while gnb-2 sends its metrics to metrics_server-2.

Figure 17 shows the monitoring architecture that is used for the test network im-
plemented in this work. Grafana is configured with both InfluxDB and Prometheus
data sources. Metrics servers publish srsRAN gNodeB metrics to InfluxDB and
Prometheus scrapes metrics of Open5GS core components.

Prometheus

scrape data 
(interval: 5s)

AMF

InfluxDB

metrics_server-1 
TESTBED=gnb-1

metrics_server-n 
TESTBED=gnb-n

Grafana

metrics_server-2 
TESTBED=gnb-2

 

gnb-1 gnb-2 gnb-n

query data

send data

transform and 
write data

SMF PCF UPF

...

Figure 17 Monitoring architecture

A Grafana dashboard is deployed to visualize srsRAN gNodeB metrics. Figure
18 shows the dashboard, visualizing one minute of metrics data on gnb-1 after an
iperf3 session. The data is fetched from InfluxDB. The gNodeB can be selected
in the top-left corner. Values are available based on the TESTBED environment
variable, configured in the metrics-server, that sends the data to InfluxDB. The
dashboard shows the number of active UEs, uplink and downlink bitrate, Signal to
Noise Ratio (SNR), Channel Quality Indicator (CQI), and Modulation and Coding
Scheme (MCS). The SNR and CQI measure the overall quality of the radio channel.
The higher the value, the better. The values are static due to the simulated radio
channel. The MCS is affected by the quality of the radio channel. A better link
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quality allows for a higher MCS, meaning more complex modulation schemes can
be used, resulting in higher data throughput.

Figure 18 Metrics captured for an iperf3 session from simulated UE to host over virtual-
ized radio. Duration: 45s, max throughput: 100Mbit/s

6.7 Logs

All deployed network services produce logs. Logs are essential to finding misconfig-
urations, analyzing performance bottlenecks, or detecting malicious RAN activity.
Since all services are run inside containers, the docker logs command can be used
to read logs. In addition to that, the srsRAN gNodeB and UE write logs to a file.
Log files are made available to the host system via Docker bind mounts. There
are different log levels (from lowest to highest level of detail): none, error, warning,
info, and debug. A different log level can be assigned to each layer and component
individually in the gNodeB and srsUE configuration files. This allows for analyzing
a specific layer in detail. A non-excessive list of layers includes PHY, MAC, PDCP,
RRC, or F1AP. Figures 19 and 20 show how logging is configured in srsRAN.

l og :
f i l ename : /var / log / s r s r an /gnb . l og # Path o f the l og f i l e .
a l l_ l e v e l : i n f o # Logging l e v e l app l i ed to a l l l a y e r s .
phy_level : e r r o r # Overwrite l og l e v e l f o r a s p e c i f i c l a y e r .
cu_leve l : i n f o # Overwrite l og l e v e l f o r a s p e c i f i c component .

Figure 19 srsRAN gNodeB Log configuration
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[ l og ]
f i l ename = /var / log / s r s l t e /ue . l og # Path o f the log f i l e .
a l l_ l e v e l = i n f o # Logging l e v e l app l i ed to a l l l a y e r s .
phy_lib_level = none # Overwrite l og l e v e l f o r a s p e c i f i c l a y e r .

Figure 20 srsUE Log configuration

6.8 Packet captures

Packet captures allow traffic to be captured on a given link and saved to a file.
Capture (pcap) files can later be analyzed using tools like Wireshark. They provide
an in-depth view of the test network and allow an in-depth analysis of the protocols
involved in a 5G network. In the context of the 5G-FORAN project, packet captures
allow firewalls to be baselined with what is considered clean or regular traffic.

srsRAN can generate individual pcap files per network layer for UEs and gNodeBs.
They are written to the filesystem after gracefully stopping the UE or gNodeB.
Gracefully stopping requires attaching to the container. Detailed instructions are
available in the README.md (appendix A). Previous packet captures are overwrit-
ten when stopping a gNodeB or UE.

6.8.1 Data Link Types

The capture tool tags packets with a Data Link Type (DLT) when performing a
packet capture. It tells tools like Wireshark how to interpret the incoming bytes of
each packet. Most common network protocols have predefined DLTs. However, for
5G networking protocols, custom DLTs are used. The packet captures generated by
srsRAN use the following custom DLT values:

• DLT 148 - Used for NAS packets in UE packet captures.

• DLT 149 - Used for MAC packets between UE and gNodeB. It uses the UDP
protocol (MAC-NR over UDP).

• DLT 152 - Used for NGAP packets between the gNodeB and the 5G core.

• DLT 153 - Used for E1AP packets between the CU user plane and control
plane.

• DLT 154 - Used for F1AP packets between the CU and DU.

• DLT 155 - Used for E2AP packets exchanged between the gNodeB and the
Near-RT RIC.

• DLT 156 - Used for GTP-u packets between the gNodeB and the 5G core.
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6.8.2 Wireshark configuration

A recent version of Wireshark, such as 4.2 and newer, is required to parse the
generated pcap files correctly. Wireshark must be configured to match the srsRAN
custom DLT values to the correct protocol. Additional protocol-specific options
need to be set. Figure 21 shows the configuration required for Wireshark to correctly
interpret the packet captures generated by srsRAN.

MAC-NR and MAC-NR over UDP are enabled in Analyze - Enabled Protocols

DLT mappings are configured in Preferences - Protocols - DLT_USER

MAC-NR configuration in Preferences - Protocols - MAC-NR

NAS configuration in Preferences - Protocols - NAS-5GS

Figure 21 Wireshark configuration
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6.8.3 srsRAN configuration

Packet captures can be enabled individually per layer. Different file names can be
specified for each layer so that different layers can be analyzed individually. For
srsUE the following layers are supported: mac for LTE packets, mac_nr for 5G
NR packets, and nas for NAS packets. Because 4G LTE is unused, enabling packet
captures for mac_nr and nas is sufficient. The gNodeB supports the following layers:
mac for 5G NR packets, ngap for NGAP packets exchanged between gNodeB and
AMF, e1ap for packets exchanged between the CU control and user plane, e2ap for
packets exchanged between the gNodeB and Near-RT RIC, gtpu for the GTP tunnel
established between gNodeB and UPF, and rlc for Radio Link Control. [39] The
test network is configured to generate packet captures for all layers except rlc. RLC
is only relevant with real radio hardware. The pcap files are accessible to the host
filesystem using Docker volume binds.

[ pcap ]
enable = mac_nr , nas
mac_nr_filename = /mnt/pcap/ue1_mac_nr . pcap
nas_fi lename = /mnt/pcap/ue1_nas . pcap

Figure 22 srsUE pcap configuration

pcap :
mac_enable : t rue
mac_filename : /mnt/pcap/gnb1_mac . pcap
ngap_enable : t rue
ngap_filename : /mnt/pcap/gnb1_ngap . pcap
f1ap_enable : t rue
f1ap_fi lename : /mnt/pcap/gnb1_f1ap . pcap
e1ap_enable : t rue
e1ap_fi lename : /mnt/pcap/gnb1_e1ap . pcap
e2ap_enable : t rue
e2ap_fi lename : /mnt/pcap/gnb1_e2ap . pcap
gtpu_enable : t rue
gtpu_fi lename : /mnt/pcap/gnb1_gtpu . pcap

Figure 23 gNodeB pcap configuration



6 Test Network Design 42

6.9 Running the test network

Running the test network involves starting multiple Docker Compose applications.
An example to start deployment scenario 1 can be found in figure 24. Detailed step-
by-step instructions on running the test network are available in the README.md
file (appendix A).

# Sta r t shared s e r v i c e s
docker compose −f ./0− shared /docker−compose . yaml up −d

# Sta r t the Open5GS Core
docker compose −f ./1− core /docker−compose . yaml up −d

# Sta r t deployment scenar io 1
docker compose −f ./3− s r s r an/1− s i n g l e −ue/docker−compose . yaml up −d

Figure 24 Commands required to run the test network with deployment scenario 1
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7 End-to-End connectivity

A central goal of this work was to have End-to-End 5G connectivity. This means
that a UE can send and receive packets to/from the internet over a radio channel
and a 5G core network. This chapter describes the flow of UE packets through the
test network. Throughput measurements are done to show the capabilities of the
test network.

When the Open5GS UPF container starts, it creates an interface called ogstun with
the 192.168.100.1 address used as a tunnel interface for GTP. An iptables rule is
used in the UPF container for Network Address Translation:

iptables -t nat -A POSTROUTING -s 192.168.100.0/24 ! -o ogstun
-j MASQUERADE.

This rule ensures that outgoing packets from UEs with the private 192.168.100.0/24
source network address are translated to the host IP address to enable communica-
tion with the internet. After the simulated UE successfully connects to the gNodeB,
a device called tun_srsue gets created inside the UE container. The device’s IP
address is dynamically assigned from the 192.168.100.0/24 network. Addresses are
assigned by the Session Management Function (SMF) of the 5G core which keeps
track of which addresses are already used by other UEs. When a UE sends packets
over the simulated radio channel, they take the following path through the network:
UE -> gNodeB -> AMF -> SMF -> UPF -> Internet.

In order to verify End-to-End connectivity, requests are sent from the simulated UE
over the 5G network to the internet. For testing purposes, the CloudFlare DNS
server 1.1.1.1 was used as a target for ICMP Echo requests. It was chosen because
it is known to respond to ICMP Echo requests, has low latency, and is guaranteed
to be outside the TH network.

In order to perform requests to the internet, a shell is spawned within the UE con-
tainer. By default, all outgoing requests will use the Docker network default gateway.
The default route must be changed to use the tun_srsue device to ensure that the
simulated radio channel is used. For each deployment scenario, a script exists to
change the default routes of all UE containers accordingly. See the README.md
file (appendix A) for details. Once the default route is updated, a traceroute re-
veals that the next hop uses the 192.168.100.1 address (see figure 25). This address
belongs to the UPF ogstun interface.
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Figure 25 traceroute over simulated radio channel

The ping tool supports the -I flag, which allows to change the interface to which
the ICMP Echo request is sent. That way, connectivity over the simulated radio
channel can be verified without changing the default route. Figure 26 shows a
side-by-side comparison of pings to the CloudFlare DNS server 1.1.1.1. The left side
shows a ping over the Docker network. The right side shows a ping over the simulated
radio channel. Both ping commands were run using five ICMP echo requests (one
every second) and were launched simultaneously. It can be seen that connections
over the simulated radio channel to the internet work without packet loss. However,
a delay of around 40ms is introduced. This is expected, as radio simulation involves
quite some overhead and is resource-intensive. As explained earlier, sending packets
over the simulated radio channel involves extra hops. This can also be seen by the
reduced TTL value for the simulated radio channel. The value is only reduced by
one, even when multiple hops are involved, because of the GTP tunnel established
between the gNodeB and the UPF.

Figure 26 Side-by-side ping comparison
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7.1 Throughput measurements

Using deployment scenario 1, the throughput over the simulated radio channel was
measured using iperf3. The used iperf3 commands are in the README.md file
(appendix A). An iperf3 server was launched on the host. Then, inside the UE
container, the default route was updated to use the simulated radio channel. An
iperf3 client was started in the container for 45 seconds using TCP and a bitrate
of 100Mbit/s. An application layer throughput of around 52 Mbit/s was achieved.
Figure 18 shows the monitoring results of this iperf3 session. Note that the bitrate
displayed in the dashboard is higher than the value measured by iperf3. This is
because the dashboard contains the link layer throughput, which includes protocol
overhead from TCP, IPv4, and MAC-NR over UDP. The limiting factor was the
CPU performance of the test server. Multiple cores are at 100% utilization during
the measurement, as radio simulation is quite resource-intensive.

7.2 Handover

srsRAN release 24.04 introduced support for handover [40]. A handover is the pro-
cess of a UE moving from one cell to another. The active connection of the UE gets
seamlessly transferred from one cell to the other. With handover, it is possible to
maintain continuous network connectivity while moving geographically. There are
multiple types of handovers. Intra gNB-DU handover occurs when the source and
target cell are provided by the same gNodeB DU. Inter gNB-DU and Intra gNB-CU
handover occurs when the source and target cell belong to different gNodeB DUs,
but both DUs are managed by the same CU. Inter gNB-CU handover describes
the process of a UE moving from one cell to another cell, which is managed by a
different CU.

Depending on the type of handover, different control messages are necessary to com-
plete it. At the time of writing, srsRAN only supports the Intra gNB-DU handover
type. One srsRAN gNodeB creates multiple cells that can vary by frequency or
location (e.g., using tri-sector antennas). The gNodeB is then configured to instruct
connected UEs to monitor signal quality metrics of neighboring cells in addition to
its own cell. An A3 event is triggered when the signal quality of a neighboring cell
surpasses that of the serving cell by a predefined threshold for a specified time. This
event indicates that a neighboring cell has a better signal condition and may be
more suitable for serving the UE. The UE sends the event to its current cell. Upon
receiving the measurement report, the current cell evaluates the information and
other factors (like cell load, UE speed, and network policies) to decide whether a
handover is justified. If so, it initiates the handover process to the target cell.

The ability to initiate handovers would be an excellent addition to the test network,



7 End-to-End connectivity 46

as handovers are a vital feature of mobile networks. The GNU Radio Companion
was used to simulate that another cell has a better signal quality than the current
cell, as explained in chapter 6.5.2. The path loss value of a UE is increased to
simulate a UE moving further away from the cell tower. It turned out that the
srsRAN_4G project used for the simulated UEs does not yet support A3 events
and handover for 5G. Therefore, analyzing a 5G handover using the test network
was impossible. This could be accomplished in the future using real radio hardware
or after an update to the UE simulation software.
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8 Extending the test network with RAN Intelligent

Controllers

Based on the design explained in chapter 6, a fully functional 5G SA network with
End-to-End connectivity is implemented. This network is extended with RICs that
run xApps to monitor the network. One final goal of this work was to integrate
srsRAN with an external O-RAN SC Near-RT RIC. However, during earlier stages
of this work, FlexRIC was the only Near-RT RIC verified to work with srsRAN.
For this reason, and because FlexRIC is more straightforward to deploy, this work
initially focused on integrating srsRAN into FlexRIC. This is described in chapter
8.2. Once the FlexRIC integration was complete, the focus was on the O-RAN SC
Near-RT RIC. Chapter 8.3 is about the integration of srsRAN with the O-RAN SC
Near-RT RIC. Finally, chapter 8.4 compares both RICs and how they integrate into
srsRAN.

8.1 srsRAN E2 service models

srsRAN implements the E2 interface to connect to a Near-RT RIC. The E2 inter-
face is still under development, and its current version is limited in functionality.
The srsRAN E2 interface only supports the E2SM_RC and E2SM_KPM service
models. [41]

The E2SM_RC service model specifies capabilities for RAN control, including radio
access control or radio bear control. srsRAN only supports control service style 2.
As the radio channel in this work is emulated, most radio control operations do not
apply. Therefore, this service model has not been evaluated further.

The E2SM_KPM service model enables the report of measurements from the dis-
aggregated gNodeB. srsRAN supports all five report service styles: [42]

1. E2 Node measurement - Report KPIs for a specific node in the RAN.

2. E2 Node Measurement for a single UE - Report KPIs for a single UE.

3. Condition-based, UE-level E2 Node Measurement - Report KPIs for UEs that
fulfill predefined conditions, such as signal degradation, handover failures, or
congestion.

4. Common Condition-based, UE-level Measurement - Similar to style 3, except
that the reporting conditions are common across multiple UEs, enabling syn-
chronized reporting for a group of UEs experiencing similar conditions.

5. E2 Node Measurement for multiple UEs - Report aggregated KPIs for multiple
UEs.
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Condition-based reporting helps reduce unnecessary reporting traffic by only sending
reports when significant events occur, optimizing network resource utilization.

The following six O-RAN defined metrics are exposed:

• DRB.UEThpDl - DL throughput

• DRB.UEThpUl - UL throughput

• DRB.RlcPacketDropRateDl - UL packet success rate

• DRB.PacketSuccessRateUlgNBUu - RLC DL packet drop rate

• DRB.RlcSduTransmittedVolumeDL - RLC DL transmitted Service Data Unit
(SDU) volume

• DRB.RlcSduTransmittedVolumeUL - RLC UL transmitted SDU volume

The monitoring period is limited by srsRAN to 1s. srsRAN uses KPM version 3,
which was published in March 2023. KPM version 4 was published in October 2023
but is not yet supported by srsRAN or the RICs evaluated in this work.

8.2 FlexRIC

FlexRIC is an O-RAN compatible Near-RT RIC. It was published by EURECOM in
2021 and is developed under the Mosaic5G community on GitLab [43]. Mosaic5G is
part of the OpenAirInterface Software Alliance, a non-profit organization focusing
on the development of 5G RAN and core network technologies [44].

The goal of FlexRIC is to be a “flexible and efficient software development kit (SDK)
that enables to build specialized serviceoriented controllers” [45]. In contrast to
the O-RAN SC reference implementation, FlexRIC does not require running all
its components and xApps in isolated containers orchestrated by Kubernetes. The
authors argue that enforcing the usage of Kubernetes "couples the RIC with a
containerized technology, contrary to an open technologically agnostic design" [45]
and introduces unneeded overhead.

Table 8 FlexRIC deployment

As shown in table 8, FlexRIC is deployed using a single Docker container. An ad-
ditional container is deployed to run a monitoring xApp. Both containers share the
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same image, which contains the FlexRIC binary and the compiled xApp. FlexRIC
is under active development and is developed in multiple git branches. For this de-
ployment, the br-flexric branch is used, as SRS recommends. FlexRIC is built using
the -DKPM_VERSION=KPM_V3 flag to ensure KPM version 3 (the version that
srsRAN uses) is used. By default, version 2 is used.

Deployment scenario 3 (see chapter 6.5.3) is used to deploy a gNodeB that connects
to FlexRIC. Figure 29 shows how the gNodeB is configured to integrate FlexRIC.
The E2 agent and KPM E2SM get enabled, and the address of FlexRIC is config-
ured. During startup, the gNodeB initiates a connection to the RIC as explained in
chapter 4.1.2.

Figure 27 shows how the xApp is configured to receive monitoring data. The name
is set to KPM, which refers to the E2SM. The time is set to 1000 to get updated
data every second. srsRAN only supports a period of 1 second. The format refers
to the Report Service Style 1, which indicates that KPIs for a specific RAN node is
requested. The ran_type configuration ensures that metrics from a gNodeB are re-
turned. The xApp subscribes for two metrics: DRB.UEThpDl and DRB.UEThpUl.

Sub_ORAN_SM_List = ({
name = "KPM" ,
time = 1000 ,
format = 1 ,
ran_type = "ngran_gNB" ,
a c t i on s = (

{ name = "DRB.UEThpDl" } ,
{ name = "DRB.UEThpUl" }

)
})

Figure 27 FlexRIC monitoring xApp configuration (shortened)

See /2-flexric/config/xapp-monitoring/xapp.conf in the git repository (appendix A)
for the full configuration file.

It is required to start the xApp after the UE is successfully connected. Otherwise,
FlexRIC can not decode the RICIndication message successfully and crashes. This
is due to an issue with srsRAN, which sends an empty RICIndication message when
no UE is connected [46]. Once the xApp runs, it prints the requested KPMs every
second. As the xApp requested 2 KPMs (UE downlink and UE uplink), two lines
will be printed per second. Values printed by the xApp are not labeled, but the order
of the lines matches the order of the requested KPMs in the actions configuration
of the xApp.
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8.3 O-RAN SC Near-RT RIC

The O-RAN SC provides a reference implementation of a Near-RT RIC. The O-RAN
SC is partnering with the O-RAN Alliance and the Linux Foundation to create an
open RAN solution. This work uses the current I release, released in December
2023.

The O-RAN SC Near-RT RIC is meant to be deployed in a Kubernetes cluster.
Kubernetes builds on container technology and provides an automated system for
deploying, scaling, and managing containerized applications on a multi-node cloud
infrastructure. It is the most widely used platform businesses worldwide use for
container orchestration [47].

8.3.1 Docker Compose-based deployment

While integrating srsRAN into an external Kubernetes-based Near-RT RIC, un-
solved problems were encountered. The default xApps provided by the O-RAN SC
resulted in crashes or did not produce the expected output. Luckily, SRS was veri-
fying the compatibility of srsRAN with the O-RAN SC Near-RT RIC at that time.
Therefore, they provide a stripped-down version of the Near-RT RIC that does not
require a Kubernetes cluster to run but instead uses plain Docker containers. The
official O-RAN container images are used. Using Docker Compose instead of Kuber-
netes has the advantage that deployment is more straightforward, and the Near-RT
RIC can run on the same host as the other network services. The Routing Manager
(rtmgr) requires a Kubernetes environment and is therefore simulated using an im-
plementation provided by SRS. Table 9 shows the Docker services, along with their
image and IP address needed to deploy the O-RAN SC Near-RT RIC. SRS provides
an xApp Python framework and a monitoring xApp that is also deployed.

Deployment scenario 4 (see chapter 6.5.4) is used to deploy a gNodeB that connects
to the Near-RT RIC. Figure 29 shows how the gNodeB E2 interface is configured.
The E2 agent and KPM E2SM get enabled, and the address of the Near-RT RIC
is configured. During startup, the gNodeB initiates a connection to the RIC as
explained in chapter 4.1.2.

The sample monitoring xApp provided by SRS has been slightly modified to inte-
grate into the existing test network. Hardcoded IP addresses have been replaced to
use environment variables instead. The source code, as well as deployment instruc-
tions and how to start the xApp, are available in the git repository (appendix A).
Figure 28 shows a sample output that the xApp generates every second. Compared
to the FlexRIC xApp, the output is enhanced using metadata.
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Table 9 O-RAN SC Near-RT RIC deployment

RIC Ind i c a t i on Received from gnb_001_001_000004 f o r Subsc r ip t i on ID : 1
E2SM_KPM RIC Ind i c a t i on Content :
−Col letStartTime : 2024−05−29 09 : 33 : 25
−Measurements Data :
−granulPer iod : 100
−−Metric : DRB.UEThpDl , Value : [ 5 3258 ]
−−Metric : DRB.UEThpUl , Value : [ 9 6 5 ]

Figure 28 Python monitoring xApp output

8.3.2 Kubernetes based deployment

A separate host is used to deploy Kubernetes. Deploying Kubernetes on the same
host used for the rest of the test network would interfere with the existing Docker
Compose-based container stack. For a test network, a fully-fledged Kubernetes
cluster is not feasible. Therefore, a more lightweight Kubernetes distribution called
k3s is used. The details on deploying Kubernetes and the O-RAN Near-RT RIC are
out of the scope of this work. A deployment script provided by PROCYDE is used
to deploy Kubernetes and the Near-RT RIC.

Deployment scenario 5 introduced in chapter 6.5.5 is used to deploy a gNodeB
that connects to the externally hosted Near-RT RIC. The environment variable
EXTERNAL_E2TERM_IP is used to set the IP address of the external host.

While it was possible to establish an E2 connection between the gNodeB and the
O-RAN SC Near-RT RIC, it was impossible to get a monitoring xApp running.
The kpimon-go xApp provided by the O-RAN SC crashes when it tries to send the
E2SubscriptionMessage. Also, it does not subscribe to newly connected E2 nodes.
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All nodes need to be connected before the xApp starts. Using the python xApp
from the Docker Compose-based deployment was impossible because it is tailored
towards the Docker environment.

e2 :
enable_du_e2 : t rue
e2sm_kpm_enabled : t rue
addr : RIC_IP
bind_addr : GNB_IP
port : 36421

Figure 29 gNodeB E2 configuration for RIC integration

8.4 FlexRIC vs. O-RAN SC Near-RT RIC

It was possible to integrate both RICs into srsRAN in terms of establishing an E2
connection from the gNodeB to the RIC. Both RICs provide open-source xApps for
basic monitoring. However, for both RICs, the deployment of xApps could have
been more straightforward and required manual patches to components. Compo-
nents need to be started in the correct order, and fail-safes like reconnecting on
connection loss or detecting newly connected RAN nodes are not implemented or
do not work reliably. During testing, crashes were experienced on multiple compo-
nents involved. Running a monitoring xApp successfully on the Kubernetes-based
O-RAN SC Near-RT RIC was impossible.

Table 10 shows a comparison in CPU and memory requirements between a mini-
mal FlexRIC and O-RAN SC Near-RT RIC deployment. The O-RAN RIC requires
more resources than FlexRIC. This is because the O-RAN RIC is split into mul-
tiple functions, each running inside its own container. Despite that, the resource
requirements of the O-RAN deployment are manageable and should not be prob-
lematic. Performance and resource requirements in the real world using hundreds of
connected E2 nodes could not be evaluated in this work. The authors of FlexRIC
see the disaggregation of functions into multiple containers as overhead [45], but
the usage of containerization and Kubernetes has some essential benefits. Com-
ponents can be individually managed and scaled based on resource requirements.
Isolating components in containers has security benefits, especially when it comes
to running external xApps. Security policies can be applied individually per compo-
nent. To summarize, FlexRIC is more straightforward to deploy and requires fewer
resources, but the O-RAN Near-RT RIC profits from a cloud-native deployment, es-
pecially regarding scalability. The FlexRIC milestone contains an entry to support
cloud-native deployment using Helm on Kubernetes, which is still in progress to the
author’s knowledge [48].
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NAME CPU % MEM USAGE / LIMIT
xapp−monitor ing 0.01% 1.516MiB / 15 .61GiB
f l e x r i c 0.00% 2.195MiB / 15 .61GiB

NAME CPU % MEM USAGE / LIMIT
ric_dbaas 0.13% 2.445MiB / 15 .61GiB
ric_appmgr 0.00% 8.262MiB / 15 .61GiB
python_xapp_runner 0.00% 1.668MiB / 15 .61GiB
ric_e2term 0.03% 2.23MiB / 15 .61GiB
ric_submgr 0.04% 10.87MiB / 15 .61GiB
ric_e2mgr 0.02% 7.188MiB / 15 .61GiB
ric_rtmgr_sim 0.00% 2.082MiB / 15 .61GiB

Table 10 Resource usage comparison between FlexRIC (top) and O-RAN-SC RIC (bot-
tom)

Functionality-wise, both RICs support the E2 service models that srsRAN ex-
poses. Additional RIC functionality is not evaluated in this work. FlexRIC and the
O-RAN SC Near-RT RIC are actively developed. During this work, some problems
experienced have already been resolved by new releases. Due to missing production-
grade deployment capabilities and scalability, FlexRIC is more suitable for research
and experimentation. Due to its roots as a research project, it does not follow the
O-RAN spec as closely as the O-RAN SC implementation. The O-RAN SC Near-RT
RIC is more suitable for production deployments.
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9 Outlook

In this work, a 5G network was implemented. This includes a 5G Standalone core
network, a Radio Access Network, as well as RAN Intelligent Controllers. The RAN
is implemented using srsRAN, which provides a gNodeB implementation. The User
Equipment is simulated using the srsUE software. A radio channel is emulated using
zeroMQ.

It was possible to fulfill all the goals set for this work. A 5G network with End-to-
End connectivity was implemented using open-source software. The deployment is
straightforward and portable due to the use of Docker Compose. Packet captures,
Logs and Monitoring dashboards provide visibility into the test network. Differ-
ent deployment scenarios connect one or multiple UEs and integrate various RICs.
The test network is extendable by adding new deployment scenarios with different
configurations. New upstream software updates did not break existing test network
deployments, and it was possible to integrate them manually. A README was
created that contains step-by-step instructions on how to deploy the test network.

The test network provides a solid foundation for future researchers in open RAN. A
possible extension to the test network would be to use real radio hardware. That
way, the exposed metrics would be much more valuable. Also, handover and MIMO
could be tested. Once the Y1 interface is implemented by the O-RAN SC, adding Y1
consumers to the test network would be interesting. A SMO Framework and Non-
RT RIC could be added to the test network. With the rise of artificial intelligence,
RAN automation based on AI incorporated into rApps and xApps is becoming an
interesting research topic.

The open RAN is continuously evolving. During this work, SRS, the O-RAN SC,
and other contributors continuously updated their open source O-RAN software,
making them more production-ready, step by step. Ericsson, a major player in the
mobile network industry, joined the OpenAirInterface Software Alliance this year,
and major telecom providers are already evaluating O-RAN solutions. SRS plays a
vital role in the adaptation of O-RAN, by providing open-source O-RAN-compatible
RAN solutions. Other vendors, like the OpenAirInterface Software Alliance, are de-
veloping similar solutions. This competition will likely accelerate innovation. Look-
ing forward, O-RAN will significantly transform the mobile industry by fostering a
more competitive, cost-efficient, and innovative ecosystem.
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Appendices

A Git repository

Contains the source code, configuration files, and documentation for the test net-
work. Available at the DN.Lab GitLab server under 5G-Projects / srsRAN.

B FlexRIC Dockerfile

FROM ubuntu : jammy

ENV DEBIAN_FRONTEND=non in t e r a c t i v e

# Install updates and dependencies , make gcc-10 the default (flexric
doesn’t compile with gcc-11, which is the Ubuntu 22 default)

RUN apt−get update && \
apt−get −y i n s t a l l bui ld−e s s e n t i a l cmake make gcc −10 g i t swig
l i b s c t p −dev python3 cmake−curses−gui python3−dev pkg−c on f i g
l i b c o n f i g −dev l i b c o n f i g++−dev net−t o o l s i p u t i l s −ping ip route2 && \
update−a l t e r n a t i v e s −− i n s t a l l / usr / bin / gcc gcc / usr / bin /gcc −10 10

# Cloning takes a while - make it a single docker layer for caching
purposes if the build command changes

RUN g i t c l one −−branch br− f l e x r i c −−s i n g l e −branch −−depth 1
https : // g i t l a b . eurecom . f r /mosaic5g/ f l e x r i c . g i t

RUN cd f l e x r i c && mkdir bu i ld && cd bu i ld && \
cmake −DKPM_VERSION=KPM_V3 −DXAPP_DB=NONE_XAPP . . / && make

−j ‘ nproc ‘ && make i n s t a l l

CMD / usr / l o c a l / bin / f l e x r i c / r i c /nearRT−RIC
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C docker-compose.yaml file for shared monitoring

services

ve r s i on : "3 .9"
name : shared
s e r v i c e s :

i n f l uxdb :
image : i n f luxdb : 2 . 7
container_name : in f luxdb
env_f i l e :

− . env
volumes :

− i n f luxdbdata : / var / l i b / in f luxdb2
− / e tc / timezone : / e t c / timezone : ro
− / e tc / l o c a l t ime : / e t c / l o c a l t ime : ro

por t s :
− "8086:8086/ tcp "

networks :
d e f au l t :

ipv4_address : ${INFLUXDB_IP}

prometheus :
image : ubuntu/prometheus :2 −22.04 _stable
container_name : prometheus
env_f i l e :

− . env
volumes :

− . / c on f i g /prometheus . yml : / e t c /prometheus/prometheus . yml : ro
− / e tc / timezone : / e t c / timezone : ro
− / e tc / l o c a l t ime : / e t c / l o c a l t ime : ro

por t s :
− "9090:9090/ tcp "

networks :
d e f au l t :

ipv4_address : ${PROMETHEUS_IP}

gra fana :
image : gra fana / grafana−os s : 1 0 . 3 . 1
container_name : gra fana
env_f i l e :

− . env
volumes :

− gra fanadata : / var / l i b / gra fana
− . / c on f i g / gra fana / p r ov i s i on i ng : / e t c / gra fana / p r ov i s i on i ng
− . / c on f i g / gra fana /dashboards : / e t c /dashboards
− / e tc / timezone : / e t c / timezone : ro
− / e tc / l o c a l t ime : / e t c / l o c a l t ime : ro
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por t s :
− "8080:3000/ tcp "

networks :
d e f au l t :

ipv4_address : ${GRAFANA_IP}

networks :
d e f au l t :

ipam :
c on f i g :

− subnet : ${TEST_NETWORK_SUBNET}
name : ${TEST_NETWORK_NAME}

volumes :
in f luxdbdata : {}
gra fanadata : {}
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D Test network architecture diagramm
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