
Implementation of a framework for
generating attack traces in Open RAN

systems

BACHELOR THESIS

Bachelor of Science (B.Sc.) Computer Engineering
at the Faculty of Information, Media and Electrical Engineering

of the Cologne University of Applied Sciences.

Author: Johannes Franz Müller

Matriculation number: 11127581

Address: Steinackerstraße. 41
53840 Troisdorf
johannes_franz.mueller@smail.th-koeln.de

1st Examiner: Prof. Dr. Andreas Grebe

2nd Examiner: Arn Jonas Dieterich

Cologne, January 15, 2024

Abstract

The introduction of 5G and Open RAN opens up new attack vectors on telecommu-
nications infrastructure for attackers. To prevent the exploitation of potential attack
vectors, it is essential to analyse 5G and Open RAN systems for vulnerabilities in the
context of prevention, detection, and treatment. This bachelor thesis aims to develop
a framework for generating attack traces in Open RAN systems. It will be carried
out as part of the 5G-FORAN project in collaboration with TH Köln and Procyde
GmbH. The purpose of the framework is to simplify and automate the process of
generating traces, so the attack traces can be analysed, to mitigate attack vectors.

Keywords: 5G, Open RAN, Kubernetes, Attack Simulation

I

Kurzfassung

Die Einführung von 5G und Open RAN eröffnet Angreifern neue Angriffsvektoren auf
Telekommunikationsinfrastrukturen. Um die Ausnutzung dieser Angriffsvektoren zu
verhindern, müssen 5G und Open RAN im Kontext von Prävention, Erkennung und
Behandlung auf Schwachstellen untersucht werden. Diese Bachelorarbeit beschäftigt
sich mit der Implementierung eines Frameworks zur Generierung von Angriffsvek-
toren in Open RAN-Systemen und wird im Rahmen des Projektes 5G-FORAN in
Kooperation zwischen der TH Köln und der Procyde GmbH durchgeführt. Ziel
des Frameworks ist es, die Generierung von Angriffsspuren zu vereinfachen und
automatisieren, so dass diese anschließend analysiert werden können. Auf dieser
Basis können Angriffsvektoren behoben oder weitere Maßnahmen ergriffen werden.

Stichwörter: 5G, Open RAN, Kubernetes, Angriffsimulation

II

Contents

Kurzfassung I

Kurzfassung II

List of Figures VI

List of Listings VIII

List of Tables X

1. Introduction 1
1.1. Initial situation . 1
1.2. Objective . 2

1.2.1. Objective 5G-FORAN . 2
1.2.2. Objective of the Bachelor’s thesis within 5G-FORAN 2

1.3. Personal Motivation . 3
1.4. Thesis Structure . 4
1.5. Hints to Syntax . 4

1.5.1. Module and Class Names . 4
1.5.2. Methods, Variables, Files, Folder 5

2. Technical Background 6
2.1. General . 6

2.1.1. 5G . 6
2.1.2. Open RAN . 7
2.1.3. Kubernetes . 9
2.1.4. 5G-FORAN Lab Environment 10
2.1.5. MITRE ATT&CK Framework 11
2.1.6. Kubernetes ATT&CK Matrix 12
2.1.7. Common Vulnerabilities and Exposures 13
2.1.8. Attacker Perspectives . 13

III

2.2. CF-Framework . 14
2.2.1. MongoDB . 14
2.2.2. Ansible . 15
2.2.3. Prompt Toolkit . 15
2.2.4. Kubehunter . 15
2.2.5. Kdigger . 16
2.2.6. RedKube . 16

3. Solution Concepts 17
3.1. Preparatory work . 17

3.1.1. Evaluation Architectural Approaches 17
3.1.2. Evaluation Programming language 18
3.1.3. Evaluation Metadata . 19
3.1.4. Evaluation of CF-Framework Features 20
3.1.5. Evaluation of Automation Framework 21

3.2. Framework Architecture . 22
3.2.1. General Architecture . 22
3.2.2. Controller . 24
3.2.3. Tool . 25
3.2.4. Menu . 27
3.2.5. Database . 29
3.2.6. State . 29
3.2.7. Environment . 30
3.2.8. Features . 31

3.3. Database Architecture . 32
3.4. Automation . 33
3.5. Test strategy . 34

4. Implementation 35
4.1. Framework Architektur . 35

4.1.1. Controller . 35
4.1.2. Tool . 38
4.1.3. Menu . 52
4.1.4. Database . 54
4.1.5. State . 56
4.1.6. Environment . 57
4.1.7. Features . 58

4.2. Database Architecture . 62

IV

4.3. Automation . 63
4.3.1. Deployment CF-Framework 63
4.3.2. Database . 64

4.4. User Manual . 67

5. Testing 69
5.1. Functional Testing CF-Framework 69
5.2. Functional Testing Tool . 72
5.3. Features Testing . 78

5.3.1. Campaign . 78
5.3.2. Template . 80

5.4. Testing Phase Categorisation . 82

6. Summary and Outlook 83
6.1. Summary . 83

6.1.1. Objectives . 83
6.1.2. Personal Motivation . 84

6.2. Outlook . 84
6.2.1. Tools and Features . 84
6.2.2. Attacker perspectives . 85
6.2.3. Testing with DFIR tools . 85

Appendix 86

A. Detailed CF-Framework Architecture 86

B. Detailed CF-Framework Architecture 88

Glossary 88

Acronyms 91

Bibliography 94

Selbstständigkeitserklärung 97

V

List of Figures

2.1. General Architecture 5GS [9] . 6
2.2. Logical O-RAN Architecture [10] 7
2.3. O-RAN Structure in Kubernetes [Source: 5G-FORAN TH-Köln] . . 9
2.4. 5G-FORAN Lab Environment [Source: 5G-FORAN TH-Köln] . . . 10
2.5. Kubernetes ATT&CK Matrix [17] 12
2.6. Hierarchy Attack Perspectives . 13

3.1. Framework general Architecture . 22
3.2. Structure of the controller module in conjunction with the ex-

ternal module . 24
3.3. Structure of the tool module . 25
3.4. Structure of the menu module . 27
3.5. Example menu run . 28
3.6. Structure of the database module 29
3.7. Structure of the state module . 29
3.8. Structure of the environment module 30
3.9. Structure of the feature modules automation and campaign 31
3.10. Database Architecture . 32
3.11. Framework and Database Automation with Ansible 33

4.1. Controller module - Files . 35
4.2. Tool module - Files . 39
4.3. Menu module - Files . 52
4.4. DEV Collections . 62
4.5. CF-Framework User manual . 67

5.1. Example Usage of Commands: back, end, exit 70
5.2. Pre-parameterised methods Kubehunter 71
5.3. Pre-parameterised methods Kubehunter 72
5.4. Default Configuration of Kubehunter specific Parameter 73
5.5. Set Kubehunter specific Attack Parameter and launch Attack pod . 73
5.6. Vulnerability analysis - Nodes . 74

VI

5.7. Vulnerability analysis - Services . 75
5.8. Vulnerability analysis - Vulnerabilities 76
5.9. Database Entry for Vulnerability analysis 77
5.10. Feature - Campaign Usage . 79
5.11. Database Entry in Collection artifacts-campaign 79
5.12. Campaign ID Field in Collection artifacts-raw 80
5.13. Feature - Template Usage . 80
5.14. Demonstrator menu Entries . 81
5.15. Set Kdigger specific Attack Parameter and launch Test Attack . . . 82
5.16. Database Entry for Kdigger Test Attack 82

VII

List of Listings

4.1. PromptInput class . 36
4.2. MenuStateMachine class - Variables class 37
4.3. MenuStateMachine class - Run method 37
4.4. LocalEnv Base class . 40
4.5. KubehunterEnv subclass - Parameter 40
4.6. Wrapper Base class class . 41
4.7. KubehunterWrapper subclass - Variables and pre-parameterised

methods . 42
4.8. KubehunterWrapper subclass - Build command 43
4.9. Tool Base class - Variables . 44
4.10. Tool Base class - Handle user input 45
4.11. Tool Base class - Insert into database 46
4.12. Tool Base class - Abstract Methods 47
4.13. Kubehunter subclass - Variables . 48
4.14. Kubehunter subclass - Methods . 49
4.15. KubehunterParser class . 50
4.16. Menu Base class . 52
4.17. Start subclass . 53
4.18. DatabaseWrapper class - Establishing connection 54
4.19. DatabaseWrapper class - Write data 55
4.20. MenuState class . 56
4.21. Environment class - Metadata variables 57
4.22. GlobalVariables class . 58
4.23. Campaign class . 58
4.24. Template class . 60
4.25. AttackGenerator class . 61
4.26. Ansible - Cloning the CF-Framework 63
4.27. AttackGenerator class . 63
4.28. Ansible - Install MongoDB packages 64
4.29. Ansible - Add foran user to MongoDB 65

VIII

4.30. Ansible - Create Authentication Certificate for foran user 65

5.1. Template Bash Script . 81

IX

List of Tables

3.1. Comparison of CLI and GUI Features 17
3.2. Comparison of Programming Languages for CLI Tools 18
3.3. Key Differences between Chef, Puppet, and Ansible 21

X

1. Introduction

The following section provides a brief explanation of the motivation, objectives, and
structure of the Bachelor’s thesis.

1.1. Initial situation
In recent years, cyber attacks on critical infrastructures have continuously increased
[1]. The security of critical infrastructures against cyber attacks is therefore of crucial
importance, as they guarantee essential services and functions in society.
With this in mind, it is particularly important to test new technologies that are to
be installed in critical infrastructure for vulnerabilities and to thoroughly analyse
the resulting attack vectors in order to be able to guarantee protective measures
against cyber attacks.
One of the new technologies of recent years is 5th generation mobile networks (5G).
5G offers a multitude of new use cases that are particularly promising in the area of
basic communication infrastructures such as energy and water supply, logistics and
transport [2, page 6]. For this reason, 5G networks must be analysed for potential
risks and protective measures taken before they are used in critical infrastructure.
A key component in 5G networks is the radio access network (RAN) [3]. In order to
analyse the risks to the RAN, the company Procyde has launched the 5G-FORAN
project in cooperation with the Cologne University of Applied Sciences (TH Köln).
The project analyses a concrete implementation proposal for a 5G RAN, namely
Open RAN (O-RAN), specified by the O-RAN ALLIANCE, founded 2018 by AT&T,
China Mobile, Deutsche Telekom, NTT DOCOMO and Orange [4], for potential
attack vectors.

1

Introduction

1.2. Objective

1.2.1. Objective 5G-FORAN

The concrete objective of the project 5G-FORAN (Forensic in O-RAN) is the
development, design and practical simulation of a method for analysing, handling and
resolving IT security incidents in the area of O-RAN. The basis for this development
are traceable attack traces on the components, which are provided by an attack
simulation as part of the overall project. The overall project is divided into two
sub-projects: ”Active attack simulation (offensive attack) on O-RAN components”
and ”Digital Forensics and Incident Response (DFIR) in O-RAN” [5]. Since Procyde,
as a consulting and service company in the field of cyber security with a focus on the
detection and defence of cyber attacks, has greater experience in the field of DFIR
[6], it is responsible for the DFIR part of the project, while the attack simulation for
trace generation is carried out by the Technical University of Cologne.
To realise the goal, the lab environment uses the implementations of the O-RAN
software community, which focused on the development of open-source software for
RAN components [7], in combination with Kubernetes to orchestrate the various
O-RAN components. As the infrastructure of this implementation, Kubernetes offers
a further attack vector that needs to be investigated. Since the O-RAN Alliance was
founded 2018 and the development of the components is still an ongoing process, only
a few practical attack vectors are known for O-RAN, the focus is therefore mainly on
possible attack vectors in Kubernetes. However, if vulnerabilities for O-RAN become
known, the focus will be expanded to include these vulnerabilities.

1.2.2. Objective of the Bachelor’s thesis within 5G-FORAN

The following bachelor thesis is part of the active attack simulation sub-project. The
objective of the bachelor thesis is to implement a framework that can be used to
generate attack traces in O-RAN systems in a simplified manner. The framework is
named ClusterForce and in the following will be referred to as CF-Framework.
To generate attack traces in a Kubernetes environment, the CF-Framework should
provide existing open-source attack tools for attack simulations on Kubernetes by
implementing wrappers of these tools. This allows users to generate traces using
multiple attack tools via the CF-Framework.
The requirements for the CF-Framework are that the architecture is implemented in
a dynamic and scalable way. This means that without significant code changes, the
CF-Framework can be extended with additional attack tools. Furthermore, the it

2

Introduction

should be effectively, user friendly and easy to use.
To achieve this, the wrappers should provide pre-parameterised methods, allowing
users to execute attacks without having to deal with the usage of the attack tool
directly. However, users should also be able to use the attack tools with all the
associated functionality through the CF-Framework.
In addition, to allow for a traceable assessment of attacks, it is necessary that all
attack results are recorded in a database for comparison with logs. Prior to being
written to the database, entries should be categorised according to Mitre, Kubernetes
ATT&CK Matrix and Common Vulnerabilities and Exposures (CVE).
On the one hand, this should be possible by parsing the result for possible categories,
and on the other hand, tools should also be presorted into phases based on the mitre
tactics. If a user executes a tool in a certain phase, this is also used for categorisation.
When using a tool, the CF-Framework must also track metadata in addition to the
attack result. This includes information such as the timestamp of the attack. A
more detailed description of all metadata that will be collected, is presented in the
Section 3.1.3.
Also, the ability to save executed attacks to an template and access them through
the CF-Framework should be possible. This will allow for the generation of specific
traces, such as for testing detection rules.
Furthermore, it should be possible to logically group attacks and assign them to a
campaign. For example a user wants to generate traces on a specific component, he
can start a campaign and all attacks that are executed gets assigned to this campaign.
This assignment to a campaign should also be saved in the database.
Finally, in order to make the deployment of the CF-Framework and the database
user-friendly, a way to automate the deployment has to be provided as well.

1.3. Personal Motivation
As I am interested in cyber security within computer science, specifically in attacking
systems to find vulnerabilities, the bachelor thesis topic provides an opportunity
for further development in this field. The project also involves Kubernetes tech-
nology, widely used in many areas, and O-RAN, a promising technology in mobile
communications. Therefore, it is worthwhile and highly interesting to explore these
technologies as well.

3

Introduction

1.4. Thesis Structure
The thesis is divided into six chapters. The first chapter provides a brief introduction
to the thesis, explaining the initial situation and discussing the topic. The objective
of the project, the thesis, and the personal motivation are then presented. After this
introduction, a short outline of the thesis is given to introduce the central topic.
The second chapter deals with the technical background of the thesis. First, a general
description of all technologies involved in 5G-FORAN is given. Secondly, all relevant
technologies related to the CF framework or the database are described.
In the third chapter, the solution concepts are explained. First, the preparatory work
is discussed, followed by the solution approach for the architecture and automation
of the CF-Framework and the database. After that, the test strategies for testing
the CF-Framework are discussed.
The chapter four presents the implementation of the solution concepts. This includes
the architecture of the CF-Framework with all its associated components, the features
implemented within the CF-Framework, like creating a template or campaign, and
the automation of the deployment of the CF-Framework and its associated database.
Also the architecture of the database will be described.
Chapter five covers the testing of the general functions and attack tools of the
CF-Framework. Additionally, the implemented features and phase categorisation of
attacks are also tested for functionality.
Finally, the chapter Summary and Outlook, the results of the thesis will be summa-
rized. To addition, the future of the CF-Framework in the project, and examples for
further features are given.

1.5. Hints to Syntax
In this section, essential hints to explain the syntax used in the context of this thesis
is defined. The Syntax is used to easily distinguish them from other elements in the
code.

1.5.1. Module and Class Names

Module and class names are presented in bold font. Module names will always
be lowercase, while class Names will always be uppercase. For example: This is a
example module and Example class.

4

Introduction

1.5.2. Methods, Variables, Files, Folder

Methods, varibales, files and folder names are presented in italic font and will always
be lowercase. For example: This is a method, this is a variable, this is a file and this
is a folder

5

2. Technical Background

The following section describes the general and CF-Framework specific technologies
used in the bachelor’s thesis.

2.1. General

2.1.1. 5G

5G refers to the fifth generation of mobile network and is a new global wireless
standard. It is characterised in particular by its higher transmission speeds and lower
latency times. As a result, 5G offers new application possibilities, not only in areas
of critical infrastructure, but also in many areas of everyday life. [8]
These range from faster internet and download times, improved network stability
and real-time control of smart home technology, to near real-time monitoring of
continuous data such as pulse and blood pressure of patients in hospitals.
The overall structure of a 5G system (5GS) can be seen in figure 2.1 below.

Figure 2.1.: General Architecture 5GS [9]

In general, 5GS uses the same components as previous generations. These include
both user equipment (UE) and the two main components of the 5G system, the
next gerneration radio access network (NG-RAN) and the core network (5GC).
As the brain of the 5G network, the 5GC combines both the Access and Mobility
Management Function (AMF) and the User Plane Function (UPF). While the UPF
manages user data, the AMF provides access to the UE and RAN.

6

Technical Background

On the other side the 5G RAN is the link between the UE and the 5GC in a
mobile network. It consists of the Next-Generation Node B(gNB), which controls
communication via the New Radio inferace (NR-Uu). UEs can also connect to the
5G RAN via this interface [3].

2.1.2. Open RAN

Conventional RAN solutions often come from a few large manufacturers such as
Ericsson, Nokia or Huawei. The standards and interfaces of these RAN solutions are
proprietary because these providers often only offer their own hardware and software,
which results in less flexibility. With each new generation of mobile communications,
network operators often have to replace the entire technology, which is associated
with considerable costs.
To counteract this, the O-RAN Alliance was founded with the goal of open O-
RAN implementation. This is intended to promote interoperability by enabling the
integration of components from different manufacturers through the use of open
interfaces. The resulting flexibility will allow network operators to buy equipment
from different vendors and build a customised RAN environment, which will lead to
healthy competition and likely lower costs for RAN equipment [2, page 8-9].
The following figure 2.2 shows the logical O-RAN architecture with its functions and
interfaces.

Figure 2.2.: Logical O-RAN Architecture [10]

7

Technical Background

The key components defined in the figure are:

• Service Management and Orchestration (SMO), which monitors orchestration,
management, and automation of RAN elements.

• Non-Realtime (Non-RT) RAN Intelligent Controller (RIC), which is responsible
for optimizing RAN resources and the use of RAN elements.

• Near-Realtime (Near-RT) RIC, which is responsible for data collection and
control.

• O-Cloud provides the physical infrastructure for RAN network functions.

Furthermore, figure 2.2 displays the nodes defined by the 3rd Generation Partnership
Project (3GPP), a collaboration of telecommunications standardisation organisations:

• O-RAN Radio Unit (O-RU): responsible for the radio transmission.
• O-RAN Distributed Unit (O-DU): responsible for distributed data processing.
• O-RAN Central Unit (O-CU): coordinates centralised control.

The matching interfaces for the nodes that will enable efficient data transmission
and communication in the 5G network are marked in black and green [11].

8

Technical Background

2.1.3. Kubernetes

Kubernetes is an open source system for automating the deployment, scaling and
management of containerised applications. Containers are grouped into logical units
to ensure easy management and discovery [12].
In the O-RAN environment, the management of the containers containing the various
components of the RAN plays a critical role in ensuring smooth operation. To
effectively implement O-RAN, an orchestration tool such as Kubernetes is required
to divide and manage the containers into logical groups called pods. These pods
and containers are then run on a Kubernetes cluster, which provides the necessary
compute resources for execution [13].
Figure 2.3 below shows the structure of an O-RAN environment in Kubernetes.

Figure 2.3.: O-RAN Structure in Kubernetes [Source: 5G-FORAN TH-Köln]

9

Technical Background

The O-RAN components are deployed across two Kubernetes clusters. As shown in
figure, Cluster A comprises the O-RAN components SMO and Non-RT RIC, while
Cluster B contains the Near-RT RIC. Cluster A is deployed on a virtual machine (VM)
that also hosts the Network Topology Simulator (NTS), which facilitates network
function simulation. Cluster B and the E2 Interface Simulator, which facilitates
communication between O-DU and O-CU, are also hosted on a separate VM.

2.1.4. 5G-FORAN Lab Environment

The overall project lab environment is illustrated in figure 2.4.

Figure 2.4.: 5G-FORAN Lab Environment [Source: 5G-FORAN TH-Köln]

The structure of Kubernetes Cluster A and B corresponds to the diagram in figure
2.3. Additionally, there is a separate Kubernetes Cluster C for DFIR specific tools
and a VM Cluster D for attack specific tools. In this thesis, the term Cluster A,
Cluster B, Cluster C, and Cluster D refers to the clusters of the 5G-FORAN Lab
environment displayed in this figure.

10

Technical Background

2.1.5. MITRE ATT&CK Framework

The MITRE ATT&CK is a publicly accessible database that documents real attack
methods and techniques. It serves as a basis for developing customised threat
models and methods. Thanks to the wide acceptance of MITRE, the use of MITRE
ATT&CK has proven to be extremely valuable in the cyber security industry as
well as in the public and private sectors. This is because it helps organisations and
professionals respond to current and emerging threats and optimise their security
strategies [14].
To categorise attacks, MITRE uses ATT&CK tactics and techniques. The CF-
Framework used the following tactics to categorise attacks [15]:

• Reconnaissance: Collect information about the system to be attacked
• Initial Access: Gain access to the network
• Execution: Execution of malicious code
• Persistence: Maintain access to systems across interruptions
• Privilege Escalation: Obtain higher authorisation on the system
• Defence Evasion: Avoidance of detection
• Credential Access: Theft of usernames and passwords
• Discovery: Exploration of the environment of the attacked system
• Lateral Movement: Control of remote systems in the network
• Collection: Collecting critical data
• Command and Control: Control and communication of compromised systems
• Exfiltration: Stealing data from the network
• Impact: Manipulation, disruption or destruction of systems

11

Technical Background

2.1.6. Kubernetes ATT&CK Matrix

The Kubernetes ATT&CK Matrix, created by Microsoft Azure Security Center, is
based on the ATT&CK framework and focuses on the security aspects of Kubernetes
and containerised environments. It contains various attack techniques and tactics
that are relevant for the security of container orchestration systems, especially for
Kubernetes [16].
Figure 2.5 displays the tactics and their associated techniques.

Figure 2.5.: Kubernetes ATT&CK Matrix [17]

A comparison of MITRE’s tactics with those in the illustration shows that the
Kubernetes ATT&CK Matrix does not have all the tactics. The following tactics
from the MITRE ATT&CK framework are relevant for the Kubernetes ATT&CK
matrix:

• Initial Access
• Execution
• Persistence
• Privilege Escalation
• Defense Evasion
• Credential Access
• Discovery
• Lateral Movement
• Collection

12

Technical Background

• Impact

In addition to referencing the MITRE tactics and techniques, Microsoft also employs
its own IDs for each tactic and technique. These IDs are used by the CF-Framework
for categorisation.

2.1.7. Common Vulnerabilities and Exposures

Common Vulnerabilities and Exposures (CVE) was founded in 1999 and is led by
the National Cybersecurity Federally Funded Research and Development Centre
(FFRDC), which is operated by MITRE. It is funded by the US federal government,
including contributions from the Department of Homeland Security (DHS) and the
Cybersecurity and Infrastructure Security Agency (CISA) and is freely accessible to
everyone.
The CVE database contains publicly known information security vulnerabilities.
Each vulnerability is assigned a unique CVE number to facilitate the exchange
of information about cybersecurity vulnerabilities. This creates a standardised
approach for a variety of stakeholders, including vendors, companies and researchers,
to help them plan vulnerability management measures [18]. This leads to wide
acceptance and standardisation of CVE through the CVE number. Because of this
the CF-Framework uses CVE to categorise traces of attacks.

2.1.8. Attacker Perspectives

To ensure a comprehensive attack simulation, it is important to consider various
attacker perspectives, which are specified by the Federal Office for Information Secu-
rity (BSI) [2, page 39-41]. Figure 2.6 illustrates the potential attacker perspectives
and their corresponding requirements.

Figure 2.6.: Hierarchy Attack Perspectives

13

Technical Background

The figure should be understood as a hierarchy from left to right. The outsider,
who can only access publicly accessible interfaces, has the least opportunity to
cause serious damage. The next most dangerous level is a user who is connected
to the network via a user device, followed by the insider and cloud operator. The
term ’insider’ in this context refers to an individual who has access to a RAN
component, such as an employee of the RAN operator. It is important to note that
the RAN operator holds the most powerful attacker role, as it has access to all
RAN components. However, it is also possible for an outsider or user to discover
vulnerabilities that grant them extended rights and greater access. For instance,
an outsider could initially take over an end device and subsequently infiltrate RAN
components from that point.
The attack simulations in this project are conducted from the viewpoint of an O-RAN
operator. As a result, all attacks which are displayed in chapter 5 are restricted to
this particular attacker perspective.

2.2. CF-Framework

2.2.1. MongoDB

During an attack, it is a requirement to collect metadata which should be saved in
a database. The CF-Framework therefore stores all captured data in a MongoDB
instance. MongoDB is an open source NoSQL database that specialises in managing
large volumes of structured and unstructured data. In contrast to relational databases,
NoSQL database like MongoDB are characterised by a high degree of flexibility, as
no predefined schemas are required. Data is stored in documents with key-value
pairs that are structured in collections, which enables flexible data modelling. The
database also uses the BSON format (Binary JSON) to store documents [19].
This type of data modelling is advantageous for the CF-Framework because the data
collected varies greatly when using different open source tools, meaning that it is not
possible to store the data in SQL format. Instead, a NoSQL format must be used to
save the data as a document.

X. 509 Client Certificate Authentication

X.509 client certificate authentication is a secure method for verifying the identity of
a client during communication. The X.509 standard is used, in which clients receive
digital certificates from a trusted certification authority (CA). During authentication,
the client presents its X.509 certificate to the server so that the server can verify the

14

Technical Background

client’s identity using the information in the certificate. This method ensures mutual
authentication and increases general communication security. One advantage of using
MongoDB is that clients do not need to transmit sensitive login information, such
as passwords, during authentication, which increases security. MongoDB supports
X.509 client certificate authentication as one of its authentication mechanisms [20]
and is therefore used to ensure a secure connection between the CF-Framework and
the database.

2.2.2. Ansible

For automated deployment of the CF-Framework on various clusters, the open source
software Ansible is used. Ansible is written in Python, specially developed for IT
automation and enables the configuration of systems, the provision of software and
the orchestration of complex workflows for application deployments and system
updates. Ansible emphasises simplicity, user-friendliness and security and an easy-
to-understand language, with extensive documentation, which makes it possible to
use the software without much prior knowledge [21].

2.2.3. Prompt Toolkit

Prompt Toolkit is a library for creating powerful interactive command lines and
terminal applications in Python, which runs on both Windows and Linux systems.
Because the library offers many functions ranging from auto-suggestion and auto-
compilation to a history of previously entered commands [22], the library gets used
within the CF-Framework to improve efficiency and the usability.

2.2.4. Kubehunter

Kubehunter is an open-source attack tool for identifying security vulnerabilities in
Kubernetes clusters. The aim is to increase security in Kubernetes environments by
improving awareness and visibility of potential vulnerabilities.
In addition, Kubehunter supports the Kubernetes ATT&CK matrix format, which
enables more precise detection of vulnerabilities. Although Kubehunter has defined
its own vulnerabilities, these are still transferred to the Kubernetes ATT&CK matrix
to enable a standardised categorisation of attacks. Because Kubehunter can be
used both outside a cluster to scan vulnerabilities from the outside and inside a
cluster either directly on a host system or as a pod with elevated rights to scan
vulnerabilities from the inside, Kubehunter offers various application options for the
CF-Framework to generate traces.

15

Technical Background

In addition to scanning, Kubehunter offers the possibility of ”active hunting”, which
means not only scanning vulnerabilities but also exploiting them to find further
vulnerabilities, which makes the tool attractive for trace generation [23], and therefore
is implemented inside the CF-Framework.

2.2.5. Kdigger

Kdigger is an open-source attack tool for security research and penetration testing. It
focuses on detecting and analysing Kubernetes systems, enabling the identification of
vulnerabilities and potential security gaps in Kubernetes clusters. Kdigger can analyse
resources such as pods, services and permissions to uncover potential vulnerabilities
in the configuration by collecting information about resources, permissions and
configurations in a Kubernetes cluster through automated queries. The tool provides
a comprehensive view of the security posture of a Kubernetes cluster and thus
offers a solid basis for security-related decisions. With its support in detecting
configuration errors, Kdigger helps to reduce the attack surface and minimise the
risk of security breaches [24]. Because of this, Kdigger is made available for use
inside the CF-Framework.

2.2.6. RedKube

-TODO what are kubectl commands RedKube is an open-source attack tool that
uses kubectl commands, TODO, to assess the security of Kubernetes clusters from a
hacker’s perspective. The commands can either passively collect data and disclose
information or perform active actions that can influence the cluster and change
the state of the cluster. In addition, RedKube provides the collection of kubectl
commands, already categorised according to MITRE ATT&CK tactics, to be used
in active or passive mode. The active mode in particular sets RedKube apart from
other tools because to the aggressive attack mode additional tracks can be generated
[25]. This is why the Usage of RedKube is also possible via the CF-Framework.

16

3. Solution Concepts

The following section explains the solution concepts that form the foundation for
implementing the CF-Framework.

3.1. Preparatory work

3.1.1. Evaluation Architectural Approaches

Two approaches are available for implementing the CF-Framework architecture,
which are shown below.

Feature CLI (Command
Line Interface)

GUI (Graphical
User Interface)

Operating
Mode

Commands in the ter-
minal.

Visual elements (icons,
buttons, windows).

Performance More efficient and
faster.

Requires system re-
sources, may reduce
performance.

Precision Higher precision, gran-
ular control.

Lower precision com-
pared to CLI.

Ease of Use Complex, requires
technical knowledge.

Easy to use, suitable
for beginners.

Table 3.1.: Comparison of CLI and GUI Features

The first option for implementation is as a command line interface (CLI) tool. This
implementation has the advantage that the tools to be integrated are also implemented
as a CLI tool, making integration into the CF-Framework easier. Additionally,
implementation as a CLI tool offers the most flexibility as it can be executed on any
system with a command line and requires fewer resources. One disadvantage is that
visualisation cannot be implemented without a graphical component. Additionally,
the use of the application without a graphical component is only possible via the
command line, which can make it more complicated.

17

Solution Concepts

The second option is to provide access to the CF-Framework over a Grafical User
Interfac (GUI). The advantage of a GUI is that it offers users an understandable
user interface and visual representation through an interactive application but this
requires more memory and processing power, making the GUI slower than CLI. Also
an GUI provides lower precision, functionality, and granular control of the OS [26].

Overall, the flexibility and integration benefits of a CLI tool outweigh those of
a GUI. Despite its higher level of complexity, the CLI tool approach offers the
programmer the greatest potential for implementation of all CF-Framework features,
thus enabling users to generate tracks more effectively. Because of this the CF-
Framework architecture is implemented as CLI tool.

3.1.2. Evaluation Programming language

As the architecture of the tool is implemented as a CLI tool, it is necessary to
consider possible programming languages.
The table 3.2 compares four programming languages: C, C++, Java, and Python.
They are compared, taking into account whether they require a compiler, whether
they are object-oriented, their platform dependency, and their library support [27].

Compiler Style Platform Library
C Compiled

Language
Not ob-
ject ori-
ented

Platform
specific

only small num-
ber of Libraries

C++ Compiled Pro-
gramming lan-
guage

Object
oriented

Platform
dependent

only small num-
ber of Libraries

Java Compiled Pro-
gramming lan-
guage

Object
oriented

Platform-
unaffected

good number of
Libraries

Python Interpreted
Programming
Language

Object
oriented

Platform
indepen-
dent

extensive num-
ber of Libraries

Table 3.2.: Comparison of Programming Languages for CLI Tools

C is a compiled language, which means it needs to be translated into machine
code before execution, resulting in faster execution times compared to interpreted
languages. However, being non-object-oriented, developers need to manually manage
data structures and function interactions. This manual handling can make it more
challenging to implement dynamic architectures that easily adapt to changes. For

18

Solution Concepts

instance, adding new features or modifying existing functionalities in a non-object-
oriented language might involve more extensive modifications throughout the code,
potentially leading to increased complexity and error-proneness. Additionally, the
need for manual memory handling in C adds another layer of complexity, as developers
must explicitly allocate and deallocate memory, increasing the risk of memory-related
errors. Moreover, the limited number of libraries in C might require more effort in
building certain functionalities from scratch, contributing to the overall complexity
of the development process [28].
C++ inherits many characteristics from C but introduces object-oriented program-
ming (OOP) concepts. Similar to C, C++ is platform-dependent, potentially limiting
its portability. The availability of libraries is also somewhat limited compared to
languages like Java and Python [29].
Java is a compiled, object-oriented language that is platform unaffected. The only
requirements is, that the java is installed on the system. However, it has a smaller
number of libraries compared to Python [30].
Python, being an interpreted and object-oriented language, stands out for CLI tool
development. The big advantage, apart from the simple syntax, is the extensive
standard and third party libraries. These libraries cover a variety of use cases and
allow developers to access proven solutions without having to implement everything
from scratch [31].

In conclusion, the CF-Framework is implemented using the Python programming
language. One of the Python libraries used in the CF-Framework is the prompt
toolkit, which supports fundamental CLI Tool functions.

3.1.3. Evaluation Metadata

The metadata consists of all the data that the CF framework writes to the database,
together with the results that are based on the attacks. These are listed below::

• Timestamp of the attack
• output of the attack
• tool version, tool name
• command used for the attack
• ip used in the attack
• host name
• categorization, for mitre, cve, kubernetes attack matrix, phase

19

Solution Concepts

3.1.4. Evaluation of CF-Framework Features

In addition to the possibility of generating traces via the CF-Framework, there are
other features that are to be integrated into the CF-Framework to make the tool
more efficient and user-friendly, which are listed below:

• Database
• Template
• Parser
• Campaign

On the one hand, it is important to store attack data in a database so as not to
lose the knowledge gained. Additionally, it should be possible that, executed attacks
can be saved in a template. This means that when creating a template, all previous
attacks are stored in a bash script that can be accessed from the CF-Framework
menu. On that way a sequence of attacks can be repeated at will to generate traces
quickly, or a particular sequence of attacks can be executed multiple times without
having to execute each attack individually. This technique can also be useful when
testing DFIR tools, as it allows for the creation of test traces without the need for
specific ones. For instance, it can be used to verify the log behaviour of the DFIR
tools.
The results of each attack within the CF-Framework should be filtered for both CVE
entries and the MITRE tactics listed in section 2.1.5. Additionally, attacks should
be mapped to the entries of the Kubernetes ATT&CK matrix if possible. All tactics
and CVEs found are stored as a separate field in the database to provide additional
information on the attack.
In addition to this, the output of the tools have to be analysed to determine whether
it is feasible to implement a parser, based on the output. In the scope of this thesis,
one parser has to be implemented for the tool Kubehunter.
Furthermore, , it should be feasible to merge the listed attacks into a campaign,
which must be stored in a distinct collection within the database. The corresponding
campaign ID for an attack is also saved as a separate field along with the metadata.

20

Solution Concepts

3.1.5. Evaluation of Automation Framework

To automate the CF-Framework and database deployment the three automation
frameworks Chef, Puppet and Ansible get compared below, for key difference:

Criteria Chef Puppet Ansible
Complexity Moderate Moderate Low
Setup and Installa-
tion

Agent-based Agent-
based

Agentless

Scalability Good Good Good

Table 3.3.: Key Differences between Chef, Puppet, and Ansible

Firstly, Chef stands out for its notable flexibility in configuration management and
good scalability. However the framework is considered more complex than Ansible for
example. This is primarily due to its agent-based setup, which requires the installation
of software agents on managed nodes to enable continuous communication with a
central server for configuration management.
Secondly, Puppet shares similarities with Chef, boasting scalability and flexibility. It
also comes with a agent-based setup, which adds additional complexity.
Lastly, Ansible shares scalability and flexibility with the other two frameworks.
However, it distinguishes itself from them by its simplicity, which is based on the
agent-less setup. With the agent-based setup, systems can be managed without
requiring the installation of software agents on the target nodes, communicating
directly through SSH [32].

In conclusion, since all frameworks provide scalability and flexibility, but Ansible
stands out, due its lower complexity. This means that less time needs to be spent
learning the frameworks and more time can be spent on implementing the automation.

21

Solution Concepts

3.2. Framework Architecture

3.2.1. General Architecture

To implement the CF-Framework, it is necessary to plan the architecture carefully,
considering all the functions and features that need to be implemented. The archi-
tecture should be designed with scalability in mind, allowing for the integration of
further open source tools, and with code efficiency as a priority, avoiding redundant
code as much as possible. Figure 3.1 illustrates the basic architecture of the CF-
Framework. The diagram displays only the modules, which are logical entity’s, that
contain python files, which perform a specific task, and their inter-dependencies. The
detailed Framework Architecture with the modules and classes in combination can
be seen in appendix A.

Figure 3.1.: Framework general Architecture

The architecture’s central control is the controller module, highlighted in red at
the figure’s centre and it manages the prompt and user input. The Prompt Toolkit
library inside the external module, shown in grey and green in the figure, is used
to manage the prompt. If the input is a general command, such as exiting the
CF-Framework, the controller module handles the processing. However, if the input
is related to menu navigation within the CF-Framework, it is transferred to the
menu. The menu module utilizes the input and returns a status. Similarly, for
tool-specific inputs, the user input is transferred to the tool module, utilized, and
a status is returned to the controller module. So the state can be either of type
Tool or Menu. The corresponding module state, contains all possible states and is
highlighted in purple in the figure. To make this more clear, if the last input was

22

Solution Concepts

specific to a tool, the controller module receives the next state, from the last tool
used. With this new state it knows where the new input has to be transferred to be
handled.
To realise the features of template and campaign, the controller module uses the
modules automation and campaign, shown in yellow in the figure.
Additionally, both the controller module and the tool module use the environment
module, shown in blue in the figure, to manage the metadata generated during use of
the CF-Framework. Here, the focus of the ’controller module is primarily on reading
the metadata, while the tool module both stores metadata in the environment
module and reads metadata in order to write it to the database after a successful
attack. This is realised by using the database module, also shown in blue in the
figure. More precisely, the database module provides a connection to the database
and controls the interaction between the CF-Framework and the database.

23

Solution Concepts

3.2.2. Controller

The structure of the controller module in conjunction with the external module is
illustrated in figure 3.2.

Figure 3.2.: Structure of the controller module in conjunction with the external module

The controller module consists of four classes. The actual control unit of the
module is the MenuStateMachine class, which contains both the current state
of the CF-Framework and also an instances of the AttackGenerator class, from
the automation module, and Campaign class, from the campaign module. The
PromptInput class is used to manage the prompt. This is based on the Prompt
Toolkit and is intended to provide both an input history for user-friendliness and
the option of automatically completing the content that has already been entered.
For this purpose, the PromptInput class uses both the FileHistory class and the
WordCompleter class, which are also based the Prompt Toolkit library.

24

Solution Concepts

3.2.3. Tool

The structure of the tool module is shown in figure 3.3.

Figure 3.3.: Structure of the tool module

The tool module passes user input to the abstract base class Tool, which declares
and implements all variables and methods that span across tools. Additionally,
it defines abstract variables and methods that are implemented by inheriting tool
Subclasses. For instance, each tool must implement a method to verify if it has
already been installed or if it still needs installation. The handle_user_input()
method utilizes the received user input.
In the module there are separate modules for each implemented tool, consisting of a
Subclass, a wrapper class, an environment class for tool-specific parameter, and, if
possible, a parser class. The Subclass inherits from the Base class and handles user
input through the wrapper class. The Wrapper class implements the corresponding
tool using the tool-specific parameters stored in the Environment class.

25

Solution Concepts

Both the wrapper classes and the environment classes, from each tool, inherit from
the base class Wrapper and LocalEnv, which implement overarching commonalities
within these classes.
During the course of the thesis, there are three tools that have got implemented,
which are listed below.

• Kubehunter
• Kdigger
• RedKube

The structure of these tools differs only in terms of naming, which is why the on the
figure only the Kubehunter tool is illustrated fully.
The class Kubehunter is the subclass of the base class Tool, which uses an instance
of the class KubehunterWrapper and KubehunterEnv, to handle the user input
and execute an attack if necessary.

26

Solution Concepts

3.2.4. Menu

Figure 3.4 is an illustration of the menu module structure.

Figure 3.4.: Structure of the menu module

As with the tool module, the menu module defines methods and variables for each of
the menu classes in an abstract base class. There are two menu submodules in total:
startmenu and phase, which are logically separated. The startmenu submodule
contains all the classes that the CF-Framework can accept after it has been started.
The phase submodule contains all the classes that need to be implemented for the
attack phase state.
When the CF-Framework is started, the subclass Start is used to handle the user

27

Solution Concepts

input. The , which menu for the Start subclass is displayed on the console. From
here, the user has the following selection options:

• Attackphase
• Tools
• Demo
• Environment
• Reporting
• Config
• Container

Once an option is selected, the user is directed to the next menu and the state is set
based on their input. If Tools is chosen, an overview of all available tools will be
presented. If Demo is selected, all available templates to run an one click Attack,
will be displayed. If Attackphase is selected, the user will be taken to the next
menu phase. Here, one of the thirteen available MITRE phases can be chosen, which
can be seen on the right in the phase submodule. After selecting a phase, a list of
tools for that phase will be displayed. The following figure 3.5 illustrates an example
Menu cycle.

Figure 3.5.: Example menu run

The menu starts in the Start state. To enter the Attack phase, the user selects the
Attack phase option from the menu, which takes them to the Attack phase state.
Here, they can choose the MITRE Phase Initial Access and view all the tools available
for Initial Access. The user selects the Kubehunter tool and moves from the menu
state to the Kubehunter state, which is a tool-specific state. The CF-Framework
remains in this final state until the user is finished with the tool.

28

Solution Concepts

3.2.5. Database

The database module contains the MongoDBWrapper class, which can be seen
in the following figure 3.6

Figure 3.6.: Structure of the database module

The MongoDBWrapper class provides all the necessary methods for interacting
with the database. This means that both the connection setup and reading and
writing from and to the database are implemented in this class.

3.2.6. State

Figure 3.7 below shows the state module, which contains the menu state class.

Figure 3.7.: Structure of the state module

All possible states should be defined within this class. This means that each tool
and menu class has its own defined state, which is recorded in Menustate class and
which the CF-Framework can use to determine which state it is currently in.

29

Solution Concepts

3.2.7. Environment

The environment module comprises of two classes: the Environment class, where
all metadata are defined, and the GlobalVariables class, as illustrated in figure 3.8.

Figure 3.8.: Structure of the environment module

The GlobalVariables class stores the fundamental global variables of the CF-
Framework, including the current state and metadata. Through the GlobalVari-
ables class all modules that require information about the state or metadata can
gain access to the information.
The Environment class defines all metadata, which are defined in 3.1.3. These can
be seen in below:

• The time of the attack (timestamp)
• The resulting output of an attack, both in raw (output_raw) and parsed state

(output_parsed), the format of the return (output_format), for example plain
text or JSON and the result code, i.e. whether an attack was successfully
executed or not (output_code).

• The information about the executed tool, i.e. the last executed command
(tool_command), the name of the tool (tool_name) and the version (tool_-
version).

• The IP (host_ip) and the host name (host_name) of the host system.

30

Solution Concepts

3.2.8. Features

In order to provide the features defined in 3.1.4 in the CF-Framework, all necessary
classes are implemented in the module automation and campaign. Figure 3.9
shows the AttackGenerator and Template classes on the left-hand side, which
together implement the template feature.

Figure 3.9.: Structure of the feature modules automation and campaign

The Template class contains a list of all templates used by the AttackGenerator
class to ensure that a newly generated template does not already exist. If this is not
the case, the attack generator creates the new template.
On the right-hand side of the figure is the Campaign class, which implements the
campaign feature, by containing methods to creating and starting a campaign using
the start() method and ending this campaign and writing it to the database using
the end() method.

31

Solution Concepts

3.3. Database Architecture
The database architecture was carefully planned to ensure that data from the CF-
Framework is stored in a structured and clear manner. Figure 3.10 illustrates the
database architecture connected to the CF-Framework.

Figure 3.10.: Database Architecture

Within the MongoDB instance, two databases should be created to separate database
entries that are created during testing of the CF-Framework from database entries
that are created during trace generation in connection with the DFIR tools. The
Production (PROD) database should be used for active track generation, while
the Development (DEV) database is used when testing the CF-Framework. The
schema of the PROD and DEV database is the same. Both databases consist of
three collections.
The first collection artifacts-raw, which stores all the metadata as a document. In
addition to the metadata, an entry in this collection can also contain a campaign ID
if the entry was executed during a campaign. This campaign ID refers to the ID of
the entry in the artifacts-campaign collection.
A created campaign is saved here as a document and contains the name and time of
the start and end of the campaign, which is the second collection.
In the third collection, the processed data is written, which includes the phase of the
attack, as well as a CVE number and reference to MITRE tactics and techniques. In
addition, an artifacts raw ID within the document in the artifacts-parsed collection
also refers to the corresponding document in the artifacts-raw collection from which
the processed data originates.

32

Solution Concepts

3.4. Automation
When changes are made to the implementation of the CF-Framework or the database,
it is important to update the versions running on the clusters. To automate this
process and avoid manual updates on the clusters, a way of automating must be
provided. For this the automation framework Ansible is used. The process of
automation can be seen in the following figure 3.11.

Figure 3.11.: Framework and Database Automation with Ansible

The figure is divided into two areas. The yellow-blue box represents clusters A and
B, on which the O-RAN environment and the CF-Framework are deployed, while the
green box shows attack cluster D, on which the database instance and the Ansible
automation tool is running. Cluster D manages the automation with Ansible by
updating both the database locally and the CF-Framework remotely on clusters A
and B as required. To do that, Ansible retrieves the current version from Github
and overwrites the old CF-Framework version with it.

33

Solution Concepts

3.5. Test strategy
Testing is divided into four areas. Firstly, the CF-Framework is tested for basis
functionality. To do this, two use cases are to be tested: navigating through the
menu and interacting with the metadata, including setting and retrieving it.
Secondly, follows a proof of concept testing, where Kubehunter is tested for function-
ality by looking at essential features such as setting parameters, executing an attack
and evaluating the result in the database.
Thirdly, the features template, campaign and the execution of an attack in the
context of a phase are tested. To do that all possible applications of the features,
such as their commands for execution, are carried out and the result is analysed for
completeness.
Fourthly, it should be possible to execute Tools, which are pre-mapped to a certain
attack phase, so that the attack is also classified directly into one of the phases
described in the section 2.1.5 in addition to the classification generated by the parser.
This is tested by executing a tool over the menu entry attack phase, where the tools
for the phases are listed, and checking the entry in the database.

34

4. Implementation

The implementation of the CF-Framework described below was done in collaboration
with Jonas Arn Dieterich. While the architecture of the CF-Framework was mainly
implemented in the context of this thesis, he implemented most of the tools provided
by the CF-Framework. Some of the tools implemented by him can be seen in some
of the figures, but are not part of this thesis and therefore will not get explained.
Furthermore, the presented listings of the classes and methods are comprimised on
the fundamental functions.

4.1. Framework Architektur

4.1.1. Controller

To implement the controller module as described in 3.2.2, four classes have been
implemented. Figure 4.1 shows the Python files belonging to the controller module.
In addition, there is the file __init__.py, which is responsible for Python treating
the directory as a module.

Figure 4.1.: Controller module - Files

The files contain the ConditionalFileHistory, CustomWordCompleter,
MenuStateMachine, and PromptInput classes. Since the
CustomWordCompleter and ConditionalFileHistory classes only provide part
of the PromptInput class’s library, they will be not mentioned further. The

35

Implementation

PromptInput and MenuStateMachine classes are explained in more detail
below.

PromptInput

The listing 4.1 displays a part from the PromptInput class, with the get_in-
put(prompt_text) method. The prompt_text parameter defines the text preceding
the input field, indicating the user’s location in the menu. The default value for
CF-Framework start is (START). For instance, if the user navigates from the Start
menu state to Tools, the prompt_text changes to (START/TOOLS).

1 class PromptInput :
2 def __init__ (self):
3 self. completer = None
4 self. history = None
5

6 def get_input (self , prompt_text):
7 if self. history is not None:
8 # Tools
9 session = PromptSession (

10 history =self.history ,
11 completer =self.completer ,
12)
13 else:
14 # Menu
15 session = PromptSession (
16 completer =self.completer ,
17 complete_style = CompleteStyle . READLINE_LIKE ,
18)
19

20 return session . prompt (prompt_text)

Listing 4.1: PromptInput class

The method initially verifies whether the class has a history object of the Condi-
tionalFileHistory class. This is true when the CF-Framework is in the state of
a tool. When a tool is executed, the entered commands for the tool are saved so
that they can be executed again using the up and down arrow keys. Therefore, if
an history object is available, a session object is created that supports a command
history. However, if the CF-Framework is in the Menu state, a command history
is not necessary, and the session object is created without a history. Despite this,
Session includes a completer, which is an object of the CustomWordCompleter
class, to provide the functionality to complete predefined keywords via the tab key.

36

Implementation

Finally, the method returns the corresponding session, which is displayed by the
MenuStateMachine class, which is explained below.

MenuStateMachine

Listing 4.2 below shows the implementation of the MenuStateMachine class with
the class variables.

1 class MenuStateMachine :
2 def __init__ (self):
3 self. current_state = Start ()
4 self. global_var = GlobalVariables . get_instance ()
5 self. prompt = PromptInput ()
6 self. attack_generator = AttackGenerator ()
7 self. campaign = Campaign . get_instance ()

Listing 4.2: MenuStateMachine class - Variables class

As shown in the listing, the first variable is current_state (line 3), which stores the
current state of the CF-Framework. Next the class contains the variable global_var,
so the class can access the current metadata. In addition, the class contains the
variable prompt, which provides the session associated with the state. Finally, it
contains the variables attack_generator and campaign, to provide the template and
campaign feature.
The class contains the method run(), which is responsible for running the CF-
Framework and divides the incoming tasks, based on the user input to the right
modules. The method is displayed on the listing 4.3 below.

1 def run(self):
2 try:
3 while True:
4 # Completer
5 self. prompt . set_completer (self. current_state .
6 completer)
7 # History
8 self. prompt . set_history (self. current_state . history)
9 # User Input

10 user_input = self. prompt . get_input (helper .
11 create_cursor ())
12 # Handle Input
13 if user_input .strip () == "exit":
14 elif user_input .strip () == " template ":
15 self. attack_generator . generate_script ()
16 elif re. search (r’\ bcampaign \b’, user_input):
17 try:

37

Implementation

18 value = user_input .split(" ", 1)[-1]
19 if value.strip () == "info":
20 self. campaign . print_menu ()
21 elif value.strip () == "start":
22 self. campaign .start ()
23 elif value.strip () == "end":
24 self. campaign .end ()
25 else:
26 new_state = self. current_state .
27 handle_user_input (user_input)
28 # Check if new state is a Tool
29 if isinstance (new_state , tool.Tool):
30 # Check tool is installed
31 if not new_state . check_requirements ():
32 print(" Install Tool first")
33 else:
34 self. current_state = new_state
35 else:
36 self. current_state = new_state

Listing 4.3: MenuStateMachine class - Run method

Inside the method, first the completer and the history from the current state are
set. With that the prompt variable executes the get_input() method (Listing 4.1),
to create the prompt where a user can enter the commands. When a command is
entered, the user input is tested for some standard commands such as exit, to close
the CF-Framework, template and campaign. When the user entered a command
for navigating through the menu, or using a tool, the else condition in line 25 is
reached. Now the user input must be be evaluated by the corresponding state class.
Each state class has implemented the handle_user_input() method for this purpose,
which evaluates the input and returns the new state based on the evaluations (line
26-27). After receiving the new state, it is necessary to check whether its a tool or
menu. When it is a tool, its necessary to check if the tool which the user wishes to
access is installed on the system (line 29). At the end the current_state is updated
with the new state (line 34 -36)

4.1.2. Tool

Figure 4.2 shows the tool module, which contains all implemented tools as separate
subfolders.
The base_classes subfolder has three files: local_env, tool_base, and wrapper_base.
Each file contains the base classes LocalEnv, Tool, and Wrapper, which are

38

Implementation

Figure 4.2.: Tool module - Files

described in 3.2.3. The subfolders for the tool implementations of Kubehunter, Red-
Kube, and Kdigger each contain a bash script to install the tool itself. Additionally,
they contain their subclass of the base class LocalEnv, Tool, and Wrapper. The
Kubehunter subfolder is also supplemented by the kubehunter_parser file, which
includes an initial parser implementation. Since the tool implementations only differ
in terms of content and not implementation, Kubehunter is used to explain the tool
implementation with all the necessary classes and files.

LocalEnv Base class

Listing 4.4 displays the implementation of the LocalEnv Base class. It includes
two crucial methods: set_variable_from_input() and to_json(). The set_variable_-
from_input() method sets all local parameters when a user wants to change them,
while the to_json() method transforms all values into a json object, in order to be

39

Implementation

safed to the database.
1 class LocalEnv ():
2 def set_variable_from_input (self , user_input):
3 command , variable , value = user_input .split(" ", 2)
4 new_var = self. translate_variable (variable)
5 # Check if Variable exists
6 if hasattr (self , new_var):
7 # Set Variable
8 setattr (self , new_var , value)
9 return True

10 else:
11 return False
12

13 def to_json (self):
14 data = {}
15 for attr_name , attr_value in self. __dict__ .items ():
16 key = attr_name . lstrip (’_’)
17 if attr_value is not None:
18 data[key] = attr_value
19

20 return data

Listing 4.4: LocalEnv Base class

To set the parameters the method set_variable_from_input(user_input) receives
the user input. The method uses the user input and attempts to set the tool-specific
parameter, Finally, the method determines if the variable to be set exists in the
corresponding subclass by calling hasattr (line 6). When that is the case, the variable
gets set below with setattr (line 8).

KubehunterEnv subclass

The following listing 4.5 displays the Kubehunter subclass KubehunterEnv for the
base classLocalEnv.

1 class KubehunterEnv (LocalEnv):
2 def __init__ (self):
3 super (). __init__ ()
4 self. _log_level = None
5 self. _active_mode = " passive "
6 self. _quick = False
7 self. _report = "json"
8 self. _mapping = False
9 self. _statistics = False

40

Implementation

10 self. _subnet = "/24"

Listing 4.5: KubehunterEnv subclass - Parameter

Inside the subclass all Variables are defined, that can be set by an user via the inherit
set_variable_from_input(user_input) method. For the subclass KubehunterEnv,
an user can set these seven tool specific parameters. As default only the variable
active_mode, report and subnet are initialised by the CF-Framework.

Wrapper Base class

The listing 4.6 below shows the implementation of the Wrapper base class.
1 class Wrapper ():
2 def _execute_command (self , cmd , sudo=False , cwd_path =None):
3 # Execute Command
4 output = subprocess .Popen(
5 split_cmds ,
6 cwd= cwd_path ,
7 stdout = subprocess .PIPE ,
8 stderr = subprocess .PIPE ,
9 text=True ,

10 bufsize =1,
11 universal_newlines =True
12)
13 # Thread usage , to display output in realtime
14 output_lock = threading .Lock ()
15 error_lock = threading .Lock ()
16 error_thread = threading . Thread (...)).start ().join ()
17 output_thread = threading . Thread (...)).start ().join ()
18

19 output .wait ()
20

21 # Safe Output
22 captured_output = ’’.join(captured_output_lines)
23 captured_error = ’’.join(captured_error_lines)
24

25 return Output (captured_output , captured_error ,
26 output . returncode)

Listing 4.6: Wrapper Base class class

It provides the subclasses with the method _execute_command(), which evaluates
and executes the tool specific command. The standard library subprocess integrated
in Python is used for this, which executes commands on the command line (line 4-12).
To smoothly display the output of the tool, threads are used, which process this task

41

Implementation

in the background, so the prompt is not freezing in the meantime (line 13-23). On
this way the experience of using the tool in the CF-Framework corresponds to the
experience of using the tool outside of the CF-Framework.

KubehunterWrapper subclass

The following listing 4.7 presents the implementation of the KubehunterWrapper
subclass, which is based on the Wrapper base class.

1 class KubeHunterWrapper (Wrapper):
2 def __init__ (self ,env):
3 self. command = ’kube - hunter ’
4 self.sudo = False
5 self.env = env
6 # Info
7 def help(self):
8 cmd = [’--help ’]
9 return self. _execute_command (cmd ,False)

10

11 # Scans
12 def remote_scan (self):
13 cmd = [’--remote ’]
14 return self. _execute_command (
15 self. _build_command (cmd , log_level =True ,
16 active_mode =True , << other FLAGS >>)))
17 def cidr_scan (self):
18 cmd = [’--cidr ’]
19 return self. _execute_command (self. _build_command (
20 cmd , <<FLAGS >>))
21 def interface_scan (self):
22 cmd = [’--interface ’]
23 return self. _execute_command (self. _build_command (
24 cmd ,<<FLAGS >>))
25 def pod_scan (self):
26 cmd = [’--pod ’]
27 return self. _execute_command (self. _build_command (
28 cmd ,<<FLAGS >>))

Listing 4.7: KubehunterWrapper subclass - Variables and pre-parameterised methods

42

Implementation

As can be seen in the listing, the subclass has the following three variables:

• final_command, includes the shortcut to invoke the tool on the command line,
in this case kube-hunter

• sudo, specifies whether a tool should be executed with highest privileges
• env, contains the LocalEnv subclass, to access the current parameters and flags

In addition to the variables, the subclasses always provides a help method. This
implements the help or info command of the tools. This way, if a user wants to
enter commands in addition to the pre-parameterised methods, he can display all
options, which can be used for the tool. Furthermore, the subclass provides the
pre-parameterised methods:

• remote_scan(), scans a cluster from outside for initial information
• cidr_scan(), scans a specific range of hosts, specified with the flag subnet
• interface_scan(), scans all network interfaces available
• pod_scan(), creates a privileged pod inside the cluster to scan.

To build the command, for the pre-parameterised methods, the _build_command()
method is used inside of _execute_command() method. As parameter all, predefined
flags are also transferred, which in the listing is marked as «FLAGS». The _build_-
command() method can be seen in the following listing 4.8.

1 def _build_command (self ,cmd , <<FLAGS >>):
2 if log_level :
3 if self.env. get_log_level () in ["info","warn","debug"]:
4 cmd. extend ([’--log ’, self.env. get_log_level])
5 if active_mode :
6 if self.env. get_active_mode () == " active ":
7 cmd. append ("--active ")
8

9 # Further Flags
10 ...

Listing 4.8: KubehunterWrapper subclass - Build command

The function of the method is explained using the two flags active_mode and log_-
level. At the start, the method checks the pre-parameterised flags to determine how
the command should be executed, by examining the flags passed in the if-conditions.
When the flag is set, the next step is to check the value stored for the parameter in
the associated LocalEnv class. If the user has not changed the value yet, it remains
in the default configuration. However, if they want to execute the pre-parameterised
method with a different value, they must adjust the parameter value via the console.

43

Implementation

For instance, if a user specifies a log level that matches the requirements, i.e. has
a value of info, warn or debug, the command will set the log level flag with the
specified value. The same process is used for the active_mode flag. Since the default
value of Kubehunter for this flag is passive, the flag gets added, when the flag is set
by the user as active.
The building of an command is explained using the remote_scan() method with
the flag log_level. On the listing 4.7 inside the method, the –remote flag set (line
14). The default value for the log level is none, as displayed in the listing 4.5, but
if the user sets it to info, –log info will be added to the command and would be
like –remote –log info. This way the command is constructed step by step with the
parameters in LocalEnv. Finally, the method returns the complete command to
the _execute_command() method, and the command gets executed.

Tool Base class

The Tool base class contains shared methods and variables for all implemented tools,
as well as abstract methods that must be implemented in each tool’s class. The
listing will focus on the most important variables, the method for utilizing user input
and inserting an attack into the database.

Variables

The most important variables are display in the listing 4.9.
1 class Tool(ABC):
2 def __init__ (self):
3 # Global Variable Instance
4 self. global_var = GlobalVariables . get_instance ()
5 self. global_env = self. global_var . get_env ()
6 # Template
7 self. template = Template (). get_instance ()
8 # Campaign
9 self. campaign = Campaign . get_instance ()

10 # Parser
11 self. parser = None
12 # DB
13 self.db = MongoDBWrapper (self. global_var . get_base_dir () +
14 " database / config .ini")
15 # Commands
16 self. command_mapping = None

Listing 4.9: Tool Base class - Variables

44

Implementation

The global variables global_var and global_env are particularly important, because
they give access to the metadata or the status of the CF-Framework.
The next two variables, template and campaign, are used to implement the features
of template generation and interaction with campaigns. Both variables are declared
as singleton objects, which is a design pattern that ensures only one object of a class
exists. In order to access the singleton object the get_instance() method is called, so
all classes always access the same state and the same metadata values.
In order to guarantee access to the database, the class also includes the variable db
which is an object of the database wrapper class.
The final variable, command_mapping, is a dict, which stores data in key:value pairs
[33], that must be implemented by each tool subclass. The key is the user input and
the value is the associated method, which needs to be executed.

Methods

In addition to the variables, the class provides the handle_user_input() method to
handle the user input, as shown in listing 4.10.

1 def handle_user_input (self , user_input):
2 if user_input .strip () == "menu":
3 self.menu ()
4 elif re. search (r’\bset\b’, user_input):
5 self. local_env . set_variable_from_input (user_input)
6 elif user_input .strip () == " options ":
7 self. settings ()
8 else:
9 if user_input in self. command_mapping_db_ignore_db :

10 # handle help comands
11 self.out = self. command_mapping_db_ignore_db
12 [user_input]()
13 elif user_input in self. command_mapping :
14 # handle every case thats executes attack
15

16 # set timestamp start
17 self. global_env . set_timestamp_start (helper .
18 get_current_timestamp ())
19 self.out = self. command_mapping [user_input]()
20

21 # Evaluate Output
22 if self.out:
23 # set timestamp end
24 self. global_env . set_timestamp_end (helper .
25 get_current_timestamp ())

45

Implementation

26 # set result code
27 if self.out. return_code is not None:
28 self. global_env . set_result_code (self.out.
29 return_code)
30

31 # handle output
32 if self.out. return_code == 0:
33 # add to template
34 self. template . add_to_result_list (
35 Result (<<METADATA >>))
36 # insert output into database
37 self. database_insert ()
38 return self

Listing 4.10: Tool Base class - Handle user input

The method filters the input to determine whether the user wants to display the
menu, options, or configure the tool specific parameters. It does this by checking for
the keywords menu, options, and set. If none of these are entered, there are only two
other possibilities. The user can call up a pre-parameterised method by entering a
command.
Alternatively, the user can enter his own command to use the tool independently
of the pre-parameterised method. The pre-parameterised methods are divided into
two categories: commands that are helping commands like help (line 9-12) and those
that execute an attack and therefore are written to the database (line 13-37). In
both cases, an command_mapping dict gets provided with a keyword, so that the
correct method can be found and executed.
To handle an executed command for an attack, first, the time at which the command
was executed is saved. After that the command is executed and the output is saved
to the variable out (line 19). Next, the variable is evaluated (line 22), the time is
stopped (line 24-25), and the result code is saved (line 28-29). If the command is
successful, the result code will be 0. In this case, all metadata resulting from the
attack will be saved in the database (line 27-37).
To accomplish this, the method database_insert() is executed, as shown in listing
4.11.

1 def database_insert (self):
2 # connect
3 self.db. connect_db (" collection ")
4 # set Metadata
5 self. global_env . set_command (self. wrapper . final_command)
6 self. global_env . set_file_output_raw (self.out. captured_output)
7

46

Implementation

8 # check if tool has parser
9 if self. parser is not None and self. global_env .

10 get_file_format () == "json":
11 self. parse_output ()
12

13 metavalues = self. global_env . to_json (output =True)
14

15 # add campaign
16 if self. campaign . get_id ():
17 metavalues [" campaign_id "]= self. campaign . get_id ()
18

19 # Insert
20 metavalues . update (self. local_env . to_json ())
21 self.db. insert_document (metavalues)
22 self. global_env . set_variable_to_default (
23 self. global_env . translate_variable (" file_output_raw "))
24

25 # Close Connection
26 self.db. close_connection ()

Listing 4.11: Tool Base class - Insert into database

The method first establishes a connection to the database (line 3). After that the
metadata get collected (line 5-6). When the tool, in which the attack got executed,
provides a parser, the output gets parsed and added to the metadata (line 9-11). Is
the attack part of a campaign, the campaign ID also gets added as a field to the
metadata (line 16-17). At the end all accumulated information gets inserted into the
database, by using he insert_document() method of the db variable (line 20-23), and
the connection to the database is closed (line 26).
Additionally, the base class, defines three abstract methods that must be implemented
by every subclass, which are shown in the listing 4.12.

1 @abstractmethod
2 def check_installed (self):
3 pass
4

5 @abstractmethod
6 def install_tool (self):
7 pass
8

9 @abstractmethod
10 def tool_version (self):
11 pass

Listing 4.12: Tool Base class - Abstract Methods

47

Implementation

Method check_installed is used to check whether a tool is installed, method install_-
tool is used to install the tool, and tool_version, to display to current version of the
tool.

Kubehunter subclass

The Kubehunter subclass is based on the Tool base class and evaluates user input
for the Kubehunter tool. The subclass contains all variables and methods to handle
user input for Kubehunter.

Variables

The variables are displayed in the following listing 4.13.
1 class Kubehunter (Tool):
2 def __init__ (self):
3 super (). __init__ ()
4 # Wrapper , LocalEnv , and Parser subclasses
5 self. local_env = KubehunterEnv ()
6 self. wrapper = KubeHunterWrapper (self. local_env)
7 self. parser = KubehunterParser ()
8

9 # Command Mapping
10 self. command_mapping = {
11 " remote ": self. handle_remote ,
12 "pod": self.handle_pod ,
13 "cidr": self. handle_cidr ,
14 " interface ": self. handle_interface ,
15 }
16 self. command_mapping_ignore_db = {
17 "--help": self. handle_help ,
18 "help": self. handle_help ,
19 "--list": self. handle_list ,
20 "list": self. handle_list ,
21 }
22 # Prompt
23 self. history = ConditionalFileHistory (self. global_var .
24 get_base_dir () + " history /. prompt_history_kubehunter ")

Listing 4.13: Kubehunter subclass - Variables

In general, each subclass includes a variable that accesses tool-specific parameters
via a LocalEnv subclass (in this case, KubehunterEnv, line 5), a variable assigned
to the corresponding wrapper class (in this case, KubehunterWrapper, line 6) to
interact with the tool and execute commands, and, if possible, a variable for the

48

Implementation

corresponding parser class (in this case, KubehunterParser, line 7) to parse the
results.
In addition, each tool contains the variables command_mapping (line 10-15) and
command_mapping_ignore_db (line 16-20), which contains methods for the user
input. For example when the user enters the command remote, the command gets
handed down to the command_mapping dict as keyword. Does such a keyword
exist, the dict calls the corresponding method. In this case, it would be the method
handle_remote.

Methods

The handle_remote method is one of the four methods, that are implemented for
handling all pre-parameterised commands and is shown in the following listing 4.14.

1 # Abstract Methods
2 def check_installed (self):
3 try:
4 subprocess . check_output ([’kube - hunter ’, ’--help ’])
5 return True
6 except FileNotFoundError :
7 return False
8

9 def install_tool (self):
10 subprocess .call (["bash", self. global_var . get_base_dir () +
11 "tools/ kubehunter / install_kubehunter .sh",
12 self. global_var . get_base_dir (),
13 self. global_var . get_tool_dir ()])
14

15 def tool_version (self):
16 return "0.6.8"
17

18 # InputHandle Methods
19 def handle_remote (self):
20 return self. wrapper . remote_scan ()
21

22 def handle_pod (self):
23 return self. wrapper . pod_scan ()
24

25 def handle_cidr (self):
26 return self. wrapper . cidr_scan ()
27

28 def handle_interface (self):
29 return self. wrapper . interface_scan ()

Listing 4.14: Kubehunter subclass - Methods

49

Implementation

Additionally, the subclass contains also the method handle_pod, handle_cidr and
handle_interface to handle the other four pre-parameterised commands. Inside of
the methods, the corresponding method, which are shown in the listing 4.7, gets
executed.
Furthermore, each subclass must implement three abstract methods as specified by
the base class. These methods as well as the methods to handle the user input are
shown in the listing 4.12. To implement the check_installed method, the Kubehunter
help command gets executed. When the command is successfully, the tool is installed.
The next abstract method is the install_tool method. The installation commands are
defined in the script install_kunehunter.sh. The third abstract method tool_version
returns the current tool version. In this case the current Kubehunter version is 0.6.8.

KubehunterParser class

The structure of the parser class with its variables and methods is shown in listing
4.15.

1 class KubehunterParser :
2 def __init__ (self):
3 self.data = None
4 self. mapping = {
5 " generalsensitiveinformation ": {" TA0001 ": ""},
6 " exposedsensitiveinterfaces ":
7 {" TA0001 ": ["T1133", "MS - TA9005 "]},
8 ...
9 }

10

11 def parse_vulnerabilities (self):
12 vulnerabilities = self.data.get(" vulnerabilities ", [])
13 val = set ()
14 for vulnerability in vulnerabilities :
15 subcategory = None
16 if vulnerability .get(" category "):
17 if len(self. split_and_clean (vulnerability .
18 get(" category ")))==2:
19 subcategory = self. split_and_clean (
20 vulnerability .get(" category "))[1].
21 replace (" ", "").lower ()
22

23 val.add(self. get_info (subcategory))
24

25 mitre = []
26 cve = []

50

Implementation

27 for item in val:
28 ta_number , ta_value1 , ta_value2 , cve_identifier = item
29 mitre. append ({ ta_number : [ta_value1 , ta_value2]})
30 cve. append (cve_identifier)
31 return mitre , cve

Listing 4.15: KubehunterParser class

The class consists of two variables: data, which contains the data (line 3) for the
result, and mapping (line 4-9), which provides a dict for mapping keywords to CVE
and MITRE.
In addition, the class contains the method parse_vulnerabilities to evaluate the data
using the dict in the mapping variable. The result is searched for certain keywords
and the corresponding MITRE and CVE entries are extracted from the data and
returned.

51

Implementation

4.1.3. Menu

Figure 4.3 shows the module menu with the two subfolders phase and startmenu.
In addition, the base class is contained in the menu_base.py file. Each class in the
subfolders represents a state that the menu can have. The implementation of the
base class and the implementation of the corresponding subclasses are discribed
below. The structure of the subclasses is illustrated using the Start subclass.

Figure 4.3.: Menu module - Files

Menu Base class

Listing 4.16 shows the base class of the menu module, which includes the variable
command_mapping(line 3). Again this variable contains a corresponding method for
every user input possible and every subclass needs to implement this variable.

1 class Menu(ABC):
2 def __init__ (self):
3 self. command_mapping = None
4

52

Implementation

5 # Abstract Methods
6 def handle_user_input (self , user_input):
7 return self. command_mapping .get(user_input)()

Listing 4.16: Menu Base class

Similar to the tool base class, the menu base class also contains the handle_user_-
input() method (line 6-7), which is used in the MenuStateMachine. Since user
input is limited to numbers that select a menu item, the method is shorter than the
method in the tool base class.

Start subclass

Listing 4.17 displays the implementation of the Start subclass.
1 class Start(Menu):
2 def __init__ (self):
3 super (). __init__ ()
4 self. command_mapping = {
5 "1": self. attack_phase ,
6 "2": self.tools ,
7 "3": self. demonstrator ,
8 }
9

10 # InputHandle Methods
11 def attack_phase (self):
12 return AttackPhase ()
13 def tools(self):
14 return Tools ()
15 def demonstrator (self):
16 return Demonstrator ()

Listing 4.17: Start subclass

Similar to the Tool subclasses, the variable command_mapping is defined here as a
dictionary. Each user input between one and seven corresponds to a specific method.
For instance, the attack_phase method is referenced for user input one, which returns
as need state the class AttackPhase. This allows the menu to be called by the
AttackPhase subclass in the next run. This statement highlights a significant
difference between the Tool subclasses and menu subclasses. Tool subclasses refer to
themselves to remain in the tool, whereas menu classes always refer to another menu
state.

53

Implementation

4.1.4. Database

The class MongoDBWrapper provides interfaces to the database, establishing
connection and writing data.

Establish connection

Listing 4.18 displays the connection setup.
1 class MongoDBWrapper :
2 def __init__ (self , config_file):
3 self. config_file = config_file
4 self. client = None
5 self. database = None
6 self. collection = None
7

8 def connect_db (self , collect):
9 config = configparser . ConfigParser ()

10 config .read(self. config_file)
11 host = config .get(’MongoDB ’, ’host ’)
12 port = config . getint (’MongoDB ’, ’port ’)
13 cert = config .get(’MongoDB ’, ’client -crt ’)
14 ca_cert = config .get(’MongoDB ’, ’ca -crt ’)
15 self. database = config .get(’MongoDB ’,’database ’)
16 self. collection = config .get(’MongoDB ’,collect)
17

18 uri = f" mongodb ://{ host }:{ port }/{ database }?
19 authMechanism =MONGODB -X509& retryWrites =true&w= majority "
20

21 self. client = MongoClient (
22 uri ,
23 tls=True ,
24 tlsCertificateKeyFile =f"{cert}",
25 tlsCAFile = f"{ ca_cert }",
26 tlsAllowInvalidHostnames =True
27)

Listing 4.18: DatabaseWrapper class - Establishing connection

To connect to the database the method connect_db method is used. Inside the
method the connection parameter host, port, cert, ca_cert, database and collection
are configured (line 9-16). After that the connection is established (line 21-27). To
connect to the database the database wrapper used certificates for authentication
(line 24-26)

54

Implementation

Write data

To write data into the database the insert_document() and update_document()
methods are used. While the insert_document() method is used for writing new
entries into the database, the update_document() method is used to update existing
entries. The methods are shown in the listing 4.19.

1 def insert_document (self , document):
2 if self. client :
3 db = self. client [self. database]
4 coll = db[self. collection]
5 result = coll. insert_one (document)
6

7 return result . inserted_id
8

9 def update_document (self , document_id , key_to_update , new_value):
10 if self. client :
11 db = self. client [self. database]
12 coll = db[self. collection]
13

14 # Construct an update query to update the document
15 update_query = {"_id": document_id }
16

17 # Construct an update operation to set a new value
18 update_operation = {"$set": { key_to_update : new_value }}
19

20 # Create an UpdateOne object
21 update_request = UpdateOne (update_query , update_operation)
22

23 return coll. bulk_write ([update_request])

Listing 4.19: DatabaseWrapper class - Write data

To write an entry into the database the insert_document() specifies the database
and collection, where the data should be written to (line 3-4). Afterwards the data
is inserted into the correct database and collection (line 5).
To update fields within a database entry, the update_document() method necessitates
the document_id, key_to_update, and new_value as parameters (line 9). Subse-
quently, the database query is generated by creating the query and defining the new
value (line 15-21). At the end the entry is updated (line 23).

55

Implementation

4.1.5. State

The MenuState class records all possible states that a state can assume. It is
implemented as an enum, which defines predefined constants for each state. Listing
4.20 illustrates that each state is initialized with an integer value.

1 class MenuState (Enum):
2 #Menu Base 0 - 10
3 START = 0
4 ATTACK_PHASE = 1
5 TOOLS = 2
6 DEMONSTRATOR = 3
7 ...
8

9 #Menu Attack Phase 20 - 32
10 RECONNAISSANCE = 20
11 INITIAL_ACCESS = 21
12 EXECUTION = 22
13 PERSISTENCE = 23
14 PRIVILEGE_ESCALATION = 24
15 DEFENSE_EVASION = 25
16 CREDENTIAL_ACCESS = 26
17 DISCOVERY = 27
18 LATERAL_MOVEMENT = 28
19 COLLECTION = 29
20 COMMAND_CONTROL = 30
21 EXFILTRATION = 31
22 IMPACT = 32
23

24 #Tools 40 - 60
25 KUBEHUNTER = 40
26 ...
27 REDKUBE = 44
28 ...
29 KDIGGER = 46
30 ...

Listing 4.20: MenuState class

This can be used to determine whether the status is a tool or a menu, by checking if
the integer value falls between 0-32.

56

Implementation

4.1.6. Environment

The module environment consists of two classes: Environment and GlobalVari-
ables.

Environment

Listing 4.21 displays the Environment class, which contains all metadata which can
be gathered in the background.

1 class Environment :
2 def __init__ (self):
3 self._ip = helper . get_ip_address ()
4 self. _subnet = None
5 self. _file_format = None
6 self. _file_output_raw = None
7 self. _file_output_parsed = None
8 self. _command = None
9 self. _tool_name = None

10 self. _tool_version = None
11 self. _timestamp_start = None
12 self. _timestamp_end = None
13 self. _attack_location = None
14 self. _perspective = None
15 self. _attack_phase = None
16 self. _oran_component = None
17 self. _result_code = None
18 self. _hostname = helper . detect_hostname ()
19 self._cve = None
20 self. _mitre = None

Listing 4.21: Environment class - Metadata variables

When the CF-Framework is started, the ip (line 3) and hostname (line 18) variables
are initialised with the IP address and host name of the host system. The remaining
variables are initialised as empty, and can either be manually set via the console, or
get assigned by the CF-Framework automatically when an attack is executed.

57

Implementation

Global Variables

The GlobalVariables class consists of global variables and is also implemented as a
singleton, as shown in figure 4.22.

1 class GlobalVariables :
2 _instance = None
3

4 @staticmethod
5 def get_instance ():
6 if not GlobalVariables . _instance :
7 GlobalVariables . _instance = GlobalVariables ()
8 return GlobalVariables . _instance
9

10 def __init__ (self):
11 self. menu_state = MenuState .START
12 self.env = Environment ()

Listing 4.22: GlobalVariables class

It includes the current state, which is initialized with the start state from the
MenuState class (line 11) and a variable of the Environment class (line 12). This
means when a the controller or tool module wants to access the current metadata or
CF-Framework state, it must be retrieve with the instance of the GlobalVariables
class.

4.1.7. Features

Campaign

Besides the parser, the CF-Framework should implement the campaign and template
feature. The campaign feature includes the Campaign class, as shown in the listing
4.23.

1 class Campaign :
2 _instance = None
3

4 def __init__ (self):
5 self.name = None
6 self.id = None
7 self. start_date = None
8 self. end_date = None
9 self. description = None

10 self. targets = []
11

12

58

Implementation

13 @classmethod
14 def get_instance (cls):
15 ...
16

17 def start(self):
18 # Dialogue to request user input
19 self. start_date = get_current_timestamp ()
20 self.name = input
21 ("Enter the name of the campaign : ")
22 self. description = input
23 ("Enter a description for the campaign : ")
24 targets_input = input
25 ("Enter a list of targets (IPs or domains): ")
26

27 if self.name:
28 self. database_insert ()
29

30 def end(self):
31 # connect
32 self.db. connect_db ()
33 # update DB
34 self. end_date = get_current_timestamp ()
35 self.db. update_document (self.id ," end_date ",self. end_date)
36

37 def database_insert (self):
38 # connect
39 self.db. connect_db ("collection - campaign ")
40 # insert campaing into database
41 self.id = self.db. insert_document (self. to_json ())

Listing 4.23: Campaign class

To start a campaign the start method is used. Inside the method, first the start_date
(line 19), is recorded, followed by the option for the user to specify parameters such
as the name (line 20-21), description (line 22-23), and targets (line 24-25), which
could be the IPs or host names. The provision of campaign name is mandatory,
while the description and the targets are optional. If the user provides a name for
the campaign, all campaign-specific data will be written to the database (line 27-28)
using the database_insert() method (line 37-41). When the user ends the campaign,
the end time should be added to the campaign entry in the database. To accomplish
this, the update_document() (line 35) method described in listing 4.19 is used.

59

Implementation

Template

The implementation of the Template feature comprises two classes: Template
(Figure 4.24) and AttackGenerator (Figure 4.25).
In the following listing, the Template class is displayed.

1 class Template :
2 _instance = None
3

4 def __init__ (self):
5 self. _result_list = []
6

7 @classmethod
8 def get_instance (cls):
9 ...

10

11 def add_to_result_list (self , item):
12 self. _result_list . append (item)
13 return self. _adjacent_duplicates ()
14

15 def _adjacent_duplicates (self):
16 if len(self. _result_list) < 2:
17 return False
18

19 for i in range(len(self. _result_list) - 1):
20 if self. _result_list [i]. __eq__
21 (self. _result_list [i + 1]):
22 del self. _result_list [i + 1]
23 return True
24

25 return False

Listing 4.24: Template class

Similar to the Campaign class, the Template class is also implemented as a singleton.
In addition, the class contains only the variable result_list (line 5).
If an attack is executed, the command is saved in the list. In addition to the
list the class includes methods to add new entries to the list (list 11-13) and to
optimise the list of commands by removing duplicates (list 15-23). For that the
_adjacent_duplicates() method checks whether the same command has been entered
twice. When this is the case, it is not included in the list. The list is then used by
the second class AttackGenerator, which is shown in the listing 4.25, to generate
the template.

60

Implementation

1 class AttackGenerator :
2 def __init__ (self):
3 self. script_name = " template_attack_script -" +
4 get_timestamp () + ".sh"
5 self. template = Template (). get_instance ()
6 self. results = self. template . get_result_list ()
7 self. commands = []
8

9 def generate_script (self):
10 if self. template . get_result_list ():
11 self. gen_script_name ()
12 self. get_commands ()
13 with open(GlobalVariables . get_instance (). get_base_dir ()
14 + " automation / scripts / volatile /"
15 + self. script_name , ’w’) as script_file :
16 script_file .write("#!/ bin/bash\n")
17 for cmd in self. commands :
18 cmd = " ".join(cmd)
19 script_file .write(cmd + "\n")
20 script_file .write("echo ’Attack automation
21 completed .’\n")
22 script_file .close ()

Listing 4.25: AttackGenerator class

The AttackGenerator class contains the script name, which consists of the prefix
template_attack_script and the current time (line 3-4). Additionally, it contains an
instance of the Template class (line 5) to access the list of commands. With the
use of the generate_script() method the template script gets generate by writing
all commands from the list to a template script and saving it (line 16-21), to make it
available for a user to execute again via the console menu.

61

Implementation

4.2. Database Architecture
In the MongoDB architecture, two databases with three collections are specified.
The PROD database is used during testing alongside the DFIR tools, while the DEV
database is used for CF-Framework development and testing. Each database should
contain the following three collections.

Figure 4.4.: DEV Collections

Firstly, the Collection artifacts-campaign contains the campaign entries, secondly
the collection artifacts-parsed contains the parsed metadata entries and finally, the
collection artifacts-raw contains the attack entries with all the metadata.

62

Implementation

4.3. Automation
The Automation covers two areas. Both the CF-Framework and the database
deployment need to be automated. The snippets of Ansible playbooks shown below
cover the most important main tasks. However, the playbooks consist of a large
number of other tasks that are necessary to ensure that the main tasks can be
performed without error. These are not discussed further below. Since the CF-
Framework needs to authenticates itself to access the database, the authentication has
to be automated as well. Additionally, the creation of users, for the CF-Framework
or to manage the database, has to be automated as well.

4.3.1. Deployment CF-Framework

Automate the Deploying the CF-Framework to the clusters is managed with Ansible
and involves two steps. The first step is to clone the CF-Framework repository from
Github, which is shown in the listing 4.26.

1 - name: Clone GitHub repository to Ansible Master
2 tags: update
3 git:
4 repo: git@git .dn.fh -koeln. de:foran /foran - attack .git
5 dest: /tmp/ attack
6 version: main
7 force: yes
8 clone: yes
9 update: yes

10 accept_hostkey: yes

Listing 4.26: Ansible - Cloning the CF-Framework

The repository gets cloned to the local /tmp/attack directory (line 4-5).

The next step is to, distribute the cloned repository to the O-RAN cluster A and B.
This is shown in figure 4.27 below.

1 - name: Copy the cloned repository to worker nodes
2 become : yes
3 tags: update
4 synchronize :
5 src: "{{ SOURCE_DIR }}"
6 dest: "{{ BASE_DIR }}"
7 recursive : yes
8 delete : yes

Listing 4.27: AttackGenerator class

63

Implementation

To accomplish this task, the source directory, which contains the cloned repository
(line 5), as well as the destination directory on the O-RAN cluster where the repository
will be copied (line 6), must be specified. The SOURCE_DIR and BASE_DIR
values are variables for the source and destination directories. The source directory
in this case is the /tmp/attack directory, where the repository is located.

4.3.2. Database

In the following section the automation of the deployment of the database and the
generation of all authentication certificates is shown.

MongoDB instance

To deploy the database, two main actions are necessary: installing the MongoDB
packages, starting the MongoDB service, and creating the corresponding users.
Listing 4.28 illustrates the installation of the MongoDB packages and the start of
the services.

1 - name: Install MongoDB packages
2 apt:
3 name:
4 - mongodb -org
5 - mongodb - mongosh
6 state: present
7 update_cache : yes
8

9 - name: Enable and start the Mongod service
10 tags: update
11 systemd :
12 name: mongod . service
13 daemon_reload : yes
14 enabled : yes
15 state: restarted

Listing 4.28: Ansible - Install MongoDB packages

The first step in the listing is to install the MongoDB packages mongodb-org and
mongodb-mongosh (line 4-5). The next stop is to start the MongoDB service by
defining the name and desired status of the service. In this case, the name of the
service is mongod.service (line 12) and the selected state is ’restarted’ (line 15) to
ensure the service is restarted if it is already running. If the service is not yet running,
it will simply be started.

64

Implementation

Authentication

The implemented MongoDB instance utilises X.509 client certificate authentication.
There are two actors who require access to the database: a database administrator
for managing and a database user with limited rights to certain resources for the
CF-Framework to use. The database user is used by the CF-Framework to read from
and write to the database. Listing 4.29 illustrates the creation of the database user.

1 - name: Add foran to " $external " DB for X.509 Auth
2 tags:
3 - user_exist
4 ansible . builtin .shell:
5 cmd: |
6 mongosh foran --host localhost --eval ’
7 db. getSiblingDB (" $external "). runCommand ({
8 createUser : "CN=foran",
9 roles: [

10 { role: " readWrite ", db: "dev" },
11 { role: " readWrite ", db: "prod" },
12],
13 writeConcern : { w: " majority ", wtimeout : 5000 }
14 })’
15 when: foran_check . stdout == " not_exists "

Listing 4.29: Ansible - Add foran user to MongoDB

The username assigned to the user is CN=foran (line 8), which gets full read and
write access to both the PROD and DEV databases (line 10-11). The user name
CN=foran is assigned because it is compared with the corresponding certificate and
the common name specified in it. Authentication is only possible if the common
name matches the common name used in the certificate.
The listing also shows that the user is added to the $external database (line 7). This is
used when users authenticate to MongoDB via an external authentication mechanism
such as x.509 Client Certificate Authentication. To generate the certificate associated
with the user, the Community Crypto Collection module provided by Ansible is
used, with which keys and certificates can be created and signed. The creation of
the certificate can be seen in the following listing 4.30.

1 # Create foran key
2 - name: Create private key for foran
3 community . crypto . openssl_privatekey :
4 path: "{{ SSL_DIR }}/ foran.key"
5 type: Ed25519
6

7 # Create CSR for foran

65

Implementation

8 - name: Create CSR for foran
9 community . crypto . openssl_csr_pipe :

10 privatekey_path : "{{ SSL_DIR }}/ foran.key"
11 common_name : foran
12 register : csr
13

14 # Sign foran certificate
15 - name: Sign foran certificate with CA
16 community . crypto . x509_certificate_pipe :
17 csr_content : "{{ csr.csr }}"
18 provider : ownca
19 ownca_path : "{{ SSL_DIR }}/ ca.crt"
20 ownca_privatekey_path : "{{ SSL_DIR }}/ ca.key"
21 ownca_not_after : +365d # valid for one year
22 ownca_not_before : " -1d" # valid since yesterday
23 register : certificate
24

25 # Create foran.crt
26 - name: Create foran.crt
27 copy:
28 dest: "{{ SSL_DIR }}/ foran.crt"
29 content : "{{ certificate . certificate }}"
30

31 # Create foran.pem
32 - name: Create foran.pem
33 assemble :
34 src: "{{ SSL_DIR }}"
35 dest: "{{ SSL_DIR }}/ foran.pem"
36 regexp : ’^(foran \. key|foran \. crt)$’
37 delimiter : ’\n’

Listing 4.30: Ansible - Create Authentication Certificate for foran user

The Ed25519 encryption algorithm, specifically designed for digital signatures and
key exchange protocols [34], is used to create a private key (line 5).
After that, a Certificate Signing Request (CSR) is generated for the private key (line
15-23). This cryptographic file contains the public key and the identity details of
a company, and is used to request a digital certificate from a certificate authority
(CA). With a CA certificate, the created certificates get signed, ensuring a secure
authentication [35]. The generation of the CA certificate is also automated, as we
serve as our own authority. This means the CA certificate signs both the admin and
user certificate.

66

Implementation

As common name foran is the specified (line 11). In the next step, the signed
certificate for the foran user gets created (lin 25-29). Because the final certificate
requires both the signed certificate and the key, the final step is to merge the created
certificate and key into a single file (line 32-37). This resulting certificate foran.pem
is used by the CF-Framework for authentication.

4.4. User Manual
In order to facilitate user familiarity with the CF-Framework, a user manual has
been created. This manual lists all commands and their functions, as shown in figure
4.5.

Figure 4.5.: CF-Framework User manual

The user manual divides the available commands into two categories: general com-

67

Implementation

mands and tool-specific commands. General commands can be entered from any
menu status and are not limited to a single tool. The following text describes the
general commands:

• exit, to exit the CF-Framework
• back, to return to the previous menu state
• clear, to delete the history of the terminal
• end, to get to the start menu
• show, to display the metadata
• template, to create a Template with the Feature Template
• campaign <ACTION>, to create a campaign with the campaign feature. In

doing so, <ACTION> can assume the three values info, start and end
• setg <VAR-NAME> <VALUE>, to set the metadata. The variable name and

the desired value must be specified

In addition to the general commands, the CF-Framework also provides tool-specific
commands, which are only available when the tool is being executed.

• set <VAR-NAME> <VALUE>, to set the tool-dependent parameters and
flags

• options, to display the tool-dependent parameters and flags
• menu, to display the methods pre-parameterised for the tool

68

5. Testing

In Section 3.5 four areas for testing the CF-Framework are defined. These comprise
the functional testing of the CF-Framework, the functional testing of tool, the
testing of the implemented features and the testing of the execution of an attack
via the attack phase menu to map the attack directly to a MITRE tactic. The test
environment used is Cluster B with the Near Realtime RIC implemented on it.

5.1. Functional Testing CF-Framework
To test the CF framework for functionality, there are two use cases defined. The use
cases include the following commands from the User Manual.

• exit
• back
• end
• show
• setg

69

Testing

Use Case: Menu Navigation

The figure 5.1 illustrates a use case in which a user navigates through different the
menu states using the back, end, and exit commands.

Figure 5.1.: Example Usage of Commands: back, end, exit

The Kubehunter tool is used by the user as shown in the figure. The user executes
the back command to return to the menu, followed by the end command to go back
to the start menu. Finally, the user exits the CF framework by executing the exit
command.

70

Testing

Use Case: Metadata Interaction

The figure 5.2 illustrates a use case where a user can display and modify the metadata
that has been collected up to that point.

Figure 5.2.: Pre-parameterised methods Kubehunter

To accomplish this task, the user first utilises the show command to display the
metadata. The illustration shows that the host name, IP address, and the name
and version of the tool currently have been set. The user now wishes to add the
IP address 10.0.0.50. To do so, they use the command setg ip 10.0.0.22,10.0.0.50.
Finally, the user displays the metadata again and it can be seen that the desired IP
address has been successfully added. For instance, if an attack were to be carried
out, both IPs would be utilised for the attack, if permitted.

71

Testing

5.2. Functional Testing Tool
The testing of an integrated tool is carried out below using Kubehunter. All essential
functionalities of the tool, such as the setting of tool-specific parameters or the
execution of an attack, are explained. The results are then analysed and interpreted.
At the end, the entry in the database and the metadata it contains about the attack
are analysed and the functionality of the parser is explained.

Pre-parameterised methods Kubehunter

One of the key features is the provision of pre-parameterised methods, as shown in
figure 5.3 below.

Figure 5.3.: Pre-parameterised methods Kubehunter

The text before the cursor displays the current position of the user inside the menu.
In this case the user is located inside of Kubehunter. The status was reached via the
Start and Tools menu items. To display the methods, first enter the menu command
on the console. The four methods remote, pod, cidr and interface are offered for an
attack. In addition, the help command can be used to display all available commands
and list can be used to display all available tests.

Default Configuration of Kubehunter

Before executing an attack, we look at the default setting of the tool-specific param-
eters, which we can see in the following figure 5.4.

72

Testing

Figure 5.4.: Default Configuration of Kubehunter specific Parameter

The parameters are displayed using the options command. The figure shows that an
IP, a subnet and the report type of the result are set as parameters by default.

Parameter specification and attack

To execute an attack, a user can now set the parameters. For example, the active_-
mode is set for the attack. The setting of the parameter is shown in the following
figure 5.5.

Figure 5.5.: Set Kubehunter specific Attack Parameter and launch Attack pod

The mode is changed from None to active and the attack pod is executed. This

73

Testing

involves creating a pod with privileged privileges within the cluster, scanning the
cluster for vulnerabilities and attempting to exploit those vulnerabilities using the
active flag.
The command of the attack that was generated with the specified parameters can be
seen at the end of the figure. It can be seen that both the –active flag for the active
mode and –report json for the return type of the result are set. In order to be able
to analyse the result, it is shown below in a human-readable format. This is derived
from the resulting JSON object of the result.
The delivered result of the vulnerability analysis consists of three sub-results, Nodes
Found, Services and Vulnerabilities.

Nodes

Figure 5.6 shows the nodes found.

Figure 5.6.: Vulnerability analysis - Nodes

As can be seen in the figure, a total of seven nodes has been found, which now can
be investigated further.

74

Testing

Services

Next, the nodes are analysed for contained services, as shown in the following figure
5.7.

Figure 5.7.: Vulnerability analysis - Services

The services themselves do not represent a vulnerability, but can be tested by the
attacker for further vulnerabilities. For example, if a vulnerability is known for the

75

Testing

service, it may be possible to obtain sensitive data.

Vulnerabilities

Finally, the results provide the vulnerabilities found. These can be seen in the
following figure 5.8.

Figure 5.8.: Vulnerability analysis - Vulnerabilities

The figure shows that six vulnerabilities were found. For each vulnerability, the
location for the vulnerability, an associated MITRE tactic with the corresponding
technique and the proof is listed. For example, a priveligated container exists, which
is available under 10.0.0.73:10255. An attacker could use this to perform operations

76

Testing

as a privileged user in order to obtain new information. It is important to note that
because Kubehunter only displays the result and not the executed commands, the
full extent of the traces generated can only be seen by analysing the logs filtered by
the DFIR tools.

Database Entry

Together with all the collected metadata, this information is written to the database
as an entry. The entry can be seen in the following figure 5.9.

Figure 5.9.: Database Entry for Vulnerability analysis

The result can be seen as a JSON object in the file_output_raw field, even tho
the output is limited for illustration porpuse. The whole figure can be seen in the
appendix B. The figure 5.9 also contains information such as the command used,
the tool name and the time of the attack. You can also see that the result has
already been parsed and a mapping to MITRE was successful. The result is written
to the mitre field. The mitre field contains four figure tactics with corresponding
techniques. The last value with the prefix MS corresponds to the tactic specified in
the Microsoft Kubernetes ATT&CK matrix. As can be seen in 5.8, the attack found
six vulnerabilities. However, the parser does not add duplicate entries. Although
the Initial Access tactic with the Exposed sensitive interfaces technique occurs three

77

Testing

times, it is only included once in the matrix. This results in the four entries shown
in the figure. It is noticeable that only the MITRE technique is included in one
entry, while the Kubernetes ATT&CK matrix tactic and technique are excluded.
This is due to Kubehunter assigning its own techniques to certain vulnerabilities,
which are labelled as General. For instance, the second entry in figure 5.8 contains
such a tactic, which is not recorded in the database during parsing.

5.3. Features Testing
The campaign, template, and tool execution are the features to be tested. The
corresponding attack phase is mapped to the metadata. RedKube is used to test
the Campaign feature, while both RedKube and Kubehunter are used to test the
Template feature. Kdigger is used for the feature phase.

5.3.1. Campaign

The campaign feature has three key aspects that require testing. Firstly, it is
important to test the starting and ending of a campaign. Additionally, an attack
should be carried out using Redkube while a campaign is active. Finally, it is necessary
to check both the artifacts-raw collection for attacks and the artifacts-campaign
collection to ensure that new entries have been created. As the attack was carried
out during an active campaign, it is necessary to include a field with the associated
campaign ID in the entry to assign it to the correct campaign. Additionally, a
campaign, with the corresponding ID must exist in the artifacts-campaign collection.

78

Testing

Campaign Usage

Figure 5.10 illustrates the beginning of a campaign and the execution of an attack in
RedKube.

Figure 5.10.: Feature - Campaign Usage

The figure shows the creation of a campaign named RedKube Campaign with the
description RedKube Commands for Testing. Next, the discovery command from the
Redkube tool is executed. After the attack has finished, the campaign is terminated,
and the entries in the database collection can be analysed.

Database entries

Figure 5.11 displays the entry in the artifacts-campaign collection.

Figure 5.11.: Database Entry in Collection artifacts-campaign

The entry includes the ID returned in figure 5.10, the specified name and description,
as well as the start_date and end_date of the campaign. To test the feature for full
functionality, view the entry for the attack in the artifacts-raw collection. See figure
5.12 for a section of the entry.

79

Testing

Figure 5.12.: Campaign ID Field in Collection artifacts-raw

The campaign ID, shown in 5.10 and 5.11, is contained in the campaign_id field
at the end of the database entry. This confirms successful testing of the campaign
feature’s functionality.

5.3.2. Template

To test the template feature, it is necessary to execute attacks and generate a
template from them. Figure 5.13 illustrates the execution of the attacks and the
creation of the template.

Figure 5.13.: Feature - Template Usage

First, Kubehunter is used to perform a remote_scan. Next, the discovery attack
is executed using Redkube. Finally, the template is generated with the template
command. The name of the resulting template is template_attack_script-2040105-
215118.sh, as shown in the figure.

80

Testing

The script’s contents are displayed in the following listing 5.1.
1 #!/ bin/bash
2 kube - hunter --remote 10.0.0.22 --report json
3 sudo python3 main.py --mode passive --tactic discovery
4 echo ’Attack automation completed .’

Listing 5.1: Template Bash Script

The script includes the two previously executed attacks(line 2-3) and can now be
accessed and executed from the Demonstrator menu, as shown in figure 5.14.

Figure 5.14.: Demonstrator menu Entries

If the third menu item is selected, the attacks can be executed again to generate
traces. This confirms the successful testing of the template feature.

81

Testing

5.4. Testing Phase Categorisation
Finally, it must be determined whether a tool is assigned to a phase when it is
executed within that specific phase. In order to do this, Kdigger was executed during
the Reconnaissance phase, as illustrated in figure 5.15.

Figure 5.15.: Set Kdigger specific Attack Parameter and launch Test Attack

As can be seen from the text in front of the cursor, the phase has been selected via
the Attack Phase and Reconnaissance menu items. For testing, a scan is executed
via the dig command to find out versions of components in the environment. The
Database entry must now be checked for the field phase. The following figure 5.16
shows the database entry.

Figure 5.16.: Database Entry for Kdigger Test Attack

Inside the entry you can see the attack_phase field with the value Reconnaissance.
This means that a user can assign tools to a phase by selecting a tool from the Attack
Phase menu.

82

6. Summary and Outlook

6.1. Summary

6.1.1. Objectives

In summary, the goal of implementing a framework for generating attack traces
in O-RAN systems has been successfully achieved. The chosen structure of the
framework architecture, with a central control unit and the use of different states,
in conjunction with base classes for menu and tool classes, has provided a solid
foundation on which to build in the future. With a view to the previously defined
goal of making the framework dynamically extensible, tools and new menu states
can be integrated into the framework without major code changes by implementing
classes for the new states that inherit from the base classes.
In addition to the foundation, three tools have already been added to the framework.
As shown, the integrated tools can be used in their full functionality via the framework,
and also provide methods for pre-parameterised attacks. These provide the user with
a way to generate traces via the framework without having to deal extensively with
the tool itself, particularly with regard to the goal of user-friendliness.
In conjunction with the dynamic foundation, a database connection is also imple-
mented in the framework. This is used to store the collected metadata for each
attack. The main advantages of the database entries are that they can be compared
with the logs generated by the DFIR tools to better identify and assign attacks, for
example by comparing the timestamp of the logs with the timestamp of the database
entry, and also found vulnerabilities are stored for further analysis and usage.
Furthermore the Campaign feature, which allows several attacks to be combined, the
Template feature, which generates template so attacks can be repeat easily, and a
parser for the Kubehunter tool have been integrated into the framework.
The parser enables the categorisation of attacks based on MITRE, Kubernetes
ATT&CK Matrix, and CVE. Additionally, attacks can be manually mapped for every
tool by executing them over the attack phase menu.
Because the framework is used on different clusters, it is important to automate the
deployment of the framework on the clusters and also the deployment of the database

83

Summary and Outlook

according to the implemented database connection. The automation was successfully
implemented with Ansible, whereby both the database and the framework can be
updated by executing the Ansible scripts created.
In conclusion, the framework plays a crucial role in the 5G-FORAN project, partic-
ularly in the active attack simulation sub-project. This is because the framework
simplifies the generation of attack traces, which the DFIR tools uses as a basis to
identify and evaluate these traces in the second sub-project.

6.1.2. Personal Motivation

Regarding my personal motivation, I gained valuable insights into O-RAN and
Kubernetes technologies. During my bachelor’s thesis, I focused on generating traces
based on Kubernetes, which allowed me to gain practical experience with Kubernetes
components such as pods and clusters, as well as testing them for vulnerabilities.
The result has been in line with my expectations.

6.2. Outlook

6.2.1. Tools and Features

Due to the framework’s dynamic structure, future efforts will focus on implementing
additional tools and features.
Several tools have already been evaluated and will be integrated into the framework
in the coming months. It can be said that evaluating and testing new tools that
have the potential to generate traces on Kubernetes or ORAN will remain one of the
most important tasks in the future.
Further parsers are also planned for implementation. Since the only functional parser
is implemented for Kubehunter, further output of tools has to be analysed. If the
analysis results show that implementing a parser for this tool is worthwhile, then a
parser will be implemented
In addition, its planed to provided predefined templates to simplify the generation
of tracks without the need to operate the tools directly. These templates will be
expanded dynamically throughout the project, in consultation with Procyde. If
specific attacks are easily identifiable and corresponding detection rules have been
established, it is practical to offer a predefined template for each detection rule.
The final planned feature involves searching for exploits related to CVE numbers
resulting from attacks. This allows users to continue attacks and generate additional
traces that were not possible with previously used tools.

84

Summary and Outlook

6.2.2. Attacker perspectives

The framework currently only maps one of the attacker perspectives defined in 2.1.8.
To ensure the creation of traces based on other different attacker perspectives, it
should also be possible to set environment variables and metadata, like different
perspectives in a separate menu item. To enable the usage of different attack per-
spectives, it is necessary to automate the framework further for dynamic deployment
to various locations.

6.2.3. Testing with DFIR tools

Besides modifying the framework, another important task is testing it in combination
with DFIR tools. This is necessary to gain insight into the effectiveness of trace
generation and identify areas where traces are not yet being generated. These findings
can then be used to evaluate for new tools that specifically cover those areas. Since
the framework is currently in a stage where intensive testing is possible, the next
significant step is to test it in combination with DFIR tools. This will represent a
central task in the further progress of the project.

85

A. Detailed CF-Framework
Architecture

86

Detailed CF-Framework Architecture

87

B. Detailed CF-Framework
Architecture

88

Detailed CF-Framework Architecture

89

Glossary

Word Definition

Attack An attack in context of this thesis, is the attempt to examine
components for vulnerabilities and exploit them to generate traces
recognisable to the DFIR tool.

Class A Class is a blueprint for creating objects. It defines attributes and
methods for objects instantiated from it. Classes can be organized
hierarchically, with base classes serving as the foundation for more
specialized subclasses [36].

Cluster In Kubernetes, a cluster is a collection of interconnected nodes that
work together to manage and execute containerized applications,
ensuring efficient deployment, scaling, and coordination of containers
in a distributed environment [13].

DFIR DFIR is a cybersecurity field that involves investigating and re-
sponding to security incidents and digital crimes [37].

JSON JSON is a lightweight format used to represent structured data in a
way that is both human-readable and machine-readable [38].

Method Methods are functions associated with an object. They define the
behavior or actions that objects of a particular class can perform
[36].

Module A module, in the context of this thesis, is a logical entity that
combines several Python files to perform a specific task within the
framework.

90

Glossary

Parameter /
Flag

Parameter and Flags in context of this thesis, are Variables than can
be set by an user via the menu to interact with the CF-Framework.

Pod In Kubernetes, a Pod is the smallest unit that can be deployed
and can contain one or more containers. It is the fundamental
component for running applications in a cluster [39].

Variable Variables are names that represent values. They store and manage
data within a program [36].

Vulnerability A Vulnerability refers to a weakness or flaw in a system’s design,
implementation, or operation that could be exploited by attackers
to compromise an system [40]

91

List of Acronyms

Acronym Expansion

3GPP Third Generation Partnership Project

5G Fifth Generation mobile network

5GC 5G Core

5GS 5G Systems

AMF Access and Mobility Management Function

BSI Federal office for Information Security

CA Certification Authority

CISA Cybersecurity and Infrastructure Security Agency

CLI Command Line Interface

CVE Common Vulnerabilities and Exposures

DEV Development

DFIR Digital Forensics and Incident Response

DHS Department of Homeland Security

FFRDC Federally funded research and development centers

gNB Next-Generation Node B

ID Identification

92

List of Acronyms

NG-RAN Next Generation Radio Access Network

NTS Network Topology Simulator

O-CU Open RAN Central Unit

O-DU Open RAN Distributed Unit

O-RU Open RAN Radio Unit

PROD Production

RAN Radio Access Network

RIC RAN Intelligent Controller

SMO Service Management and Orchestration

UE User Equipment

UPF User Plane Function

VM Virtual Machine

93

Bibliography

[1] BSI, Cybersicherheit - KRITIS- Meldungen bis 2022, August 2022. [Online].
Available: https://de.statista.com/statistik/daten/studie/1230654/
umfrage/anzahl- der- kritis- meldungen- an- das- bsi/ (visited on 13
January 2024).

[2] S. Köpsell, A. Ruzhanskiy, A. Hecker, D. Stachorra, and N. Franchi, “Open-RAN
Risikoanalyse 5GRANR”, pp. 6–41, February 2022. [Online]. Available: https:
//www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/
Studien/5G/5GRAN-Risikoanalyse.pdf?__blob=publicationFile&v=9
(visited on 13 January 2024).

[3] A. Sultan, 5G System Overview, August 2022. [Online]. Available: https:
//www.3gpp.org/technologies/5g-system-overview (visited on 13 January
2024).

[4] O-RAN Alliance, About us. [Online]. Available: https://www.o-ran.org/
about (visited on 13 January 2024).

[5] Procyde and THKöln, “5G-FORAN Gesamtvohabenbeschreibung”, p. 1, Sep.
2022.

[6] ÜBER PROCYDE GmbH. [Online]. Available: https://procyde.com/ueber-
uns (visited on 13 January 2024).

[7] O-RAN Software Community, O-RAN Software Community. [Online]. Available:
https://o-ran-sc.org/ (visited on 13 January 2024).

[8] Cisco, What Is 5G? - How Does 5G Network Technology Work. [Online].
Available: https://www.cisco.com/c/en/us/solutions/what-is-5g.html
(visited on 13 January 2024).

[9] 5g-fig1.png (PNG-Grafik, 498 × 176 Pixel). [Online]. Available: https://www.
3gpp.org/images/2022/08/17/5g-fig1.png (visited on 13 January 2024).

[10] O.-R. ALLIANCE, “O-RAN.WG1.OAD-R003-v10.00.docx”, p. 15,

[11] Open RAN. [Online]. Available: https://firecell.io/learn/open-ran/
(visited on 13 January 2024).

94

https://de.statista.com/statistik/daten/studie/1230654/umfrage/anzahl-der-kritis-meldungen-an-das-bsi/
https://de.statista.com/statistik/daten/studie/1230654/umfrage/anzahl-der-kritis-meldungen-an-das-bsi/
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/5G/5GRAN-Risikoanalyse.pdf?__blob=publicationFile&v=9
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/5G/5GRAN-Risikoanalyse.pdf?__blob=publicationFile&v=9
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/5G/5GRAN-Risikoanalyse.pdf?__blob=publicationFile&v=9
https://www.3gpp.org/technologies/5g-system-overview
https://www.3gpp.org/technologies/5g-system-overview
https://www.o-ran.org/about
https://www.o-ran.org/about
https://procyde.com/ueber-uns
https://procyde.com/ueber-uns
https://o-ran-sc.org/
https://www.cisco.com/c/en/us/solutions/what-is-5g.html
https://www.3gpp.org/images/2022/08/17/5g-fig1.png
https://www.3gpp.org/images/2022/08/17/5g-fig1.png
https://firecell.io/learn/open-ran/

Bibliography

[12] Kubernetes overview. [Online]. Available: https://kubernetes.io/docs/
concepts/overview/ (visited on 13 January 2024).

[13] What is Kubernetes Cluster? | VMware Glossary. [Online]. Available: https:
//www.vmware.com/topics/glossary/content/kubernetes-cluster.html
(visited on 13 January 2024).

[14] Mitre, MITRE ATT&CK®. [Online]. Available: https://attack.mitre.org/
(visited on 13 January 2024).

[15] Mitre, Tactics - Enterprise | MITRE ATT&CK®. [Online]. Available: https:
//attack.mitre.org/tactics/enterprise/ (visited on 13 January 2024).

[16] Tactics - Threat Matrix for Kubernetes. [Online]. Available: https://microsoft.
github.io/Threat-Matrix-for-Kubernetes/ (visited on 13 January 2024).

[17] Y. Weizman, Secure containerized environments with updated threat matrix for
Kubernetes, March 2021. [Online]. Available: https://www.microsoft.com/
en-us/security/blog/2021/03/23/secure-containerized-environments-
with-updated-threat-matrix-for-kubernetes/ (visited on 13 January
2024).

[18] What is a CVE?, August 2020. [Online]. Available: https://www.balbix.
com/insights/what-is-a-cve/ (visited on 13 January 2024).

[19] What is MongoDB? Features and how it works – TechTarget Definition. [On-
line]. Available: https://www.techtarget.com/searchdatamanagement/
definition/MongoDB (visited on 13 January 2024).

[20] Was ist ein X.509-Zertifikat?, Sep. 2019. [Online]. Available: https://www.
ssl.com/de/faq/Was- ist- ein- x- 509- Zertifikat%3F/ (visited on 13
January 2024).

[21] A. Hat Red, How it works. [Online]. Available: https://www.ansible.com/
overview/how-ansible-works (visited on 13 January 2024).

[22] Python-prompt-toolkit. [Online]. Available: https://github.com/prompt-
toolkit/python-prompt-toolkit (visited on 13 January 2024).

[23] Kube-hunter, January 2024. [Online]. Available: https : / / github . com /
aquasecurity/kube-hunter (visited on 13 January 2024).

[24] Quarkslab/kdigger: Kubernetes focused container assessment and context dis-
covery tool for penetration testing. [Online]. Available: https://github.com/
quarkslab/kdigger (visited on 13 January 2024).

95

https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://www.vmware.com/topics/glossary/content/kubernetes-cluster.html
https://www.vmware.com/topics/glossary/content/kubernetes-cluster.html
https://attack.mitre.org/
https://attack.mitre.org/tactics/enterprise/
https://attack.mitre.org/tactics/enterprise/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/
https://microsoft.github.io/Threat-Matrix-for-Kubernetes/
https://www.microsoft.com/en-us/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/
https://www.microsoft.com/en-us/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/
https://www.microsoft.com/en-us/security/blog/2021/03/23/secure-containerized-environments-with-updated-threat-matrix-for-kubernetes/
https://www.balbix.com/insights/what-is-a-cve/
https://www.balbix.com/insights/what-is-a-cve/
https://www.techtarget.com/searchdatamanagement/definition/MongoDB
https://www.techtarget.com/searchdatamanagement/definition/MongoDB
https://www.ssl.com/de/faq/Was-ist-ein-x-509-Zertifikat%3F/
https://www.ssl.com/de/faq/Was-ist-ein-x-509-Zertifikat%3F/
https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works
https://github.com/prompt-toolkit/python-prompt-toolkit
https://github.com/prompt-toolkit/python-prompt-toolkit
https://github.com/aquasecurity/kube-hunter
https://github.com/aquasecurity/kube-hunter
https://github.com/quarkslab/kdigger
https://github.com/quarkslab/kdigger

Bibliography

[25] Lightspin-tech/red-kube: Red Team K8S Adversary Emulation Based on kubectl.
[Online]. Available: https://github.com/lightspin-tech/red-kube (vis-
ited on 13 January 2024).

[26] B. Marijan, CLI vs. GUI: What Are the Differences? | phoenixNAP KB,
February 2023. [Online]. Available: https://phoenixnap.com/kb/cli-vs-
gui (visited on 13 January 2024).

[27] C vs C++ vs Python vs Java - Javatpoint. [Online]. Available: https://www.
javatpoint.com/c-vs-cpp-vs-python-vs-java (visited on 13 January
2024).

[28] Advantages and Disadvantages of C Language - Javatpoint. [Online]. Available:
https://www.javatpoint.com/advantages-and-disadvantages-of-c-
language (visited on 13 January 2024).

[29] Advantages and Disadvantages of C++ Programming Language - Javatpoint.
[Online]. Available: https : / / www . javatpoint . com / advantages - and -
disadvantages-of-cpp-language (visited on 13 January 2024).

[30] Advantages and disadvantages of Java - Javatpoint. [Online]. Available: https:
//www.javatpoint.com/advantages-and-disadvantages-of-java (visited
on 13 January 2024).

[31] Python Language advantages and applications, October 2017. (visited on 13
January 2024).

[32] IPSpecialist, Ansible vs. Puppet vs. Chef, August 2023. (visited on 14 January
2024).

[33] Python Dictionaries, https://www.w3schools.com/python/python_dictionar-
ies.asp. (visited on 14 January 2024).

[34] Ed25519 Key erstellen – Allerstorfer.at. [Online]. Available: https://www.
allerstorfer.at/ed25519-key-erstellen/ (visited on 13 January 2024).

[35] What Is a Certificate Authority (CA)? - SSL.com, https://www.ssl.com/faqs/what-
is-a-certificate-authority/. (visited on 13 January 2024).

[36] 9. Classes — Python 3.12.1 documentation, https://docs.python.org/3/tutorial/classes.html.
(visited on 15 January 2024).

[37] What is Digital Forensics and Incident Response (DFIR)? | IBM. [Online].
Available: https://www.ibm.com/topics/dfir (visited on 13 January 2024).

[38] What is JSON. [Online]. Available: https://www.w3schools.com/whatis/
whatis%5C_json.asp (visited on 13 January 2024).

96

https://github.com/lightspin-tech/red-kube
https://phoenixnap.com/kb/cli-vs-gui
https://phoenixnap.com/kb/cli-vs-gui
https://www.javatpoint.com/c-vs-cpp-vs-python-vs-java
https://www.javatpoint.com/c-vs-cpp-vs-python-vs-java
https://www.javatpoint.com/advantages-and-disadvantages-of-c-language
https://www.javatpoint.com/advantages-and-disadvantages-of-c-language
https://www.javatpoint.com/advantages-and-disadvantages-of-cpp-language
https://www.javatpoint.com/advantages-and-disadvantages-of-cpp-language
https://www.javatpoint.com/advantages-and-disadvantages-of-java
https://www.javatpoint.com/advantages-and-disadvantages-of-java
https://www.allerstorfer.at/ed25519-key-erstellen/
https://www.allerstorfer.at/ed25519-key-erstellen/
https://www.ibm.com/topics/dfir
https://www.w3schools.com/whatis/whatis%5C_json.asp
https://www.w3schools.com/whatis/whatis%5C_json.asp

Bibliography

[39] What are Kubernetes Pods? | VMware Glossary. [Online]. Available: https:
//www.vmware.com/topics/glossary/content/kubernetes-pods.html
(visited on 13 January 2024).

[40] Understanding vulnerabilities. [Online]. Available: https://www.ncsc.gov.
uk/information/understanding-vulnerabilities (visited on 13 January
2024).

97

https://www.vmware.com/topics/glossary/content/kubernetes-pods.html
https://www.vmware.com/topics/glossary/content/kubernetes-pods.html
https://www.ncsc.gov.uk/information/understanding-vulnerabilities
https://www.ncsc.gov.uk/information/understanding-vulnerabilities

Selbstständigkeitserklärung

Ich erkläre an Eides statt, dass ich die vorgelegte Arbeit selbständig und ohne fremde
Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und
die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche
kenntlich gemacht habe.

Ort, Datum Rechtsverbindliche Unterschrift

98

15.01.2024

	Kurzfassung
	Kurzfassung
	List of Figures
	List of Listings
	List of Tables
	Introduction
	Initial situation
	Objective
	Objective 5G-FORAN
	Objective of the Bachelor's thesis within 5G-FORAN

	Personal Motivation
	Thesis Structure
	Hints to Syntax
	Module and Class Names
	Methods, Variables, Files, Folder

	Technical Background
	General
	5G
	Open RAN
	Kubernetes
	5G-FORAN Lab Environment
	MITRE ATT&CK Framework
	Kubernetes ATT&CK Matrix
	Common Vulnerabilities and Exposures
	Attacker Perspectives

	CF-Framework
	MongoDB
	Ansible
	Prompt Toolkit
	Kubehunter
	Kdigger
	RedKube

	Solution Concepts
	Preparatory work
	Evaluation Architectural Approaches
	Evaluation Programming language
	Evaluation Metadata
	Evaluation of CF-Framework Features
	Evaluation of Automation Framework

	Framework Architecture
	General Architecture
	Controller
	Tool
	Menu
	Database
	State
	Environment
	Features

	Database Architecture
	Automation
	Test strategy

	Implementation
	Framework Architektur
	Controller
	Tool
	Menu
	Database
	State
	Environment
	Features

	Database Architecture
	Automation
	Deployment CF-Framework
	Database

	User Manual

	Testing
	Functional Testing CF-Framework
	Functional Testing Tool
	Features Testing
	Campaign
	Template

	Testing Phase Categorisation

	Summary and Outlook
	Summary
	Objectives
	Personal Motivation

	Outlook
	Tools and Features
	Attacker perspectives
	Testing with DFIR tools

	Appendix
	Detailed CF-Framework Architecture
	Detailed CF-Framework Architecture
	Glossary
	Acronyms
	Bibliography
	Selbstständigkeitserklärung

