
Sigma Rule based eBPF Logger for Containerized

Environments
Master Thesis

Examiner: Prof. Dr. Andreas Grebe

Second Examiner: Thomas Karl M.Sc.

Henrik Wittemeier

Matr-no. 11157323

Technische Hochschule Köln

Faculty of Information, Media and Electrical Engineering
Institue of Computer and Communication Technology

February 3, 2025

Henrik Wittemeier Master Thesis

Abstract

The introduction of new technologies for mobile networks such as open RAN leads to chal-

lenges in the area of security observability. The distribution and protection of containerised

components across different nodes in large Kubernetes clusters requires new technologies to

maintain an overview of security-relevant events. In order to achieve visibility within con-

tainers, this project implements an eBPF-based solution that is deployed distributed across

a Kubernetes cluster.

Rules that characterize malicious behaviour play a major role in the development of observ-

ability technologies. A good set of rules ensures that neither too many unimportant events

are written to a database, but also that all critical processes are logged. To minimize the

effort of maintaining this rule set, the community-maintained Sigma rule set is used in this

project. This ruleset will be extended from its purpose for SIEM solutions to be used for

configuration of the eBPF based tool Tracee. To use the Sigma rules, the pySigma tool is

configured to translate the rules from the Sigma format into the Tracee signatures that are

implemented in Go.

i

Henrik Wittemeier Master Thesis Contents

Contents

List of Figures v

List of Tables vi

List of Listings vii

Acronyms viii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Objectives . 2

1.3 Structure of Work . 3

1.4 Background . 3

2 Technical and Research Context 4

2.1 Security in Open RAN . 4

2.2 Security Challenges in Containerized Environments 6

2.2.1 Containerization . 6

2.2.2 Kubernetes . 8

2.2.3 Observability in Kubernetes . 8

2.3 eBPF based Observability . 9

2.4 Sigma Project . 10

2.5 Existing Solutions . 13

3 Concept 14

3.1 Scope . 14

3.2 Design Considerations . 14

3.2.1 Existing DFIR Environment . 15

ii

Henrik Wittemeier Master Thesis Contents

3.2.2 Architecture . 16

3.2.3 Mapping . 17

3.3 Tool Evalution . 18

3.3.1 bpftrace . 19

3.3.2 Tracee . 19

3.3.3 pySigma . 22

3.4 Integration Concept . 23

3.4.1 Toolchain . 23

3.4.2 CI/CD . 24

4 Backend Implementation 26

4.1 Development Process . 26

4.1.1 pySigma-backend-tracee . 26

4.1.2 Tracee Output Format . 31

4.1.3 Fluentbit Integration . 31

4.1.4 Helm Charts . 32

4.2 Testing . 32

5 Evaluation 35

5.1 Performance Measurements . 35

5.1.1 CPU . 35

5.1.2 Memory . 39

5.1.3 Time accuracy . 40

5.1.4 Ease of use . 40

5.1.5 Ease of adaption . 41

5.1.6 Falsepositives . 42

5.2 Security Effectiveness . 42

5.2.1 Review Methodology . 43

5.2.2 Attacks . 43

5.2.3 Conclusion . 49

5.3 Comparative Analysis . 50

5.3.1 K8s Audit . 50

5.3.2 Tetragon . 50

5.3.3 Falco . 51

iii

Henrik Wittemeier Master Thesis Contents

6 Discussion 52

6.1 Interpretation of Results . 52

6.2 Connection to Objectives . 53

6.3 Comparison to existing solutions . 55

6.4 Limitations . 55

6.5 Future Research and Development . 56

6.6 Critical Reflection . 56

7 Conclusion 57

Bibliography ix

A Repository . xiii

B Measurement of extended Berkeley Packet Filter (eBPF) activity xiii

C Go Template . xiii

iv

Henrik Wittemeier Master Thesis List of Figures

List of Figures

1 Architecture according to the O-RAN Alliance . 5

2 Caption . 7

3 Sigma usage in SIEM (left) vs SIGMA usage in this project (right) 12

4 Caption . 15

5 Cluster Deployment . 16

6 Log Translator . 17

7 Caption . 20

8 Toolchain of the deployed monitoring solution . 23

9 CPU Measurement Idle State. Tracee 2%, Total 7% 36

10 Disk Stress test with 64KB files. Tracee 355%, Total 520% 36

11 Disk Stress test with 4096KB files. Tracee 60%, Total 200% 37

12 Disk Stress Test with 64Kb Data set and only 1 Sigma Rule loaded Tracee

0.14%, Total 160% . 37

13 Measurement of performance with different rule set sizes 38

14 Network Stress Test with 160 Mbit/s download Tracee 330%, Total 450% . 39

15 Memory Consumption while Caching. Tracee 1.35GB, Total 2GB 40

v

Henrik Wittemeier Master Thesis List of Tables

List of Tables

1 Mapping of Sigma Logsources to Tracee Logsources 29

2 Mapping of Sigma Fields to Tracee Logsources . 30

3 Testcases for the implementation of the pySigma-backend-Tracee 34

4 Results of performed Attacks . 50

vi

Henrik Wittemeier Master Thesis List of Code

List of Code

1 Example Sigma Rule . 10

2 Implementation of the Sigma rule from section 2.4 as Rego Signature 21

3 Implementation of the Sigma rule from section 2.4 as Go Signature 21

4 Setting the logsource for the signature . 27

5 Initialization of event specific variables . 27

6 Template for the detection logic . 28

7 Custom Resource Definition for Tracee . 32

8 Test commands generated by ChatGPT . 33

9 Custom Sigma Rule . 41

10 Template for a Tracee Signature . xiii

vii

Henrik Wittemeier Master Thesis Acronyms

Acronyms

3GPP Third Generation Parntership Program

5G Fifth Generation Mobile Network

API Application Programming Interface

BBU Base Band Unit

BPF Berkeley Packet Filter

CNI Container Network Interface

CU Central Unit

CVE Common Vulnerabilities and Exposures

DFIR Digital Forensics and Incident Response

DU Distributed Unit

eBPF extended Berkeley Packet Filter

JSON Java Script Object Notation

LLM Large Language Model

Near-RT RIC Near-Realtime Ran Intelligent Controller

NFs Network Functions

Non-RT RIC Non-Realtime Ran Intelligent Controller

OPA Open Policy Agent

OS Operating System

RAN Radio Access Network

RBAC Role Based Access Control

RIC Ran Intelligent Controller

RU Radio Unit

SIEM Security Information and Event Management

SMO Software Management and Orchestration

SSH Secure Shell

UE User Equipment

viii

Henrik Wittemeier Master Thesis Introduction

Introduction

Mobile networks are a crucial part of the modern telecommunication infrastructure. The

mobile technology evolved greatly from the first generation of mobile networks to the cur-

rent standard Fifth Generation Mobile Network (5G). 5G delivers high capacity low latency

network connections for many devices simultaneously. The fast evolution of the mobile net-

works lead to an oligopolistic market that is paced and dominated by a few large mobile

equipment manufacturers. Currently most of the mobile networks are based on the Third

Generation Parntership Program (3GPP) standard. The 3GPP standard provides interop-

erability between mobile networks and User Equipment (UE) and some interfaces within a

mobile network [1]. A mobile network based on this specification is mostly a black box dis-

tributed by a single vendor. The infrastructure is therefore built on vendor specific hardware.

To enter the market as a mobile network manufacturer, it is necessary to build a complete

mobile network solution and produce the corresponding hardware within the short release

cycles.

To solve these problems the O-RAN ALLIANCE initiated the Open RAN project. The

O-RAN ALLIANCE is an association of vendors, operators and researchers of mobile net-

works [2]. The Open RAN project aims for dividing the prior black boxed Radio Access

Network (RAN) into smaller components with specified interfaces. This Open RAN removes

the vendor lock and promotes competition in the RAN ecosystem. Part of the effort is also

the shift of workloads from vendor specific hardware to cloud environments based on off-

the-shelf hardware. The division into smaller components provides smaller vendors with an

easier market entry, resulting in increasing competition. Competitive markets are likely to

have a better cost/performance ratio.

1

Henrik Wittemeier Master Thesis Introduction

1.1 Problem Statement

A new approach of deploying a RAN with multiple new interfaces introduces new challenges

regarding security and observability. The threat surface, related to the prior 3GPP architec-

ture, is increased due to more interfaces, multi- vendor environments and the deployment in

clouds. With the introduction of the Open RAN, significantly more stakeholders are involved

in the deployment. As the threat surface also includes malicious actors or actors that be-

come malicious during the life cycle of a deployment, a perfectly secure Open RAN cannot be

built. Fixing vulnerabilities and designing an application with the security-by-design/default

pattern is a way to decrease the threat surface. A typical approach for securing software sys-

tems is regularly examining them for known vulnerabilities from sources like the Common

Vulnerabilities and Exposures (CVE) database [3]. This database lists vulnerabilities that

were found in software components and applications. By fixing vulnerabilities from the CVE

database, it is possible to reduce the risk of security incidents. However it cannot be com-

pletely avoided. This means that successful attacks and intrusions into software systems

must always be a concern.

In the situation of a possible intrusion by an attacker, the goal is to reconstruct the way the

attacker got access. This can be achieved by adding observability tools to the Open RAN

deployment. The observability data needs to include file changes, network related events

and processes that are executed. Subsequently to an attack this data could be forensically

examined to get information about the entry point of intrusion, the affected component and

which further steps where taken by the attacker.

Large systems with high workloads would generate a lot of data. Collecting all process,

network and file data from systems and preserving it for further investigations gets quite

expensive. The solution is to only collect data which could possibly help to determine mali-

cious behavior. A monitoring solution would be configured by rules that match all forensic

relevant events excluding the normal system operation.

This set of rules must always be kept up to date to new attack patterns malware and vul-

nerabilities.

1.2 Objectives

The effort of maintaining an up to date rule set is very time consuming and susceptible to

information deficiency. To have a monitoring solution with a rule database that is updated

without any efforts, this project aims for using community maintained rule repositories and

2

Henrik Wittemeier Master Thesis Introduction

adapting them to a monitoring solution that can be used in an Open RAN deployment.

The deployment of the mobile network in a Kubernetes cloud environment brings along new

challenges in terms of observability. To meet the associated requirements, an appropriate

monitoring solution is found and integrated into the Open RAN.

1.3 Structure of Work

The development of the monitoring solution for Open RAN deployments involves several

steps. At first, the existing Open RAN deployment and related work is analyzed to get an

overview about technical and functional requirements. Based on the defined requirements,

an existing tool that will be adapted is chosen. The tool is then put into the overall context

and a design is worked out which includes the tools involved for developing and deploying

the application. The developed design is implemented and integrated into the Open RAN

deployment and functional tests are performed to prove the technical functionality.

The application is evaluated in terms of its usefulness, performance and effectiveness. There-

fore, tests with performance measurements, typical attacks and comparisons to similar tools

are performed. Subsequently, the results are evaluated and discussed.

1.4 Background

This thesis was initiated in the 5G-FORAN project [4,5]. The project was launched in 2023

by the PROCYDE GmbH together with the Cologne University of Applied Sciences. 5G-

Foran aims for increasing the cyber security in containerized environments especially for Open

RAN by introducing IT forensics. The project is split into the parts 5G-FORAN-DFIR and

5G-FORAN-ATTACK. Rapid identification, analysis and defense methods against security

incidents are developed with the help of attack simulations to provide practical solutions.

The idea of the project is to develop attack scenarios to generate attack traces by the 5G-

FORAN-ATTACK project, which can be analyzed for forensic artefacts in the 5G-FORAN-

DFIR project.

3

Henrik Wittemeier Master Thesis Technical and Research Context

Technical and Research Context

Since this work concentrates on the observability of O-RAN deployments in Kubernetes,

related work is reviewed in terms of interesting aspects of security challenges and observability

goals in containerized RAN environments. To determine the relevance of observability in

O-RAN deployments, researches concerning the threat surface of the RAN software and

infrastructure are analyzed.

Finally existing solutions and other investigations are reviewed to check the applicability of

sigma rules on the extended Berkeley Packet Filter (eBPF) in this thesis.

2.1 Security in Open RAN

The initiation of the Open RAN project by the O-RAN ALLIANCE is intended to break

down the RAN into smaller components with specified interfaces. The given specifications

were implemented by the O-RAN Software Community to create a proof of concept. This

thesis will focus on an environment that is created on the base of the effort of the O-RAN

Software Community. The benefits of an Open RAN are diverse. Through the evolution

of a monolithic system to a multi vendor approach, network operators can choose the man-

ufacturer with the best price/performance ratio. Small vendors can concentrate on single

components to get a faster market entry. Expensive dedicated 3GPP hardware is replaced

by an architecture based on virtualization and cloudification. The prior Base Band Unit

(BBU) is disaggregated into Radio Unit (RU), Distributed Unit (DU), Central Unit (CU)

and the Ran Intelligent Controller (RIC) [6].

4

Henrik Wittemeier Master Thesis Technical and Research Context

Service Management and Orchestration Framework

O-Cloud

O-DU

O-RU

O-CU-UP
O-CU-CP

Near-Real Time RIC

Non-Real Time RIC rApprApprApp
R1

O2

O1 O1 O1 A1

E2 E2 E2
X2-u
Xn-u
NG-u

X2-c
Xn-c
NG-c

F1-c F1-u

Open Fronthaul CUS-Plane Open Fronthaul M-Plane

rApprAppxApp
Y1-Consumer

Y1

Figure 1: Architecture according to the O-RAN Alliance

The central part of the O-RAN project are the RICs. In the work of the O-RAN Software

Community project, these components are deployed in Kubernetes clusters grouped by their

time criticality. The deployment is controlled by the Software Management and Orches-

tration (SMO) Framework to ensure automatic scalability and central configurability. The

Near-Realtime Ran Intelligent Controller (Near-RT RIC) handles control loops with a cycle

of 10ms-1s and the Non-Realtime Ran Intelligent Controller (Non-RT RIC) handles control

loops with a cycle of >1s. The RICs gain their intelligence by the installation of Apps.

The Near-RT RIC xApps are deployed to control RAN decisions like handover management.

In the Non-RT RIC control functions, like cell shutdowns are managed. The approach of

extending the functionality and intelligence of the RAN through xApps and rApps involves

containerized Network Functions (NFs) delivered by different Vendors. In future releases, the

integration of these Apps should be integrated using Role Based Access Control (RBAC),

however, in current releases it is not implemented. All advantages of the Open RAN also

lead to new security challenges. Every additional interface or technology, but also the higher

number of involved stakeholders in Open RAN, enlarges the threat surface compared to the

prior 3GPP architecture. Attackers that were identified in prior researches were Outsiders,

Users, Cloud Operators, Insiders and RAN Operators [7].

Following central threat surfaces are considered by the O-RAN ALLIANCE [8]:

• Additional functions: SMO, Non-Real-Time RIC, Near-Real-Time RIC

5

Henrik Wittemeier Master Thesis Technical and Research Context

• Additional open interfaces: A1, E2, O1, O2, Open Fronthaul

• Modified architecture: Lower Layer Split (LLS) 7-2x

• Decoupling increases threat to Trust Chain

• Containerization and Virtualization: Disaggregation of software and hardware

• Exposure to public exploits may be increased due to use of Open Source Code

The rather large threat surface and high number of possible attackers implies logging of

security related events. The O-RAN ALLIANCE states in their specifications that “relevant

activities events SHOULD be logged and logs collected SHOULD be analyzed in real time” [8].

Beyond that, no specific requirements for logging are mentioned.

The observability over the given threats can be achieved through different solutions. In

general, logs for an event should be generated at the location where most available data

about the event is available. For example, the usage of a wrong password should be logged

by the application where the authentication is performed. In general, application related

events should be logged by the application. Applications know about their endpoints and

are able log the behavior that is connected to interacting with an application. Attacks that

do not interact with the application or exceed the intended usage of the application must

be considered on a lower level. As Open RAN is deployed in a Kubernetes Cluster, it is an

interesting point to generate logs. Possibilities and challenges for observability in Kubernetes

are reviewed in the next chapter.

2.2 Security Challenges in Containerized Environments

The introduction of containerization in the RAN infrastructure aims at enhancing the secu-

rity and scalability of the infrastructure.

2.2.1 Containerization

Containerization is a technology that introduces an additional isolation between the host

Operating System (OS) and the application. In opposite to traditional virtualization tech-

nologies, containerization only adds a small overhead to workloads. Instead of running a

virtual computer with its own OS and apps on top of the host OS, containers share the

kernel with the host OS (see Figure 2).

6

Henrik Wittemeier Master Thesis Technical and Research Context

Figure 2: Virtualization vs. Containerization [9]

Containers are built from container images. These images include all necessary libraries and

dependencies that an application needs to run. Container images are built in layers. To add

a file to a container, a new layer is added to an existing container image. Containers can be

created from scratch or using prebuilt images like “ubuntu” which include typical libraries for

applications built for Ubuntu. The layer approach makes similar image parts exchangeable

between container images decreasing resource usage.

The container image acts like a virtual file system. This virtual file system is available during

the lifetime of a container but is not persisted. Each container is started with the original

image. Applications inside the container cannot access the host file system. To ensure

persistence for specific files or locations in the container, a volume must be mounted. The

scheduling of the processes of the container is handled by the host OS kernel. To achieve

a sufficient isolation from the host, container processes are scheduled in their own kernel

namespace.

The management of the container life cycle is done by a container orchestrator such as

Docker. Docker adds an user interface to a container runtime such as containerd. With

Docker, additional functions such as exposing a container’s ports and mounting a host file

system into the container can be achieved with simple command line syntax. [10,11].

7

Henrik Wittemeier Master Thesis Technical and Research Context

2.2.2 Kubernetes

For larger containerized applications, a command line control for containers is not sufficient.

Kubernetes is a container orchestrator with features to scale workloads. It is used to deploy,

manage, and operate larger applications that involve multiple dependent containerized ser-

vices across a cluster of nodes. Kubernetes achieves its scalability by distributing workloads

across multiple worker nodes.

The deployment of Applications takes place over an exposed Kubernetes Application Pro-

gramming Interface (API) with a description in YAML files. The Kubernetes scheduler then

compares the desired cluster state with the current cluster state and adds missing resources

or increases the number of replications if performance indicators require that. A typical

Kubernetes cluster includes a few control-plane nodes and many worker nodes. [12]. While

the introduction of containerization increases the security, flexibility and scalability, it also

increases the effort of observing the infrastructure.

2.2.3 Observability in Kubernetes

The usual approach of observing activities on a server is to deploy a tool like Auditd [13].

Auditd interacts with the OS and captures security relevant events and stores them in log

file. This has the disadvantage that an attacker that already has gained access to a sys-

tem could easily manipulate the logs or even change the logging behavior of the tool that is

used [14]. In an containerized environment, the most interesting activities happen isolated

from the host OS as the Applications run in containers. As Containers have their own filing

system, the direct access to their logs is also not possible. The isolation requires a different

approach of activity monitoring. The dynamic distribution of containers above nodes has the

effect that containers have short life cycles. Possible forensic artifacts would not withstand

a redeployment of a container.

A better approach is to observe activities that happen inside a container from the outside.

Attackers are unable to manipulate the logging behavior and unable to identify the used log-

ging mechanism. Without their knowledge about the monitoring systems, the effectiveness in

detecting suspicious behavior would be higher. This also has the advantage that containers

can be kept lightweight as not every container needs the logging framework to be installed.

Kubernetes adds another challenge to monitoring due to its distributed nature. In addi-

tion to containers, nodes can also leave the cluster,losing potential artifacts in the process.

The implementation of a central logging database is necessary to reduce the effort of data

collection and ensure persistence of historic events.

8

Henrik Wittemeier Master Thesis Technical and Research Context

2.3 eBPF based Observability

The kernel of a Kubernetes node is shared between the host OS and the containers. Al-

though isolation prevents observing container activity within the OS, kernel-level events can

be traced.

A tool for configuring a logging behavior is eBPF. eBPF is an extension of the Berkeley

Packet Filter (BPF) which was historically used for packet filtering and evolved to a gen-

eralized in-kernel virtual machine. eBPF can be used to run programs inside the kernel to

extend its functionality. As containers and host OS share the same kernel, it is a promising

tool for activity monitoring.

The Kernel of an OS is the interface to the hardware of a computer. Every hardware interac-

tion like network traffic or disk writings are executed by kernel functions. To write a file to a

disk, several kernel functions and modules are involved. The Linux kernel offers hook points

between these functions. With the use of eBPF, it is possible to attach to this hook points

for the purpose of reading and manipulating data that is passed to the next function. In this

example, it is not intended to manipulate data but to log suspicious activity. The data that

is received from the hook point can be processed by the eBPF program. The possibilities of

processing in the kernel space are quite limited. eBPF Code is written in a C-like language

that is very restricted in its functionality. To prevent heavy resource allocation, following

restrictions are applied on eBPF Programs [15]:

• Only prebound loops and no recursion

• 512 Byte stack size

• Maximum of 1 Mio Instructions

• No floating point arithmetic

• No direct file access

• No global Variables

• No out of bounds memory access

These restrictions are enforced in the eBPF compiler and verifier. Programs that fail to be

verified are not loaded into the kernel. These strict limitations ensure that the functionality

of the kernel is not impacted. The usage of eBPF helper functions can increase these limits

but yet is not trivial to implement.

9

Henrik Wittemeier Master Thesis Technical and Research Context

From the kernel-space, it is not possible to collect the events and save them to a file, therefore

the data must be transmitted to user-space. This is achieved by using BPF Maps [16], BPF

maps provide storage that is shared between kernel and userspace. From the user space, this

data could then be retrieved and be further processed or persisted.

With the example of a hook point between functions for disk access, every writing action

would trigger the eBPF program that is attached to the kernel hook. To prevent a flooding of

unnecessary data, a filter mechanism must be implemented that either filters for interesting

events in kernel or user space. As the complexity of eBPF programs is very limited, advanced

filterings may not be possible. The possibility of kernel space filtering must be further

evaluated.

2.4 Sigma Project

The selection of the rule set format was made in favor of Sigma, because the format comes

with the largest open Source rule set. Due to the high acceptance in the community, over 500

contributors and around 20 commits per week assume that this project is actively maintained

and is future-proof.

Rego [17] is a format for policies that is standardized and used by many applications. How-

ever, available open source rule sets are not applicable to different applications due to their

different naming conventions of fields.

The Sigma Ecosystem comprises the Sigma Format, Sigma Tools and Sigma Rule Collec-

tions [18]. The purpose of the Sigma project is to have a publicly available Sigma rule set

based on an generic detection format. The general scope of the rules is to detect suspicious

behavior in previously collected application, system and auditlogs. Sigma rules have a for-

mat that is not locked to a product or vendor, but can be converted in to queries for various

Security Information and Event Management (SIEM) tools. The Sigma rule repository has

around 3500 rules which are grouped into different categories based on whether they belong

to general attackers behavior or to specific malware or vulnerabilities [19]. Characteristic for

the Sigma detection format is an easy to read generic intuitive structure.

1 t i t l e : Decode Base64 Encoded Text

2 id : e2072cab−8c9a−459b−b63c−40ae79e27031

3 s t a tu s : t e s t

4 d e s c r i p t i o n : Detects usage o f base64 u t i l i t y to decode a rb i t r a r y base64−
encoded text

5 r e f e r e n c e s : [. . .]

6 author : Dan i i l Yugoslavskiy , oscd . community

10

Henrik Wittemeier Master Thesis Technical and Research Context

7 date : 2020−10−19

8 modi f i ed : 2021−11−27

9 tags :

10 − attack . de fense−evas ion

11 − attack . t1027

12 l o g s ou r c e :

13 category : p r o c e s s c r e a t i o n

14 product : l i nux

15 de t e c t i on :

16 s e l e c t i o n :

17 Image | endswith : ’/ base64 ’

18 CommandLine | conta in s : ’−d ’ # Also cover s ”−−decode”

19 cond i t i on : s e l e c t i o n

20 f a l s e p o s i t i v e s :

21 − Leg i t imate a c t i v i t i e s

22 l e v e l : low

Code 1: Example Sigma Rule

This example rule shows the general structure of a Sigma rule. Each Sigma rule contains at

least three types of fields. The Metadata fields characterize the purpose of the rule, store

scientific references and map to tactics of the Mitre ATT&CK matrix, a table where many

tactics of attackers in different stages of an attack are listed [20]. Moreover the Sigma rule

has a mapping part where a log source is mapped to the rule. Sigma rules are in general

not locked to specific products, but possible log sources can be restricted through properties

that must be matched. These log sources can be abstract fields like “network connection”

or “file event” but can also be specific services like Apache or Auditd. As events can differ

between operating systems or are not expected to happen, log sources can also be operating

system specific.

The detection part of a Sigma rule characterizes the fields and values that should be included

in a log to trigger the rule. In this example, the detection is quite simple and is triggered if

a “*/base64 *-d*” is executed. For a string value, it is characterized if its an exact match or

if the value is expected at the begin/end of a value. Different field value combinations are

then linked with a condition. For more complex log rules, the conditions and fields can be

linked in a more sophisticated way.

The field “falsepositives” states why an event could be triggered even if there is no malicious

activity on the target host.

The core concept of Sigma rules is to query SIEM solutions for records of suspicious behavior.

11

Henrik Wittemeier Master Thesis Technical and Research Context

Log Generation

Log Collection

Normalization

Log Persistence

Threat Detection

Threat Detection

Normalization

Threat Persistence

Figure 3: Sigma usage in SIEM (left) vs SIGMA usage in this project (right)

The connection of eBPF with the Sigma detection format would extend the intended usage

of Sigma rules. A typical SIEM solution has several functions (see Figure 3). Logs generated

by applications or the host OS are collected and normalized. These normalized logs are then

persisted. The storing of logs is important because SIEM solutions are used after an incident

to reconstruct the attack. After an attack, the Sigma ruleset would be used to detect possible

threats based on the persisted logs.

In this thesis, the Sigma rule set is used to directly detect threats without the need of any

application or OS logs. Instead, the eBPF is configured with the Sigma rules to only output

the classified threats. These threats are then normalized and persisted for further usage.

This approach has some advantages and disadvantages. Advantages are lower resource usage

as only threats are processed and persisted, and all necessary data to classify a threat is

generated. A disadvantage is that possible threats that are not already known in the Sigma

rule set cannot be identified afterwards because no additional data is available. In the clas-

sic SIEM approach, a lot more data is available, therefore, it is more likely that additional

threats can be found afterwards.

Sigma rules are not written with the focus of matching kernel events. Many of the publicly

available Sigma rules focus on application-specific logs, such as web server access logs from

an Apache web server. The specific format that these logs have would not be observable in

the kernel space. Nevertheless, generic rules can also be found in the Sigma rule repository

which concentrate on network traffic, scheduled processes or file modifications.

The benefits of utilizing the Sigma detection format for event filtering could be the higher

acceptance of an established log format but also the active community that develops rules

that react to new threats. As the Sigma detection format has an easy abstract format, it

12

Henrik Wittemeier Master Thesis Technical and Research Context

would also be easy to extend the rules to the specific requirements of the Open RAN deploy-

ment.

2.5 Existing Solutions

To the best of my knowledge, there is only one existing solution that combines sigma rules

with the eBPF [21]. Other projects that were found during this research all come with their

own specific rule format. The project “huakiwi” uses the “eventstream” log source and gains

the logs from ebpf. This project seems relatively small as it currently supports only 20 rules

with the same logsource. As this project is very focused on the eventstream log source, it

looks quite hard to extend to generalized translation of sigma rules. The concept of using

eBPF for the observability of security relevant events is not new. There are many larger

active maintained projects as Falco or Tetragon which use their own rulesets [22]. Falco uses

the linux kernel layer with the help of eBPF to monitor anomalous activity. These generated

events are enriched with information such as container runtime metrics. Falco has a ruleset

with 160 rules. The rules are written as lists, macros or rules depending on their complexity.

Lists can include for example different filename macros and rules can contain more complex

behaviors.

Tetragon is similar to Falco, a monitoring tool that uses the eBPF that additionally can

also enforce access controls to kernel functions to prevent malicious behavior. Tetragon only

comes with a small set of policies that must be extended for sufficient logging.

13

Henrik Wittemeier Master Thesis Concept

Concept

The development of a security monitoring solution can have a foreseeable extent. However,

the effort in keeping these monitoring solutions up to date by updating the rulesets nearly

instantly to new vulnerabilities and attacks is time consuming. This is why the work of

this thesis will be the connection of the existing and actively maintained sigma ruleset to an

existing observability tool that then can be embedded in the Open RAN deployment.

3.1 Scope

The gained knowledge over the big threat surface of an Open RAN Deployment in section 2.1

would assume a monitoring tool that detects all different possible intrusion points. However,

this is not sensible as these threat vectors are very different in nature. The threat vector in

this thesis will concentrate on the security impact of “Containerization and Virtualization:

Disaggregation of Software and Hardware” [8]. As this threat vector cannot be captured by

application level logs, it is necessary to use a tool that has the functionality to monitor on

operating system basis. Containers do not have their own operating system but containeriza-

tion adds isolated containers with their own file system. It is necessary that the monitoring

solution is capable of monitoring events that occur inside the container. The focus area of

the monitoring tool will be generic events that can occur in an operating system. Application

specific logs, such as Webserver Access logs, are not concerned as this tool should be usable

independent from any applications. The event types that will be monitored are network

events, spawned processes and file events.

3.2 Design Considerations

This chapter will give a detailed insight about the design of the product. The requirements

that come from our research will be summarized and specified. The tool that suites these

14

Henrik Wittemeier Master Thesis Concept

requirements best is then chosen and fitted into the overall context.

3.2.1 Existing DFIR Environment

The new monitoring solution should integrate seamlessly into the exisitng Digital Forensics

and Incident Response (DFIR) tools from the 5G-FORAN-DFIR project.

DFIR Base Cluster
(Kubernetes Cluster C)

DFIR Satellite Tools

O-RAN SC Reference Implementation
(Kubernetes Cluster A & B)

Argo CD

Threat Detection

Analysetools

Ingress

managed remote cluster

DFIR Analyst
HTTPS

Argo CD

Response
Argo Events &

Workflow

DFIR Cluster Tools

(K8s) audit
logs

O-RAN logs

Observability & Scoping

Sandbox
VM

Forensic Container
Checkpoint

Log-Shipper

git

Figure 4: Existing DFIR Environment from 5G-FORAN [23]

Figure 4 shows the DFIR tools where the monitoring tool should be integrated. The base

of the deployment is the DFIR Base Cluster. This Kubernetes cluster hosts the central

OpenSearch database and the core ArgoCD instance. ArgoCD is used to deploy all Appli-

cations on the Base Cluster and to manage the remote clusters. ArgoCD installs the DFIR

Satellite Tools on the Open RAN remote Clusters.

The DFIR tools include Tetragon and Falco for Observability and Threat Detection and

Fluentbit for shipping those generated events and additional logs from Kubernetes and the

Open RAN deployment to the OpenSearch Database.

The generated and persisted Data can then be viewed in an OpenSearch dashboard which is

15

Henrik Wittemeier Master Thesis Concept

made available through an Kubernetes Ingress Controller. The cluster state is defined via a

Git Repository. All changes in the git repository are automatically applied to the cluster by

ArgoCD.

3.2.2 Architecture

The aimed architecture is based on the knowledge gained in the related work section. The

Open RAN Cluster is a Kubernetes Cluster with a number of nodes. The first node is a

control plane node, the other nodes are worker nodes that host the Open RAN Application.

Log Database

Kubernetes

Node 1

Node 2

Monitoring

Kubernetes CP

Monitoring

OpenRAN

Node 3

Monitoring

OpenRAN

Figure 5: Cluster Deployment

Figure 5 shows the distribution of resources. Every node is deployed with the monitoring

component regardless of its function. Even if the Kubernetes control plane does not seem

like an entrypoint for an attack, as it is not publicly available, it could be a destination of

further lateral movement. The persistence of logs and events is very important for subsequent

analyses. Persistence cannot be guaranteed on an infiltrated system, therefore an append only

log database must be installed on an external system. A central log database also improves

the accessibility to logs as every event can be accessed and analyzed at the same location.

When deploying an application on Kubernetes, a description of a desired target state is sent

to the control plane. The control plane then creates the resources that meet the target state.

The distribution of the resource is mostly a concern of the Kubernetes control plane. It takes

16

Henrik Wittemeier Master Thesis Concept

decisions with reference to remaining capacity on the different nodes. Capacity changes on

nodes cause movement of resources to other nodes. The state is therefore not permanent

and the enrichment of all monitored events with information about the source of the event

is required. At the kernel level, containers are namespaces. These namespaces are created

when a container is started and deleted after it is stopped. References to these namespaces

could help identify the source of an event at runtime, but potentially not at a later date. At

least the node, a timestamp, a container name and the container image must be added to

each event to identify an unambiguous event source. By storing the container image with

its version tag, conclusions about installed software can be drawn. As a Kubernetes cluster

itself is also a dynamic component, it is necessary to deploy the monitoring automatically to

new nodes that have been added. This is achieved through deploying the application as a

Kubernetes daemon set. Daemon sets are used to deploy one replication of a service to every

node.

3.2.3 Mapping

Tracing the eBPF is a challenge in terms of filtering for the right events. When attaching to

all kernel tracepoints in an idle Linux system, around 99000 events/sec are reported. With

Kubernetes running, already around 450000 events/sec are reported(see appendix B). This

provides some impression of the degree of filtering that is required. The filtering in this

project is performed by using sigma rules. These rules need to be translated to be utilized

by the monitoring tool.

Sigma Rule
Set

Rule Translator Logging
Tool

Tool specific
Format

Formatted
logging rules

Figure 6: Log Translator

Figure 6 shows the general workflow. The aim of this project is to create a translator that is

aware of the tool-specific target format and can apply the format to the Sigma rule set. The

key aspect of the translator is that additional rules within the sigma rule set do not require

a manual intervention to be translated. This generalistic approach is necessary to reduce the

maintenance to a minimum. The detection logic of a sigma rule has 3 components:

17

Henrik Wittemeier Master Thesis Concept

Logsource

Possible sigma logsources are mapped to the counterpart of the monitoring tool. As described

in section 3.1, file events, network events and spawned processes should be monitored. The

sigma logsource of these events is: “file event”, “network event” and “process creation”.

Existing and possible new rules within these logsources should be translated.

Fields

Sigma rules have fields with a value that build the match condition. All fields included in a

sigma rule should be supported and translated into the equivalent of the monitoring tool.

Values

The translation or reformatting of values should also be implemented as generalistically as

possible. The translation should not fail with new values.

During the lifecycle of the tool, it is possible that the format of sigma rules changes or

that log sources and fields are renamed. If the translation for a rule fails due to unknown

fields or logsources, the translator should output a warning about the failure but proceed

with the next rule, so that one failed rule does not break the whole translation process.

3.3 Tool Evalution

Following the description of the requirements and architectural circumstances, the next step

is to choose a tool that meets most of the requirements. The first decision to be made is if

the monitoring solution filters in the kernel space or in the user space.

An advantage of kernel space filtering is the low performance impact. For every kernel event

that is triggered, an immediate decision is made without further transmission to user space

reducing context switching cost. Processing the events directly where they occur also de-

creases the possibility of tampering by attackers. The disadvantage of kernel space filtering

is the complexity of developing kernel space programs. Section 2.3 describes the restrictions

for eBPF programs. The limited subset of C functions makes it difficult to implement com-

plexer detection logics.

The biggest advantage of user space filtering is the flexibility. Different languages and li-

braries can be used to achieve the intended behavior. The access to additional information,

like the container runtime information, is unlimited in user space. Errors in user space do not

18

Henrik Wittemeier Master Thesis Concept

affect the kernel behavior and are much easier to debug than kernel code. On the base of this

arguments, a simple test software was implemented. The two tools “Tracee” and “bpftrace”

are tested and rated on how well they meet the requirements.

An integral part of the implementation is the translation. Part of the Sigma project is the

pySigma tool which is a tool for writing converters. At the end of this section, it is reviewed

if this tool should be used for implementing the converter.

3.3.1 bpftrace

bpftrace is high level abstraction of the BCC language. It uses an awk, C and predecessor

tracer inspired language that is compiled into eBPF bytecode [24]. When implementing the

rule from section 2.4, the limitations of eBPF are already exceeded.

The rule has two conditions that should be met. The image path should end with “/base64”

and the command line arguments should include “-d” at any location. In C language, there

would be different ways to achieve this behavior. Approaches would contain the usage of

the “strstr()” function that can detect if one string is a substring of another string, or a

loop through a string and check if an intersection between the two strings can be found at

any location. The problem is that these strings can have an unlimited size. Especially the

“base64 -d” command could be given a long base64 encoded string to be encoded. As eBPF

does not support loops without predefined length or advanced string functions like “strstr()”,

this way would not work. Even a predefined loop with a high number of iterations would

work for most cases but not for all. The typical maximum length of a Linux file path is 4096

characters, which would equal a string size of 4096 bytes. The stack limit size is 512 bytes

for eBPF programs so any string comparisons are hard to implement. There are possibilities

to increase the stack limit by adding helper functions. Unfortunately this approach would

increase the complexity significantly and would not fit the approach of a tool that should be

configured or created in a generalistic way to translate different rule types.

With this knowledge it can be ruled out that a kernel space filtering solution would succeed

in this project.

3.3.2 Tracee

Tracee is an open source project launched by Aquasecurity. Tracee is an eBPF based mon-

itoring tool that is created to detect attacks in containerized environments like docker or

Kubernetes [25]. To ensure a seamless integration into existing containerized environments,

Tracee is deployed in a Docker container that includes all components of the monitoring chain.

19

Henrik Wittemeier Master Thesis Concept

As Tracee is open source, these container images can be modified and rebuilt to implement

individual functions [26].

Figure 7: Tracees Architecture [27]

Figure 7 describes the architecture of Tracee. Tracee has three components. The event

generation is happening with eBPF in kernel space. Tracee provides a Golang App that

configures the eBPF programs and also receives the generated events. The received and

formatted events are then enriched with information from the container runtime engine. The

events can be unchanged eBPF events or higher level events that are derived from multiple

events. An example for a higher level event is the “file modification” event that is built from

“fd install” and “filp close” events. Then, all events are forwarded to the interpreting part

of the Tracee deployment. There, every event is compared to the predefined signatures to

decide if an event is marked as match or is dropped. Filter rules are called signatures in the

Tracee environment. Tracee can be configured with Rego or Go signatures. Matched events

are output to a file. This file can be monitored for further processing or external persistence.

The important difference to bpftrace is the user space filtering which does not restrict the

20

Henrik Wittemeier Master Thesis Concept

complexity of filter rules. The difference between the Rego and the Go Signatures is that

the Rego signatures can be added at runtime, while the Go signatures must be added at

compile time. The Tracee documentation writes about Rego signatures, that come with a

performance overhead.

The implementation of the sigma rule from section 2.4, as Rego and Go Signature and its

detection part would look like the following.

1 [...]

2 tracee_match {

3 input.eventName == "sched_process_exec"

4 cmd_path = helpers.get_tracee_argument("cmdpath")

5 endswith(cmd_path , "base64")

6 argv = helpers.get_tracee_argument("argv")

7 some i

8 argv[i] == "-d"

9 }

10 [...]

Code 2: Implementation of the Sigma rule from section 2.4 as Rego Signature

1 [...]

2 func (sig *DecodeBase64EncodedText) GetSelectedEvents () ([] detect.

SignatureEventSelector , error) {

3 return [] detect.SignatureEventSelector{

4 {Source: "tracee", Name: "sched_process_exec", Origin: "*"},

5 }, nil

6 }

7 func (sig *DecodeBase64EncodedText) OnEvent(event protocol.Event)

error {

8 eventObj , ok := event.Payload .(trace.Event)

9 if !ok {

10 return fmt.Errorf("invalid event")

11 }

12 switch eventObj.EventName {

13 case "sched_process_exec":

14 argv_arr , err := helpers.GetTraceeSliceStringArgumentByName(

eventObj , "argv")

15 cmdpath , err := helpers.GetTraceeStringArgumentByName(eventObj

, "cmdpath")

16 if err != nil {

17 return err

18 }

19 if strings.HasSuffix(cmdpath , "base64")

21

Henrik Wittemeier Master Thesis Concept

20 {

21 for _, arg := range argv_arr {

22 if strings.Contains(arg , "-d"){

23 [...] // Trigger Event

24 }

25 }

26 }

27 }

28 [...]

Code 3: Implementation of the Sigma rule from section 2.4 as Go Signature

The Rego format comes from the Open Policy Agent (OPA) ecosystem which is a tool for

implementing policy-based control in software systems. As the only purpose of this language

is the definition of policies, it is very straightforward to implement the sigma rule. Code 2

line 3 is the matched Tracee logsource for “process creation”. Lines 4 and 6 define which

fields should be used, and lines 5 and 8 check if the value matches the sigma rules values. It

is remarkable that even the descriptor “endswith” is the same as in the sigma Rule.

The Golang snippet Code 3 shows a lot more code. The layout is the same but not as compact

as in the Rego snippet. The logsource is matched in line 4, the fields are retrieved in 14 and

15 and the values are checked in lines 19 and 21.

The Golang snippet might look more complex on first sight, but does indeed offer a lot of

flexibility. In the Go signatures, the whole Go language with its packages can be utilized

while the Rego language is not a fully capable programming language. As the intention

of this work is to write a generalistic translator, the fully customizable codebase of Go is

preffered over the Rego format. Another advantage of go files is the potential performance

increase through compiling them into the Tracee executable.

3.3.3 pySigma

pySigma is a python library that is used to convert the abstract sigma rule format into

queries. pySigma implements classes that can be overridden to implement a specific conver-

sion behavior. Existing implementations are for example “pySigma-backend-sqlite” [28] or

“pySigma-backend-elasticsearch” [29]. As the detection conditions and logic of a sigma rule

has an abstract format, it makes the implementation of a new Logging Source much easier.

The creation of sigma rules is possible without any specific syntax, therefore, it cannot di-

rectly be used in database queries or Code conditions.

The backend project itself consists of two parts: A pipeline and a backend. The backend

part is used to define a product specific syntax. The pipeline part is to adapt sigma specific

22

Henrik Wittemeier Master Thesis Concept

field names or logsources to the destination names and logsources.

The backend is usally utilized to generate short database queries. A Tracee signature needs

a lot more logic than a SQL backend for example. To use the pySigma project, a Tracee

signature template is needed that is the same for every Signature, despite a small query part.

If that is accomplishable, pySigma is a great choice as it already resolves the abstract rule

format on its own [30].

3.4 Integration Concept

In the following section, the previous knowledge is combined with the selected tools in an

overall design. The overall design also includes automated provisioning via CI/CD and

deployment and integration in the Open RAN cluster. Despite the earlier chosen tools, some

helper functions are added that support the seamless integration.

CI/CD Pipeline

DFIR Cluster

OpenRAN Cluster
Node 1

ArgoCD

OpenSearch

Tracee

Kubernetes CP

fluentbit

Node 2

ArgoCD
Tracee

OpenRAN

fluentbit

Node 3

ArgoCD
Tracee

OpenRAN

fluentbit

Sigma Rule Repository

pySigma-backend-tracee

Tracee Image Builder

Container Registry

Tracee Repo

Figure 8: Toolchain of the deployed monitoring solution

3.4.1 Toolchain

To ensure a seamless integration into the existing DFIR Tools and the Open RAN Deployment

we use OpenSearch as a Database. All tools that are used in the deployment of Tracee, are

briefly introduced.

23

Henrik Wittemeier Master Thesis Concept

OpenSearch

The OpenSearch project is used in the DFIR Tools as storage for Java Script Object Notation

(JSON) documents. OpenSearch comes with a search engine that enables very efficient

filtering and searching and aggregation in unstructured Datasets [31].

Fluentbit

As Tracee does not have any native database connection, an additional tool is required.

Tracee can be configured to write data as JSON to a file. FluentBit is able to monitor this

file and ship every change to openSearch. Fluentbit can be configured with filters and parsers

which are not required in this project because Tracees output format is defined in the Tracee

configuration so it can be directly shipped to OpenSearch [32].

ArgoCD

Tracee comes with Helm Charts for an easy Kubernetes Deployment. A Helm chart is a

recipe that describes the deployment of Tracee. Tracee can be configured with a policy

shipped in a Kubernetes custom resource definition. It is part of the Helm chart and defines

which Tracee signatures should be monitored. When deploying Helm Charts to Kubernetes

without additional tooling, changes to the Helm charts will not be applied to the Cluster.

However, every update in the Sigma rule repository would trigger a change of the Helm

charts. As automation has a high priority in this project, Tracee is deployed via ArgoCD

to the Cluster. ArgoCD is configured with the repository where the Helm charts are stored,

and monitors and applies any changes to the Helm Charts [33].

3.4.2 CI/CD

To decrease the maintanence effort to a minimum, it is important that additional Sigma rules

that are pushed to the Sigma rule repository are deployed automatically to our cluster. This

is also necessary to always be up to date with the recent exploits and vulnerabilities that

should be monitored.

The pipeline has three stages that are executed sequentially. The Pipeline is divided into

parts where interesting Artifacts are expected. This is done to achieve traceability of possible

build failures or application misbehaviors.

24

Henrik Wittemeier Master Thesis Concept

Rule Collection

The first step is to clone the Sigma repository and pack the rules as an artifact for further

steps.

Rule Conversion

The previously packed rules are unpacked and translated with the implemented pySigma-

backend-tracee. The Artifacts of this stage are the Go signatures that are packed as artifact.

Image build

This stage pulls the Tracee repository into the workspace. The original Tracee signatures

are then replaced with the previously generated go signatures. The new signatures are then

referenced in the Tracee code to be compiled. The final build of the container image is then

executed via a build script that comes within the Tracee repository. The custom Tracee

container image with the compiled Tracee binary is then pushed to a local Docker registry.

All used Go signatures must be referenced in the Helm chart, so it is updated and pushed to

the git repository.

25

Henrik Wittemeier Master Thesis Backend Implementation

Backend Implementation

The implementation of the converter is based on the developed concept. This chapter will

describe the necessary implementation and integration steps for the development of the mon-

itoring solution.

4.1 Development Process

The development process is divided into the development of the rule converter and the steps

required to connect all components.

The implementation of a project always starts with the parts that have the highest possibility

to fail. As the development of the converter has the highest extent and its feasibility is to

be proven, that developement is the first part. Subsequent to a successful rule conversion,

the adaptation of the trace output format is concerned. If each component works on its

own, the whole system is integrated with the OpenSearch Database. For this integration, the

configuration of FluentBit is necessary. All configurations are then described via HelmCharts

for an automatic deployment of all components together.

4.1.1 pySigma-backend-tracee

The implementation of the pySigma-backend-tracee that works as the rule converter is the

central part of the project. The Sigma project is not typically used to configure the logging

behavior of a tool, but rather to search through existing logs from SIEM solutions. Thus, so

some additional work needs to be done.

The development of the pySigma-backend-tracee can be split into three parts: The imple-

mentation of a signature template, the pySigma backend and the pySigma pipeline.

26

Henrik Wittemeier Master Thesis Backend Implementation

Signature Template

The pySigma framework is built to create queries that are used to search through databases.

As Tracee is configured through Go code, the signatures have a more complex structure than

typical database queries. Variables that are used and evaluated in a Sigma rule must first be

declared and then initialized.

Each custom Tracee signature derives event data from a built in a Tracee event. To achieve

the execution of the newly created event, a callback must be registered at the parent event.

The parent event is chosen through setting the “Source:” and “Name:” fields of the “Signa-

tureEventSelector” function (see Code 4). The logsource that is inserted there depends on

the Sigma rule and is mapped in the pySigma pipeline subsubsection 4.1.1.

1 func (sig *<SignatureName >) GetSelectedEvents () ([] detect.

SignatureEventSelector , error) {

2 return [] detect.SignatureEventSelector{

3 {Source: "<rule.logsource.category >", Name: "<rule.logsource.

product >", Origin: "*"},

4 }, nil

5 }

Code 4: Setting the logsource for the signature

In pySigma, it is not possible to use a different template for each logsource, so a template

must be created that includes all values and fields for every possible logsource. These fields

could then be evaluated for their values in a query with a simple structure like a database

would use. As each event delivers different variables, the initialization is performed separately

for each event.

1 package main

2 switch eventObj.EventName {

3 case "file_modification":

4 file_path , err = helpers.GetTraceeStringArgumentByName(eventObj , "

file_path")

5 case "net_packet_ipv4":

6 dst , err = helpers.GetTraceeStringArgumentByName(eventObj , "dst")

7 src , err = helpers.GetTraceeStringArgumentByName(eventObj , "src")

8 case "sched_process_exec":

9 argv_arr , err := helpers.GetTraceeSliceStringArgumentByName(

eventObj , "argv")

10 for _, arg := range argv_arr {{

11 argv = argv + " " + arg

12 }}

27

Henrik Wittemeier Master Thesis Backend Implementation

13 cmdpath , err = helpers.GetTraceeStringArgumentByName(eventObj , "

cmdpath")

14 }

Code 5: Initialization of event specific variables

The event source is specified in Code 4, so it can be accessed in Code 5. The variables that are

initialized in this section can then be accessed later if needed, within the query. This mapping

must be done for every event type that should be supported by the pySigma-backend-tracee.

1 if <query > {

2 metadata , err := sig.GetMetadata ()

3 sig.cb(& detect.Finding{

4 SigMetadata: metadata ,

5 Event: event ,

6 Data: nil ,

7 })

8 }

Code 6: Template for the detection logic

The parameter “query” is substituted with the query that will be built in the next section.

The query includes combinations of comparisons and functions that return boolean values.

If the returned boolean is true, the event matched the Sigma rule, so the “sig.cb()” is called

with metadata and event information as parameters which ensures that the event is issued.

pySigma Pipeline

The fields in the Sigma rule differ in their names and syntax to the fields in the Tracee

signatures. The pipeline part of the pySigma backend is therefore used to rename the fields

of a Sigma rule to match the same fields in the Tracee signatures.

The first transformation for each rule is the logsource mapping. As event sources in Tracee

have different names than the generic Sigma sources, each logsource must be renamed. The

logsource mapping also looks at some Sigma fields to choose the right logsource, so that all

fields intersect between Sigma and Tracee sources.

The same applies to the fields. Each field that can be used by a Sigma rule must be mapped

to an existing variable in the Tracee Signature Go template.

28

Henrik Wittemeier Master Thesis Backend Implementation

Sigma Logsource Sigma Field Tracee Logsource

linux file event file modification

linux network connection Initiated net tcp connect

linux network connection DestinationIP net packet ipv4

linux network connection DestinationHostname net packet dns

dns query net packet dns

dns answer net packet dns response

proxy sc-status net packet http response

webserver sc-status net packet http response

proxy net packet http request

webserver net packet http request

linux process creation sched process exec

Table 1: Mapping of Sigma Logsources to Tracee Logsources

The logsource mapping is shown in Table 1. The scope of Sigma logsources is broader than

the Tracee counterpart. The Linux network connection can define packet transfer on differ-

ent layers. The layer that is needed to be monitored must therefore be gathered from other

fields of the Sigma rule. For example the “Initiated” flag states that the TCP three-way

handshake was successful, so the field suggests that a TCP connection must be the objective

of the rule.

The implementation of the field related log source transformation was done using the “Rule-

ContainsFieldCondition”. This condition was not initially supported by pySigma. Thus,

an issue with the description of the needed implementation was created in the pySigma

repository which was than implemented by the maintainer of the pySigma project Thomas

Patzke.

29

Henrik Wittemeier Master Thesis Backend Implementation

Sigma Field Tracee Field

c-useragent httpUserAgent

cs-user-agent httpUserAgent

c-uri httpUri

cs-uri httpUri

cs-method httpMethod

cs-host httpHost

sc-status httpStatusCode

c-uri-extension httpUri

c-uri-query httpUri

cs-uri-query httpUri

cs-uri-stem httpUri

cs-cookie httpCookie

dst ip dstIP

cs-referer httpReferer

TargetFilename file path

Image eventObj.ProcessName

DestinationIp dstIp

DestinationHostname dstHostname

SourceIp src

CommandLine argv

Table 2: Mapping of Sigma Fields to Tracee Logsources

The fieldmapping in Table 2 includes all fields that where found in the implemented Sigma

rules. Some fields with different names implement the same logic, for example “c-uri-query”

and “cs-uri-query”. The Tracee fields come from the created template and are gathered there

from more complex data structures.

Some of the Sigma values have a different format than the Tracee values. For example,

the “Image” field which represents the name of an executable in Sigma rules always begins

with a “/” because it should match the files path. In Tracee, the name of the executable is

taken from the process name which does not include a leading “/”. This difference can be

eliminated by using the “ReplaceStringTransformation” with a regular expression.

30

Henrik Wittemeier Master Thesis Backend Implementation

pySigma Backend

In comparison to the pySigma pipeline part, the pySigma backend part implements a more

generic translation. The backend is used to define the operators for different types of com-

parisons and the general query structure is described. Furthermore, language specific escape

patterns and characters are specified. As the task of this backend is to convert something

like “image |endswith <string>” into Go code with matching functionality, simple string

comparisons do not work. The best way to achieve the functionality is to use regular ex-

pressions. Regular expressions can use wildcard operators for ambigous parts of strings.

So, the condition “image|endswith <string>” would become “regexp.MustCompile(‘.∗ < string >

$‘).MatchString(image)”. This function returns a boolean value whether the field matches the

expression or not.

The concatenation of conditions is done automatically by the pySigma tool. Only the opera-

tors must be defined. For other evaluations that cannot be performed with the regexes, such

as numeric comparisons, the syntax must also be defined.

The backend combines all steps taken to fill the gaps in the Go template with the mapped log

source and the generated query. The result is a complete Go signature with the implemented

detection conditions which is than written to a file.

4.1.2 Tracee Output Format

The default output format of Tracce is a JSON which would be the matching format for

OpenSearch. However, the Tracee default format is not consistent as it includes fields that

have variable types. For some events, these types are values, and for other events, they store

arrays. OpenSearch builds its table schema based on the first event it receives. Events with

a different format cannot be imported into the schema, causing those events to be dropped.

Tracee comes with an output customization tool based on the Gotemplate package [34].

This package is used for filling templated text files with values. To produce the correct

JSON format, a template with fixed fields and types is created so it can be imported by

OpenSearch.

4.1.3 Fluentbit Integration

Fluentbit is used to send previously generated output of the Tracee container to the OpenSearch

Database. To get Fluentbit to work, it needs access to the output of Tracee. FluentBit is

deployed via Kubernetes in a container. To provide access to the output, both, the Tracee

and FluentBit container need to mount the same folder.

31

Henrik Wittemeier Master Thesis Backend Implementation

By adding the location of the Tracee output file to an input in the FluentBit configuration,

this file is monitored for any file changes. If FluentBit finds any new data, it is send to

OpenSearch. As the format of the logs was previously defined to match the OpenSearch

Schema, the logs do not need to be parsed by FluentBit anymore. To distinguish logs from

other log sources, they are tagged with a “Tracee” tag.

4.1.4 Helm Charts

Tracee comes with Helm Charts for the deployment. These Helm Charts include a default

policy that specify which signatures are logged. As this project creates its own Tracee

signatures, a policy with the custom Tracee signatures must be created and deployed to the

cluster. The Custom Resource Definition just lists all signatures that were created.

1 ap iVers ion : t r a c e e . aquasec . com/v1beta1

2 kind : Po l i cy

3 metadata :

4 name : Sigma−t r a c e e

5 annotat ions :

6 d e s c r i p t i o n : Traces events der ived from Sigma Rules

7 spec :

8 scope :

9 − g l oba l

10 r u l e s :

11 − event : ADSe l fSe rv i c eExp lo i ta t i on

12 − event : APT40DropboxToolUserAgent

13 − event : APTUserAgent

14 [. . .]

Code 7: Custom Resource Definition for Tracee

4.2 Testing

Software testing is an essential step during development to ensure that the software meets its

functional and non-functional requirements. This section focuses on the functional testing of

the implemented monitoring solution. The non functional requirements are tested in chap-

ter 5. By systematically testing the monitoring behavior of the application, the tests help

validating the software’s behavior under various scenarios including normal operations and

edge cases. The insights gained through testing are crucial for this type of software product

because issues in the detection logic would not be noticeable in productive environments, but

32

Henrik Wittemeier Master Thesis Backend Implementation

lead to missing security related events.

A usual approach of software testing is to measure the code coverage while executing auto-

mated test cases. When each conditional path is tested, the functionality of the application

can be confirmed.

Tracee is delivered in a production ready framework which is great for fast deployment of the

tool, but would require a lot of effort to implement in an automatic test environment. Tracee

has a lot of dependencies to the operating system and Kubernetes, therefore, the testing in

this project is executed manually.

The manual workflow of testing Tracee is straightforward. Each Sigma rule has a different

logsource with different fields. For a sensible test extent, each logsource is tested with all

its fields and with combinations of fields. As combinations have all the same scheme, not

every possible combination is tested, but at least one per logsource. Each test is executed

based on a matching Sigma rule. To eliminate possible code awareness of the developer,

each Sigma rule is translated to a test command using ChatGPT-4o [35]. The generated

command is then executed in a Kubernetes Pod on a cluster where the custom version of

Tracee is installed. If the event is reported immediately after executing the test, the test is

considered as passed. If no event is logged, the test is considered as failed. To prevent the

flooding of the database with false positives, edge cases that do not match the rule are also

tested. ChatGPT is queried with the following query:

“A Monitoring tool for a Linux system based on the Sigma rule set should be tested for its

functionality. Analyze the following Sigma rule for its detection logic and output at least as

much commands as needed to fully test the functionality of that rule. Output commands

that would not trigger this rule and output commands that would definitely trigger this rule.

Remember that software testing should always include edge cases and various combinations

of normal operations. Output only the commands without any description. You can use your

knowledge about common software issues to write the test commands. Sigma Rule:

<SigmaRule>”

If this example is executed with the Sigma rule from Code 1, the commands in Code 8 are

generated.

1 # Commands that would not trigger the rule:

2 base64 input.txt > output.txt

3 echo "SGVsbG8gd29ybGQ=" | base64

4 cat input.txt | base64 > encoded_output.txt

5 base64 -w 80 < input.txt

6 echo "Test message" | base64 -w 0

7 # Commands that would definitely trigger the rule:

33

Henrik Wittemeier Master Thesis Backend Implementation

8 base64 -d input.txt > output.txt

9 echo "SGVsbG8gd29ybGQ=" | base64 -d

10 cat encoded.txt | base64 --decode > decoded_output.txt

11 base64 --decode input.txt > decoded_output.txt

12 echo "SGVsbG8gd29ybGQ=" | base64 -d | grep "Hello world"

Code 8: Test commands generated by ChatGPT

This code is then executed in a container on the destination host. Possible dependencies like

files or executables are previously added without further notice.

If a test is not passed, the issue in the code has to be fixed. After the fix, all tests must be

executed again until all tests pass. A Large Language Model (LLM) like ChatGPT can make

mistakes. All test fails are questioned for the reason of their failure. If the failure is caused

by a wrong test command, the command is skipped. To have an overview over the test effort

that was made, Table 3 shows which logsource and field combinations where tested with how

many different tests. All tests can be found in the pySigma-backend-Tracee project repo [36].

LogSource Tested

Sigma

rules

Fields Positive

tests

Negative

tests

file event 1 Image, Targetfilename 4 5

network connection,

dns

2 Image, DestinationHost-

name, DestinationPort,

DestinationIp

31 19

process creation 2 Image, CommandLine 11 11

proxy generic, web-

server generic

4 c-useragent, cs-method, c-

uri, cs-host, c-uri-extension,

cs-cookie, cs-uri-query

30 22

6 9 13 76 57

Table 3: Testcases for the implementation of the pySigma-backend-Tracee

As this tests can be considered as acceptance test, the code base was improved until all tests

were passed true positive and true negative. For the further implementation of log sources

or different fields, these tests must be expanded. As every change in the codebase could

break the functionality, all tests must be repeated before publishing a new release. When

the applications complexity will further increase, automatic testing should be concerned in

the future.

34

Henrik Wittemeier Master Thesis Evaluation

Evaluation

5.1 Performance Measurements

The implementation of observability always comes with resource costs. In order to assess the

extent to which the implementation can be used in a real world scenario, some metrics are

collected below.

5.1.1 CPU

The CPU consumption of Tracee is related to the load on the cluster. The more events on the

kernel occur, the more filtering must be done by Tracee. To get a good performance insight,

a 5 node cluster with limited resources is used. The cluster includes deployments for Tracee,

the Open RAN Non-RT RIC, benchmark tools to increase the CPU utilization and tools for

performance measurements and visualization. The test cluster has 1 control plane node and

4 worker nodes with each 8 CPU Cores, 8 GB of Memory and 12 GB disk size. These small

resources are chosen to have a higher relative utilization of the cluster. The measurement

is performed with different loads. The first measurement is an idle measurement where the

Non-RT RIC is deployed without any additional load. With 8 CPU cores, the maximal CPU

utilization would be 800%.

35

Henrik Wittemeier Master Thesis Evaluation

Figure 9: CPU Measurement Idle State. Tracee 2%, Total 7%

An idle system is not very meaningful to characterize the performance impact of Tracee (see

Figure 9). To get a better impression whether Tracee takes a lot of system resources to

observe events, the system congestion is measured with artificial workloads.

The custom Tracee deployment observes file changes, network traffic and processes that are

spawned. These categories are evaluated with the following measurements.

File Access Stress Test

Tracee observes every file change and checks if it matches any rule that is loaded into Tracee.

The expectation is that the CPU utilization increases with the amount of file changes.

To measure the performance, a script is executed that writes files sequentially to the disk.

Figure 10: Disk Stress test with 64KB files. Tracee 355%, Total 520%

Figure 10 shows that Tracee takes around 350% of CPU time which is a significant amount.

The same test is executed with larger files to check the relation to the file size.

36

Henrik Wittemeier Master Thesis Evaluation

Figure 11: Disk Stress test with 4096KB files. Tracee 60%, Total 200%

As visible in Figure 11, the file size does matter a lot in terms of Tracees overhead. Tracee

does not process the whole file, only the metadata of the file such as path, time and device

the file belongs to. By increasing the file size, the number of files written to the disk is

reduced and fewer events must be processed by Tracee.

Rule Set size

Another factor that has a huge impact on Tracees performance is the size of the rule set.

This test was executed again with the sequential writing of 64KB sized files. By decreasing

the size from 212 rules to 1 rule, the CPU utilization is decreased from 355% to 0.14%.

Figure 12: Disk Stress Test with 64Kb Data set and only 1 Sigma Rule loaded Tracee
0.14%, Total 160%

This high difference in CPU utilization is concerning as it implies that enlarging the rule set

would further increase the overhead of Tracee.

37

Henrik Wittemeier Master Thesis Evaluation

Figure 13: Measurement of performance with different rule set sizes

The blue graph in Figure 13 gives a more detailed view over the relation between the CPU

usage and the rule set size. The green line shows how many files were written to the disk per

second during the stress test. As expected the Diagram shows that with a growing size the

CPU utilization of Tracee increases. The green line shows that the performance of the stress

test is also impacted by the rule set size.

Network stress test

To test the Network related performance of Tracee, a container is used that downloads a

6GB file with a speed at around 160Mbit/s.

38

Henrik Wittemeier Master Thesis Evaluation

Figure 14: Network Stress Test with 160 Mbit/s download Tracee 330%, Total 450%

Again Tracee adds significant overhead to the CPU load of the node. When observing

the graph of Tracee in relation to the graph of the stress-test container, it is also visible

that Tracees graph takes longer to settle down. That comes from Tracees built in caching

mechanism that caches events when Tracee is not fast enough to process them.

5.1.2 Memory

The idle memory Consumption of Tracee lays at around 220 Megabytes per node. Even

under increased loads, this values does not change. If the load however exceeds a limit where

Tracee is not able to process the events as fast as they occur, Tracee begins to cache them.

This results in higher memory consumption. The maximum available memory is set in the

Tracee configuration file.

39

Henrik Wittemeier Master Thesis Evaluation

Figure 15: Memory Consumption while Caching. Tracee 1.35GB, Total 2GB

When the cache is full, additional events are dropped with a warning e.g. “Lost 11988

events”.

5.1.3 Time accuracy

The time between the occurrence of an event and the Tracee output is dependent on the

congestion of Tracee. If Tracees cache is used heavily, the output of the event is delayed.

In normal operating state the output is near to instant. More important as the response

time is the accuracy of the timestamps. The timestamping of events happens in the eBPF.

Therefore, the timestamp is as accurate as it can be. The caching of Tracee does not have

any effect on the timestamps.

5.1.4 Ease of use

The custom version of Tracee is very easy to use. In general, it can be used the same way as

the official Tracee. The only thing that has to be changed in the deployment instructions is

the container image name, so that the custom Tracee is pulled. Besides the container image,

the project related repository includes also Helm charts that lighten the deployment.

On a running Kubernetes Cluster with argoCD installed, the whole tooling can be installed

with just adding the repository to argoCD. The rest of the deployment is then automatically

40

Henrik Wittemeier Master Thesis Evaluation

done by ArgoCD. Tracee does not need any more manual intervention. Events can be logged

to a file or a database. Within the 5G-FORAN project, the events are logged to an

OpenSearch Database which enables advanced filtering and aggregation mechanisms.

5.1.5 Ease of adaption

The idea of combining Tracee with Sigma improved the useability of Tracee. By using an

established abstract rule format, it is not necessary to understand the complex signature

format of Tracee and rules can be reused and shared between different tools.

During the testing of Tracee in the Open RAN deployment with some example attacks, some

missing detection vectors were found (see below section 5.2.2). The process of developing

one of these rules is exemplary evaluated.

The purpose of the created Sigma rule is to monitor changes of the “authorized hosts” file.

This file stores the public part of a SSH key that gives remote access to the system. Attackers

could use this way to get a persistent access to an attacked system.

The first step is to fill the Sigma rule with metadata. The metadata is important to un-

derstand why the Sigma rule exists and what potential danger is connected to the rule. A

known attack vector like the persistence via SSH can be looked up in the Mitre ATT&CK

Matrix [20]. The found T1098.004 Technique is then linked in the Sigma rule with its cat-

egory in the tag field. The other metadata fields of the Sigma rule are self-explanatory.

The detection of this rule is simple. If a file modification happens and the path includes

“authorized keys”, the rule should be triggered.

1 t i t l e : I n s e r t key to author i zed Keys

2 id : a9d876ea−d1c3−4bb2−8af4−56c85989cbb0

3 s t a tu s : t e s t

4 d e s c r i p t i o n : Detects changes o f the . ssh / author i z ed keys

5 r e f e r e n c e s :

6 − https : //www. ssh . com/academy/ ssh / author ized−keys− f i l e

7 author : Henrik Wittemeier (TH Koeln)

8 date : 2024−11−15

9 tags :

10 − p e r s i s t e n c e . account−manipulat ion

11 − p e r s i s t e n c e . T1098 .004

12 l o g s ou r c e :

13 category : f i l e e v e n t

14 product : l i nux

15 de t e c t i on :

16 s e l e c t i o n :

41

Henrik Wittemeier Master Thesis Evaluation

17 TargetFilename | endswith : ’ author i zed keys ’

18 cond i t i on : s e l e c t i o n

19 f a l s e p o s i t i v e s :

20 − Accepted Changes o f Authorized Keys

21 l e v e l : high

Code 9: Custom Sigma Rule

When the Sigma rule is pushed to the pysigma-backend-tracee repository in the correct

directory, a CI/CD pipeline is initiated that converts the Sigma rule to a go signature, com-

piles it into Tracee and uploads the custom Tracee container image to a registry. Another

file that is changed is the Custom Resource Definition which holds all events that should be

observed by Tracee.

As the recommended deployment involves argoCD, every change in the Repository is auto-

matically applied to the Kubernetes cluster. The change of the custom resource definition

triggers argoCD and initiates a restart of Tracee. During the restart of Tracee, the new

container image is pulled.

So, the procedure of expanding the rule set involves only two steps, creating the rule and

pushing the rule to the repository. After pushing the rule to the repository, no further action

must be taken.

5.1.6 Falsepositives

False positives have an important role in monitoring tools. A high number of false positives

floods databases and distracts from true positives.

The Sigma equipped Tracee generates false positives for Network discovery and System Dis-

covery. These rules are triggered by the Container Network Interface (CNI) container execut-

ing the “ip”, “iptables” and “hostname” command that needs the information for functioning.

These false positives come from the difference of the typical Sigma application area and the

adapted Kubernetes context.

The false positive rate is at about 90 hits per minute.

5.2 Security Effectiveness

As mentioned above, this master thesis was initiated in the 5G-FORAN research project.

The success of the research project is measured by combining both sub projects. The 5G-

FORAN-ATTACK part executes attacks and the 5G-FORAN-DFIR project analyzes their

collected logs if any forensic artifacts can be found to reconstruct the attack.

42

Henrik Wittemeier Master Thesis Evaluation

The tools used for generating forensic artefacts where Falco, Tetragon, k8saudit and Tracee

with the custom rule set. In this thesis, only the results for Tracee will be analyzed. The

following chapter will characterize the security effectiveness by reviewing the generated events

of Tracee for specific attacks. Tracee is tested in this chapter configured with the public

available Sigma rule set.

5.2.1 Review Methodology

To rate the security effectiveness of the results, following test outcomes are possible

• DS - Successful detection - An event that matches the attack was generated

• PS - Partly successful detection - An event was generated which is part of the attack

but not the attack itself

• NS - Detection not successful - No event was generated, creating a matching Sigma

rule is possible

• NP - Detection not Possible - No event was generated and it is not possible to create

a Sigma rule for this attack

For all attacks that are not successfully detected, it is investigated if a Simga rule could be

created to detect that event. Only if no detection would be possible with a custom Sigma

rule, the result is “Detection not possible”

5.2.2 Attacks

ID-KD-01

This attack aims at detecting the API endpoints of the cluster using kdigger to reveal sensitive

information and installed components.

Result: PS

Tracee threw events for the installation of packages and the changing root certificates, which

indicates malicious behavior but did not detect the execution of kdigger itself. The successful

detection could be achieved by implementing a Sigma rule which matches the kdigger process

name.

43

Henrik Wittemeier Master Thesis Evaluation

ID-FS-01

The attack executes an Secure Shell (SSH) file transfer to a service running on a non-standard

SSH port on an external host.

Result: NS

The detection of SSH traffic is not successful as a rule for it is missing in the Sigma ruleset.

It is not possible to write a rule for Tracee that detects SSH traffic on non- standard ports

because Tracee events can only be evaluated with the TCP header, which does not contain

any information about the application protocol. To detect this event, a rule was created,

that matches every packet that is send to a non local IP address. As the event is enriched

with information about the process and container in the cluster, the malicious behavior can

be detected.

ID-KTM-01

This attack uses a cronjob to persist the attackers SSH key to the “authorized keys” file.

The effect is that the attacker can login to the machine using SSH without credentials.

Result: NS

Sigma rules for the modification of cron files under “/etc/cron.d/” are existent and would

be triggered. The Cronjobs however are not created on the system but in Kubernetes. To

monitor the change of the “authorized keys” file, a Sigma rule was created that was triggered

by the attack.

ID-KTM-02

To gain acces to the Kubernetes API, this attack copies the Kubernetes configuration into a

Pod and then tests the connectivity by enumerating all running Pods.

Result: NS

The detection was not successful because the Sigma rule set does not contain any Kubernetes

related Sigma rules. It would be possible to monitor the copying by creating a Sigma rule

that detects file changes from the kubectl process but it would be easier to reconstruct those

types of events from Kubernetes logs itself.

ID-KTM-03

This attack spawns a shell in a container.

Result: NS

The spawning of shells in a container could be observed by tracking the Kubernetes API

44

Henrik Wittemeier Master Thesis Evaluation

endpoint. Another approach would be the observing of any shell processes such as bash,

because they are not expected in environments without human interaction.

ID-KTM-04

This attack performs a SSH session to another pod that has a SSH server installed.

Result: NS

As SSH is not generally used for malicious activities on Linux systems, there is no Sigma

rule that matches the execution of SSH. A Sigma rule that matches the SSH process name

or network traffic on port 22 could detect this behavior.

ID-KTM-05

This attacks uses a daemonset to alter the “authorized hosts” file for a persistent backdoor.

Result: NS

Just as the Attack ID-KTM-01 the detection was not successful. With the creation of

the Sigma rule mentioned in attack ID-KTM-01, the file change got visible. Both attacks

change the file from a different attack vector. The created Sigma rule only detects when this

file is modified, so detection is successful regardless of the source of the attack.

ID-KTM-06

This attack utilizes a privileged pod to mount the hosts filesystem.

Result: NS

The mounting of the host file system is not monitored by default through a Sigma rule. By

creating a Sigma rule with the detection for execution of “mount” commands, this attack

can be made visible. The detection of privileged containers is not possible with the current

implementation.

ID-KTM-07

This attack is an extension of the prior ID-KTM-06 and is used to escalate privileges from

a container.

Result: NS

The detection is also unsuccessful as the mounting is not observed. With the created Sigma

rule for Attack ID-KTM-06, it can be made visible.

45

Henrik Wittemeier Master Thesis Evaluation

ID-KTM-08

When specifying the right parameter at pod creation time, it is possible to disable the

namespace isolation security mechanism that containers usually have.

Result: NS

As the pod creation process is an Kubernetes internal procedure it is not possible for Tracee

to match any Sigma rules for this attack. A possible way to monitor this event is by tracking

requests to the Kubernetes API.

ID-KTM-09

The deletion of all Kubernetes related events is a technique used for defense evasion.

Result: NS

As the Kubernetes events are application intern artifacts, it is not possible for Tracee to

track the deletion of events by observing file changes. It could be observed by tracking the

Kubernetes API requests.

ID-KTM-10

The creation of a pod with a name similar to a Kubernetes system pod is a way to obfuscate

malicious Pods.

Result: NP

Because Tracee has little information on the creation of pods, it is very unlikely that this

behavior can be observed. The creation of the pod could be observed by tracking requests to

the Kubernetes API, but it would require more information to distinguish between malicious

and normal creation of Pods.

ID-KTM-11

This attack spawns a shell inside a container and deletes all logs that are located in the

default log directory (“/var/log/”).

Result: DS

The Sigma rule “Clear Linux Logs” is triggered by this attack.

ID-KTM-12

The access to service account tokens is used for interaction with the Kubernetes API

Result: NP

46

Henrik Wittemeier Master Thesis Evaluation

The read-only access of a file cannot be tracked by the current implementation of the custom

Tracee. Therefore, it is not possible to Track the access to service account tokens.

ID-KTM-13

This attack lists all service accounts that are mounted to the Pod.

Result: NP

As above the read-only access can not be tracked with the custom Tracee

ID-KTM-14

Sensitive data can be extracted using the “kubectl describe pod” command.

Result: NS

As kubectl utilizes the Kubernetes API, it would be possible to observe this attack by creating

a Sigma rule that tracks API requests.

ID-KTM-15

Naabu is used to scan hosts in the Pod subnet.

Result: NS

A Sigma rule matching the Naabu process name could observe this attack.

ID-KTM-16

Naabu is used to scan services in the Kubernetes service subnet.

Result: NS

As above it would be possible to observe this event by matching the process name in a Sigma

rule.

ID-KTM-17

This attack aims at deleting all Kubernetes resources.

Result: NP

The Tracee worker is part of the Kubernetes cluster. By deleting Kubernetes resources,

Tracee would also be removed and not able to detect this attack.

47

Henrik Wittemeier Master Thesis Evaluation

ID-KTM-18

By changing the ConfigMap of the CoreDNS pod, it would be possible to change the DNS

resolution for lateral movement.

Result: NS

As ConfigMaps are an Kubernetes internal artifact, they are not trackable by observing the

file system. ConfigMap changes could be observed by tracking requests to the Kubernetes

API.

ID-XAPP-01

This attack uses an malicious Open RAN xApp that creates a reverse shell connection to a

command and control server. The reverse shell could be utilized to exfiltrate data or perform

further attacks.

Result: NS

As the reverse shell creates a socket to a random port with the TCP protocol, it is not possible

to characterize a connection as reverse shell. The only possible detection mechanism is to

monitor IP traffic to a public IP as this kind of traffic is not expected in the environment.

This is done with the same rule created for ID-FS-01.

ID-XAPP-02

This attack combines three steps. First, a network scan is executed with nmap. Second, a

netstat and ps faux is performed. Third a reverse shell connection is initiated using ncat.

The reverse shell connection is used to execute the commands ls, id and whoami

Result: DS

All steps of the attack are visible in the event log. The first step is monitored with the Sigma

rule called “Linux Network Service Scanning Tools Execution”. The second step triggers

the Sigma rule “System Network Connections Discovery - Linux” and “Process Discovery”.

The third step triggers the rules “Linux Reverse Shell Indicator”, “Local System Accounts

Discovery - Linux”. As all steps of the attack are logged, it is safe to say that the detection

was successful.

ID-XAPP-03

This attack replicates the previous attack but changes the names of the executables, so that

detection rules based on process names fail to detect the malicious behavior.

Result: NS

48

Henrik Wittemeier Master Thesis Evaluation

As Sigma rules are highly dependent on the process names, the detection is not possible. The

only way that the reverse shell could be monitored is with the previously developed Sigma

rule that detects traffic that leaves the local subnet.

ID-XAPP-04

This attack again uses a reverse shell that is used to do network and process discoveries.

Result: DS

This detection was successful as multiple Sigma rules where triggered during the attack.

The initiation of the reverse shell involved curl which was startet with the nohup command.

The nohup command is used to continue processes even after the user shell aborts. Sigma has

the rules “NohupExecution” and “CurlUsageonLinux” that were triggered by the initiation

of the reverse shell.

ID-XAPP-05

This attack uses a compromised xApp to intiate a reverse shell, do a nmap portscan and

then perform API requests to Open RAN specific endpoints.

Detection: PS

The detection of the reverse shell was again not successful until the custom Sigma rule was

used. The API requests to the Open RAN endpoints were visible due to the usage of curl

which triggered the “CurlUsageonLinux” rule. The detection could be further improved by

creating specific rules that match the Open RAN endpoints and check if the requests came

from a real xApp or from the command line with curl.

ID-XAPP-06

The attack again uses an compromised xApp to initiate a reverse shell and analyze the service

endpoints of the xApp Manager. The difference to previous commands is that it uses curl

with an obfuscated name.

Result: DS

The main part of the attack was the service endpoint detection with the obfuscated curl

command. The detection was performed without a user-agent string in the http request.

This triggered the sigma rule “HTTPRequestWithEmptyUserAgent”.

5.2.3 Conclusion

The results of the attacks simulation are concluded in the following table.

49

Henrik Wittemeier Master Thesis Evaluation

Result Number Percentage

Detection Successful 5 17%

Partly Successful 3 10%

Not Successful 18 60%

Not Possible 4 7,5%

Table 4: Results of performed Attacks

5.3 Comparative Analysis

The above summarized attacks where executed on a system, where other monitoring tools

where installed to. In this section the differences in the detection are described briefly.

5.3.1 K8s Audit

Kubernetes auditing is a function of Kubernetes that writes security relevant events to a log

file. The events are enriched with information about the initiator, time and where the event

occurred.

The steps of the Kubernetes related attacks, in particular ID-KTM-12 and ID-KTM-13,

are visible in the Kubernetes Audit logs. Tracee is not build for the visibility of Kubernetes

internal artifacts and does not have this function implemented yet.

To achieve a similar logging behavior as Kubernetes auditing, Tracee would have to observe

the Kubernetes API endpoint with some complex Sigma rules.

Kubernetes audit logging does indeed give good insights into Kubernetes internal events, but

can not give further information.

The audit logging for example returns for event ID-KTM-03 “Exec or attach to a pod

detected”. For further investigation, Tracee could see what happens during the exec session

and trigger rules based on any behavior.

5.3.2 Tetragon

Tetragon is utilizing the eBPF like Tracee. The differences in the detection come from the

different rulesets. Tracee equipped with the Sigma rule set is not optimized for Kubernetes

whereas Tetragon was developed for Kubernetes clusters. Tetragon extends its capabilities

of monitoring with the ability of runtime enforcement. Tetragon is a sub project of Cilium.

Cilium is known for their Container Network Interface. Therefore Tetragon has a high focus

50

Henrik Wittemeier Master Thesis Evaluation

on network related events. Tetragon considers network traffic in flows whereas Tracee sup-

ports per packet analysis.

Tetragon is built for detecting behaviors rather than raw file activities. Tracee has strong

support for raw file system operations.

As mentioned above, Tetragons strengths lay in Network monitoring. The attack ID-FS-01

was detected by Tetragon. Tracee did not detect it, because SSH Traffic would not be char-

acterized as malicious in the typical Sigma application area.

Other attacks as ID-XAPP-02 where not detected by Tetragon as good as by Tracee, be-

cause Sigma known tools and attacks where used to initiate a reverse shell and get information

about the system.

In terms of configurability, Sigma has an advantage due to its easier and established rule

format over the proprietary Tetragon rule format.

5.3.3 Falco

Falco also uses the eBPF to implement Kubernetes runtime security. Falco is directly devel-

oped for Kubernetes, so it covers attacks on the Cluster level better than the Sigma equipped

Tracee.

Falco is able to implement higher level rules such as DNS enriched Network filters or insides

on connection level instead of only packet by packet classification.

Custom rules are created using the custom Falco rule language.

In the above attacks, Falco had its strength in detecting ID-KTM-03. Changes of the

authorized hosts in attack ID-KTM-01 did not trigger a Falco rule.

51

Henrik Wittemeier Master Thesis Discussion

Discussion

This chapter discusses the elaborated results, rates the fulfillment of the objectives and

describes the usability of the developed tool.

6.1 Interpretation of Results

The previously collected statistics and metrics can be used to rate the success of the imple-

mentation of the pySigma-backend-Tracee and all its involved components.

The measurements about the resource allocation done in section 5.1 are interesting for the

prediction of the scalability of the approach.

While the memory usage of Tracee can be managed with the setting of configuration param-

eters, the CPU usage is heavily dependent on the nodes workload.

With a memory consumption of around 220Mbytes, Tracee does not add much overhead to

the cluster. While the test cluster had a per node RAM size of 8GB, usual production grade

nodes would have at least 128GB RAM. Taking this into account the RAM usage of Tracee

is negligible. The RAM usage increases when the cache is filled with events. This should

only happen during workload peaks and is configurable via configuration parameters. Under

high fluctuating workloads, it should be concerned to increase the maximum cache size to

prevent the loss of events.

Unlike the RAM usage, the CPU usage will scale linear with the workload. This means that

on larger nodes, the relative CPU utilization would be the same as in our test cluster. The

cost of an idle value of 2% is acceptable and does not impact the performance of the cluster

very much. The CPU usage at congestion is however concerning. During the stress test

Tracee makes up around 70% of the total CPU usage. This value is unexpectedly high and

does exceed the acceptable overhead that a monitoring solution may add. The same applies

to the network utilization. While the network interface is utilized at 16%, Tracee uses 40% of

the CPU capacity. In the network measurement, it was also visible that the cache was fully

52

Henrik Wittemeier Master Thesis Discussion

utilized and additional events were dropped. An attacker with the knowledge about Tracee

could overflow the cache with random events, so that security relevant events are dropped

before evaluation.

The measurements showed that the high CPU usage is connected to the number of signatures

that are evaluated. The Sigma rule set is expected to grow in the future, so the performance

is likely to decrease with every additional rule.

The security effectiveness tested with the attacks from the 5G-FORAN-ATTACK project

give the impression that the tool is not very effective. Most of the attacks where not or not

completely detected by the custom built Tracee. This is not an issue of this project but the

lack of Kubernetes related rules in the Sigma rule set and the missing focus on containeriza-

tion in general. The lack of Sigma rules associated with Kubernetes is exacerbated by a focus

on attacks at the infrastructure level. Attacks from inside a container like ID-XAPP-02 are

more similar to attacks on standard Linux computers. Therefore Sigma rules apply better

and detect the malicious activities. However, the analysis of the attacks also showed that

for 92.5% of the attacks, the creation of Sigma rules would be possible. The development

of Sigma rules for some of the attacks showed that the rate of detected attacks could be

increased significantly with low effort as the development of new Sigma rules is very straight-

forward.

The comparison with other tools showed that every tool has its advantages and disadvan-

tages. It is not sensible to built the complete monitoring system based on one monitoring

tool like Tracee with Sigma rules as, for example, Kubernetes auditing does a very good job

at monitoring changes and actions inside the cluster. As stated in section 2.1, the events

should be logged at the location where the most information about an event is available.

For Kubernetes resource changes like credentials, it would require the aggregation of many

different kernel hook points to generate events that have the same amount of information as

a Kubernetes audit log.

In comparison to Tetragon and Falco, the custom Tracee detection was moderately well. For

some attacks, Tracee delivered more events and for other events, Tetragon and Falco deliv-

ered better output.

6.2 Connection to Objectives

The idea of this thesis was the adaptation of the Sigma rule set for the usage with in the

eBPF in Open RAN. The main goal of this project was the minimization of the maintenance

53

Henrik Wittemeier Master Thesis Discussion

effort.

During the evaluation, it became clear that directly integrating Sigma rules into eBPF pro-

grams does not seem to be possible with a generalistic approach. The user space filtering

comes with a performance impact but grants access to higher level programming languages

and sources for information enrichment. The tool Tracee that already implement most of

the required functions was chosen. The possibility to implement detection rules in Go code

offered the flexibility to implement the generic translation process of Sigma rules to match

eBPF events.

The detection targets file modification, network traffic and spawned processes were imple-

mented in this thesis with success. The pySigma-backend-Tracee translates Sigma rules to Go

signatures which were compiled into Tracee. The objectives of the translation were designed

in subsection 3.2.3. The Mapping of the Sigma logsources, fields and values was successful

implemented. The functional requirements were tested with the use of simple but efficient

testing. By generating bash scripts to trigger the rule detection mechanism, the accuracy

related to true positives and true negatives was confirmed.

The deployment of the custom Tracee is done through argoCD which enrolls the tool auto-

matically, therefore, the integration into Kubernetes is very simple. Tracee is deployed via a

Kubernetes daemon set, so each node gets its own Tracee instance. Fluentbit is also deployed

via a daemon set, therefore Events generated are read by the Fluentbit instance and then

stored in the OpenSearch Database. All events that are generated include information of

the associated Sigma rule and are enriched with information about the container, its image,

process IDs and other important information that can be used to reconstruct the events.

The project includes a simple seamless deployment which integrates into the Open RAN

DFIR tools very well. Deploying the Sigma rule equipped Tracee is easy, because all tools

needed for the integration are already present in the 5G-FORAN DFIR tools. The eventlog of

Tracee can be accessed in the central dashboard that is also used by the other tools involved.

A key benefit of the deployment is the automatic update feature. For every update in the

Sigma repository, the translation process is triggered and all needed artifacts are built and de-

ployed without manual interaction. If no functions were added to the project and the format

and syntax of the Sigma rules would not change, this project could run with an up-to-date

version in the future without manual intervention.

54

Henrik Wittemeier Master Thesis Discussion

6.3 Comparison to existing solutions

Outstanding of this project is, related to the other considered solutions and the official Tracee,

the easy adaptability. Through the combination of the simple Sigma rule format that allows

creating detection rules without any understanding of programming languages and with the

automatic integration process with CI/CD, the addition of rules is possible with minimal time

expenditure. Besides the large open source Sigma rule set, some companies develop Sigma

rules as a product like SOCPrime [37], so better detection results could even be achieved

with purchasing more Sigma rules.

The performance of Tracee however is not outstanding. Tetragon has a similar functionality

as Tracee, hence a comparison makes sense. While concrete performance numbers are rare

to find, Isovalent published a report about Tetragon advertising it for its high performance.

Their research resulted in performance overheads of 0.2% for file monitoring, 1.68% for pro-

cess execution tracking and a reduction of the network connection rate by 5.9% [38]. These

numbers, however, could also come from the small native rule set Tetragon comes with, as

Tracee was also observed with very small CPU utilization with smaller rule sets.

For Falco, no such measurements where found.

6.4 Limitations

The usage of user space filtering comes with a performance overhead. The context switching

cost and the higher complexity of user space programs decrease the performance of the

monitoring solution significantly.

Only Sigma rules were used that have the implemented logsources and that are built for

Linux systems. Further checking of the meaningfulness of the rules related to the use case is

not performed. As some rules are expected to not enlarge the observability in this use case,

they decrease the performance without any benefit.

The measurements showed that Application related traffic like SSH traffic is not detectable,

as Tracee evaluates filter rules per packet. To detect SSH traffic, the whole connection must

be observed.

For file system related Sigma rules, the custom Tracee only supports file modification events.

As no Sigma rules were found that match the readonly access to files, the pySigma-backend-

Tracee does not support the conversion of this at the moment.

55

Henrik Wittemeier Master Thesis Discussion

6.5 Future Research and Development

The biggest downside of the implementation is the poor performance. The performance was

measured under heavy synthetic workloads. As these workloads utilize only one kind of re-

source, the result is not completely transferable to real world scenarios with mixed workloads.

For better statements about the usability, Tracee should be executed and measured within

real workloads. The performance of Tracee could possibly be further improved by changing

the mapping. At the moment, each string comparison is performed with a regular expression.

This was necessary because the mapping functions of pySigma where limited. When extend-

ing pySigma to support more different mappings for different types of evaluations, regular

expressions could be replaced with standard operators resulting in a lower resource usage.

The detection capabilities of the Sigma based Tracee are huge, however, the rules that exist

in the Sigma repository did not match the attacks very well. The extension of the Sigma rule

set with a higher focus on Kubernetes and containerization related attacks would improve

the detection.

Tracee also offers the possibility to match container creation and remove events. In further

improvements, it would be valuable if Sigma rules and the mapping of the pySigma-backend-

Tracee are extended to match these events.

6.6 Critical Reflection

The project of developing a Sigma rules based eBPF logger for containerized environments

was a success. The objectives were achieved and the solution is running and deployable.

The open source Sigma rule set includes many important rules, but for a real world usage of

this approach, it would be necessary to use a larger and more comprehensive rule set to have

a sufficient observability.

The collected performance metrics also indicate that the implementation is not ready for a

real world usage.

The idea, however, is very promising and could establish with further improvements and

more specific Sigma rules.

56

Henrik Wittemeier Master Thesis Conclusion

Conclusion

In this work, a monitoring solution was implemented that combines the eBPF with Sigma

rules. The work was initiated in the research project 5G-FORAN that aims at implementing

DFIR in Open RAN.

The development of the software involved a review of the technical background and the re-

quirements of the implementation. The monitoring tool should be deployed in an Open RAN

installation running in a Kubernetes Cluster. The dynamic nature of Kubernetes and Con-

tainerization adds challenges in terms of observability because the user space of a container

is isolated from the operating systems user space and workloads are distributed over multiple

nodes. The solution to overcome this problem is a kernel based logging approach, because

the kernel is shared between containers and host OSs. The kernel can be configured to log

events using eBPF.

The kernel logging is based on hooking to kernel function calls and using eBPF programs to

write out the information that is transmitted to the function. The kernel is the central unit

between the operating system and the hardware, therefore, a lot of events will be output by

just tracing the kernel function calls. To reduce the amount of data that is output, a filtering

mechanism must be implemented.

The central part of a filtering mechanism are its filter rules. A lot of tools that are used

for eBPF monitoring come with their own rule collection in a proprietary format. Having a

dedicated rule format for each tool adds a lot of overhead to the maintenance effort of the

monitoring tool. New insights about attackers behaviors need to be implemented for each

tool separately. To overcome this issue, this project utilizes the Sigma project which delivers

a standardized rule format together with an open source rule set and tools for adapting these

rules for different application purposes. Sigma rules are originally developed to query SIEM

solutions for security relevant events. This thesis extended the dedication of Sigma rules to

the configuration of a monitoring solution.

An important part of the development of the solution was the decision for kernel or user space

57

Henrik Wittemeier Master Thesis Conclusion

filtering. While kernel space filtering would perform better, the complexity would increase

to a level where the generalistic translation process of Sigma rules would fail.

The decision of user-space filtering also involved the choice of a toolchain. Tracee was chosen

as it is built for Kubernetes and fulfills a lot of the required tasks. Tracees filtering is con-

figured via Go signatures. For the adaption of the Sigma rules to other formats, the Sigma

project provided the tool pySigma. The tool is primarily built for the conversion of Sigma

rules to database queries, so it was necessary to built a Go template that reduces the event

matching logic to a simple query. The template involved all possible combinations of log

sources and fields.

With the development of the pySigma-backend-Tracee and the generated Go signatures,

Tracee was equipped and recompiled into a new container image. This Container image is

deployed together with Fluentbit on the Kubernetes Cluster. All events that are generated

by Tracee are read by Fluentbit and sent to the OpenSearch Instance for persistence.

Functional tests where performed with using ChatGPT to generate test cases for specific

Sigma rules with success. All tested Sigma rules could be triggered with their determined

behavior without generating any false positive events. Further testing was performed with

artificial attacks from the 5G-FORAN-ATTACK part of the 5G-FORAN research project.

The security effectiveness associated with attacks that focus on Kubernetes had room for

improvement, as the Sigma repository does not have specific rules for containerized environ-

ments.

The evaluated resource usage of Tracee is related to the size of the Sigma rule set and can

take under heavy workloads up to 70% of the CPU utilization which is higher than accept-

able. The biggest benefit of the implementation is the ease of adaption from using an easy

and established rule format together with the automatic rebuild and deployment via CI/CD.

In summary the implementation was successful with room for improvements in terms of

resource usage and Sigma rule set coverage.

58

Henrik Wittemeier Master Thesis Bibliography

Bibliography

[1] 3GPP. 3gpp website. https://www.3gpp.org, 2024. Accessed: 2024-12-16.

[2] O-RAN Alliance. O-ran alliance website. https://www.o-ran.org/, 2024. Accessed:

2024-12-16.

[3] CVE® Program. Common vulnerabilities and exposures (cve) database. https:

//www.cve.org, 2024. Provides unique identifiers for publicly disclosed cybersecurity

vulnerabilities.

[4] Procyde GmbH. 5g foran project website. https://www.5g-foran.com, 2024. Accessed:

2024-12-01.

[5] BSI. Projekt 5g-foran. https://www.bsi.bund.de/DE/Themen/

Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/5-G/

KoPa45/5G-6G-Netzwerksicherheit-Open-RAN/TSP5-5G-FORAN/TSP5-5G-FORAN_

node.html, 2024.

[6] O-RAN Alliance. O-RAN Architecture Description 12.0. O-RAN Alliance, 2024. Version

12.0.

[7] Stefan Köpsell, Andrey Ruzhanskiy, Andreas Hecker, Dirk Stachorra, and Norman

Franchi. Open ran risk analysis. Technical report, BSI, February 2022. Version 1.2.1.

[8] O-RAN Alliance. O-RAN Security Threat Modeling and Risk Assessment 4.0. O-RAN

Alliance, 2024. Version 4.0.

[9] RedHat. Containers vs. vms. https://www.redhat.com/en/topics/containers/

containers-vs-vms, 2023. Accessed: 2024-12-01.

[10] Docker, Inc. What is a container? https://www.docker.com/resources/

what-container/, n.d. Accessed: 2024-12-01.

ix

https://www.3gpp.org
https://www.o-ran.org/
https://www.cve.org
https://www.cve.org
https://www.5g-foran.com
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/5-G/KoPa45/5G-6G-Netzwerksicherheit-Open-RAN/TSP5-5G-FORAN/TSP5-5G-FORAN_node.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/5-G/KoPa45/5G-6G-Netzwerksicherheit-Open-RAN/TSP5-5G-FORAN/TSP5-5G-FORAN_node.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/5-G/KoPa45/5G-6G-Netzwerksicherheit-Open-RAN/TSP5-5G-FORAN/TSP5-5G-FORAN_node.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/5-G/KoPa45/5G-6G-Netzwerksicherheit-Open-RAN/TSP5-5G-FORAN/TSP5-5G-FORAN_node.html
https://www.redhat.com/en/topics/containers/containers-vs-vms
https://www.redhat.com/en/topics/containers/containers-vs-vms
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/

Henrik Wittemeier Master Thesis Bibliography

[11] Docker, Inc. Docker overview. https://docs.docker.com/get-started/

docker-overview/, n.d. Accessed: 2024-12-01.

[12] Kubernetes Project. Kubernetes concepts: Overview. https://kubernetes.io/docs/

concepts/overview/, n.d. Accessed: 2024-12-01.

[13] Shubham Agarwal, Arjun Sable, Devesh Sawant, Sunil Kahalekar, and Manjesh K.

Hanawal. Threat detection and response in linux endpoints. In 2022 14th International

Conference on COMmunication Systems & NETworkS (COMSNETS), pages 447–449,

2022.

[14] Bharat Manral and Gaurav Somani. Establishing forensics capabilities in the pres-

ence of superuser insider threats. Forensic Science International: Digital Investigation,

38:301263, 2021.

[15] Artem Dinaburg. Pitfalls of relying on ebpf for security monitor-

ing (and some solutions). https://blog.trailofbits.com/2023/09/25/

pitfalls-of-relying-on-ebpf-for-security-monitoring-and-some-solutions/.

Accessed: 2025-1-27.

[16] The kernel development community. The linux kernel - bpf maps. https://docs.

kernel.org/bpf/maps.html. Accessed: 2024-12-27.

[17] Open Policy Agent Community. Open policy agent - policy language. https://www.

openpolicyagent.org/docs/latest/policy-language/, 2025. Accessed: 2025-01-30.

[18] Sigma Project. Sigma: Generic signature format for siem systems. https://sigmahq.

io, n.d. Accessed: 2024-12-01.

[19] Sigma Project . Sigma repository. https://github.com/sigmahq/sigma, n.d. Accessed:

2024-12-01.

[20] MITRE Corporation. Mitre att&ck matrix. https://attack.mitre.org, 2024. Ac-

cessed: 2024-12-01.

[21] https://github.com/0x00000013. Huakiwi is an edr powered by ebpf and sigma. https:

//github.com/0x00000013/huakiwi/, n.d. Accessed: 2024-12-01.

[22] eBPF.io authors. Major ebpf applications. https://ebpf.io/applications/, 2024.

Accessed: 2024-12-01.

x

https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/get-started/docker-overview/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://blog.trailofbits.com/2023/09/25/pitfalls-of-relying-on-ebpf-for-security-monitoring-and-some-solutions/
https://blog.trailofbits.com/2023/09/25/pitfalls-of-relying-on-ebpf-for-security-monitoring-and-some-solutions/
https://docs.kernel.org/bpf/maps.html
https://docs.kernel.org/bpf/maps.html
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://sigmahq.io
https://sigmahq.io
https://github.com/sigmahq/sigma
https://attack.mitre.org
https://github.com/0x00000013/huakiwi/
https://github.com/0x00000013/huakiwi/
https://ebpf.io/applications/

Henrik Wittemeier Master Thesis Bibliography

[23] 5G-FORAN. 5g-foran research project, 2025.

[24] bpftrace Project. bpftrace - a high-level tracing language for linux. https://github.

com/bpftrace/bpftrace, 2024. Accessed: 2024-12-01.

[25] Aquasecurity. Aqua tracee: Runtime ebpf threat detection engine. https://www.

aquasec.com/products/tracee/, 2024. Accessed: 2024-12-01.

[26] Tracee Project. Aqua tracee. https://github.com/aquasecurity/tracee, 2024. Ac-

cessed: 2024-12-01.

[27] Aquasecurity. Tracee docs. https://aquasecurity.github.io/tracee/v0.8.3/

architecture/. Accessed: 2024-12-01.

[28] pySigma SQLite Backend project Community. pysigma sqlite backend. https://

github.com/SigmaHQ/pySigma-backend-sqlite, 2025. Accessed: 2025-01-28.

[29] pySigma Elasticsearch Backend project Community. pysigma elasticsearch backend.

https://github.com/SigmaHQ/pySigma-backend-elasticsearch, 2025. Accessed:

2025-01-28.

[30] pySigma Project. pysigma - a python library that parses and converts sigma rules into

queries. https://github.com/SigmaHQ/pySigma, 2024. Accessed: 2024-12-01.

[31] OpenSearch Project. Opensearch. https://opensearch.org, 2024. Accessed: 2024-12-

01.

[32] Fluent Bit Project. fluentbit - an end to end observability pipeline. https://fluentbit.

io, 2024. Accessed: 2024-12-01.

[33] ArgoCD Project. Argo cd - declarative gitops cd for kubernetes. https://argo-cd.

readthedocs.io/en/stable/, 2024. Accessed: 2024-12-01.

[34] Go community. Go template package. https://pkg.go.dev/text/template, 2025.

Accessed: 2025-01-30.

[35] OpenAI. Chatgpt-4o. https://openai.com, 2025. Accessed: 2025-01-28.

[36] Henrik Wittemeier. Pysigma-backend-tracee. https://git.dn.fh-koeln.de/foran/

pysigma-backend-tracee.git, 2024. Accessed: 2024-12-01.

[37] SOC Prime. Soc prime website. https://socprime.com/. Accessed: 2024-12-27.

xi

https://github.com/bpftrace/bpftrace
https://github.com/bpftrace/bpftrace
https://www.aquasec.com/products/tracee/
https://www.aquasec.com/products/tracee/
https://github.com/aquasecurity/tracee
https://aquasecurity.github.io/tracee/v0.8.3/architecture/
https://aquasecurity.github.io/tracee/v0.8.3/architecture/
https://github.com/SigmaHQ/pySigma-backend-sqlite
https://github.com/SigmaHQ/pySigma-backend-sqlite
https://github.com/SigmaHQ/pySigma-backend-elasticsearch
https://github.com/SigmaHQ/pySigma
https://opensearch.org
https://fluentbit.io
https://fluentbit.io
https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://pkg.go.dev/text/template
https://openai.com
https://git.dn.fh-koeln.de/foran/pysigma-backend-tracee.git
https://git.dn.fh-koeln.de/foran/pysigma-backend-tracee.git
https://socprime.com/

Henrik Wittemeier Master Thesis Bibliography

[38] Thomas Graf. Tetragon 1.0: Kubernetes security observability & runtime enforcement

with ebpf. https://isovalent.com/blog/post/tetragon-release-10/. Accessed:

2024-12-27.

xii

https://isovalent.com/blog/post/tetragon-release-10/

Henrik Wittemeier Master Thesis Bibliography

Appendix

A Repository

All code is available in the project Repository:

https://git.dn.fh-koeln.de/foran/pysigma-backend-tracee

B Measurement of eBPF activity

BPFTRACE_MAX_BPF_PROGS=2200 BPFTRACE_MAX_PROBES=2200 bpftrace -e \

’tracepoint:* { @["total_events"] = count(); } interval:s:100 { exit(); }’

C Go Template

1 package main

2

3 import (

4 "fmt"

5 "regexp"

6 "github.com/aquasecurity/tracee/signatures/helpers"

7 "github.com/aquasecurity/tracee/types/detect"

8 "github.com/aquasecurity/tracee/types/trace"

9 "github.com/aquasecurity/tracee/types/protocol"

10)

11

12 type {title} struct {{

13 cb detect.SignatureHandler

14 releaseAgentName string

15 }}

16

17

xiii

https://git.dn.fh-koeln.de/foran/pysigma-backend-tracee

Henrik Wittemeier Master Thesis Bibliography

18 var {title}Metadata = detect.SignatureMetadata {{

19 ID: "{rule.id}",

20 Version: "1",

21 Name: "{rule.title}",

22 EventName: "{title}",

23 Description: "{rule.description.replace("\\","\\\\").replace("\"","

\\\\\\\"").replace("\n"," ")}",

24 // TraceeLogSource: "{rule.logsource.category}"

25 Properties: map[string]interface {{}}{{

26 "Severity": "{rule.level}",

27 "Category": "{rule.tags [0]. namespace}",

28 "Technique": "{rule.tags [0]. name}",

29 "Kubernetes_Technique": "",

30 "id": "{rule.id}",

31 "external_id": "{rule.id}",

32 }},

33 }}

34

35 func (sig *{ title}) Init(ctx detect.SignatureContext) error {{

36 sig.cb = ctx.Callback

37 return nil

38 }}

39

40 func (sig *{ title}) GetMetadata () (detect.SignatureMetadata , error) {{

41 return {title}Metadata , nil

42 }}

43

44 func (sig *{ title}) GetSelectedEvents () ([] detect.SignatureEventSelector ,

error) {{

45 return [] detect.SignatureEventSelector {{

46 {{ Source: "{rule.logsource.category}", Name: "{rule.logsource.

product}", Origin: "*"}},

47 }}, nil

48 }}

49

50 func (sig *{ title}) OnEvent(event protocol.Event) error {{

51 eventObj , ok := event.Payload .(trace.Event)

52 if !ok {{

53 return fmt.Errorf("invalid event")

54 }}

55 var file_path , dst , src , dstIP , argv , cmdpath , dstHostname , txtAnswer ,

httpUserAgent , httpMethod ,httpUri ,httpHost , httpCookie , httpReferer

xiv

Henrik Wittemeier Master Thesis Bibliography

string

56 var dstPort , httpStatusCode int

57 var err error

58 switch eventObj.EventName {{

59 case "file_modification":

60 file_path , err = helpers.GetTraceeStringArgumentByName(eventObj , "

file_path")

61 if err != nil {{

62 return err

63 }}

64 case "net_packet_ipv4":

65 dst , err = helpers.GetTraceeStringArgumentByName(eventObj , "dst")

66 if err != nil {{

67 return err

68 }}

69 src , err = helpers.GetTraceeStringArgumentByName(eventObj , "src")

70 if err != nil {{

71 return err

72 }}

73 case "net_tcp_connect":

74 dstIP , err = helpers.GetTraceeStringArgumentByName(eventObj , "

dstIP")

75 if err != nil {{

76 return err

77 }}

78 dstPort , err = helpers.GetTraceeIntArgumentByName(eventObj , "

dstPort")

79 if err != nil {{

80 return err

81 }}

82 case "sched_process_exec":

83 argv_arr , err := helpers.GetTraceeSliceStringArgumentByName(

eventObj , "argv")

84 if err != nil {{

85 return err

86 }}

87 for _, arg := range argv_arr {{

88 argv = argv + " " + arg

89 }}

90 cmdpath , err = helpers.GetTraceeStringArgumentByName(eventObj , "

cmdpath")

91 if err != nil {{

xv

Henrik Wittemeier Master Thesis Bibliography

92 return err

93 }}

94 case "net_packet_dns":

95 dns , err := helpers.GetProtoDNSByName(eventObj , "proto_dns")

96 if err != nil {{

97 return err

98 }}

99 if len(dns.Questions) > 0{{

100 dstHostname = dns.Questions [0]. Name

101 }}

102 case "net_packet_dns_response":

103 dns , err := helpers.GetProtoDNSByName(eventObj , "dns_response")

104 if err != nil {{

105 return err

106 }}

107 for i:=0;i<len(dns.Answers);i++ {{

108 if dns.Answers[i].Type == "TXT"{{

109 for j:=0;j<len(dns.Answers[i].TXTs);j++ {{

110 txtAnswer = txtAnswer + " " + dns.Answers[i].TXTs[j]

111 }}

112 }}

113 }}

114 case "net_packet_http_request":

115 arg , err := helpers.GetTraceeArgumentByName(eventObj , "

http_request", helpers.GetArgOps {{ DefaultArgs: false }})

116 if err != nil {{

117 return err

118 }}

119

120 http , ok := arg.Value.(trace.ProtoHTTPRequest)

121

122 if !ok {{

123 return nil

124 }}

125 httpUserAgent = http.Headers.Get("User -Agent")

126 httpReferer = http.Headers.Get("Referer")

127 httpMethod = http.Method

128 httpUri = http.URIPath

129 httpHost = http.Host

130 httpCookie = http.Headers.Get("Cookie")

131 dstIP , err = helpers.GetTraceeStringArgumentByName(eventObj , "

dstIP")

xvi

Henrik Wittemeier Master Thesis Bibliography

132

133 case "net_packet_http_response":

134 arg , err := helpers.GetTraceeArgumentByName(eventObj , "

http_response", helpers.GetArgOps {{ DefaultArgs: false }})

135 if err != nil {{

136 return err

137 }}

138

139 http , ok := arg.Value.(trace.ProtoHTTPResponse)

140

141 if !ok {{

142 return nil

143 }}

144 httpStatusCode = http.StatusCode

145 }}

146

147

148

149

150

151 if {query} {{

152 metadata , err := sig.GetMetadata ()

153 if err != nil {{

154 return err

155 }}

156 sig.cb(& detect.Finding {{

157 SigMetadata: metadata ,

158 Event: event ,

159 Data: nil ,

160 }})

161 }}

162 _ = dstIP

163 _ = dstPort

164 _ = file_path

165 _ = src

166 _ = dst

167 _ = argv

168 _ = cmdpath

169 _ = dstHostname

170 _ = txtAnswer

171 _ = httpUserAgent

172 _ = httpMethod

xvii

Henrik Wittemeier Master Thesis Bibliography

173 _ = httpUri

174 _ = httpHost

175 _ = httpStatusCode

176 _ = httpCookie

177 _ = httpReferer

178 return nil

179 }}

180

181 func (sig *{ title}) OnSignal(s detect.Signal) error {{

182 return nil

183 }}

184 func (sig *{ title}) Close() {{}}

Code 10: Template for a Tracee Signature

xviii

Declaration

I confirm that I have written this thesis independently. I have marked all passages taken

verbatim or in spirit from published or unpublished works of others or from the author himself

as taken. All sources and aids that I have used for the work are indicated. The thesis has not

been submitted to any other examination authority with the same content or in substantial

parts.

Bonn, February 3, 2025

(Place, Date) (Signature)

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Introduction
	Problem Statement
	Objectives
	Structure of Work
	Background

	Technical and Research Context
	Security in Open RAN
	Security Challenges in Containerized Environments
	Containerization
	Kubernetes
	Observability in Kubernetes

	eBPF based Observability
	Sigma Project
	Existing Solutions

	Concept
	Scope
	Design Considerations
	Existing DFIR Environment
	Architecture
	Mapping

	Tool Evalution
	bpftrace
	Tracee
	pySigma

	Integration Concept
	Toolchain
	CI/CD

	Backend Implementation
	Development Process
	pySigma-backend-tracee
	Tracee Output Format
	Fluentbit Integration
	Helm Charts

	Testing

	Evaluation
	Performance Measurements
	CPU
	Memory
	Time accuracy
	Ease of use
	Ease of adaption
	Falsepositives

	Security Effectiveness
	Review Methodology
	Attacks
	Conclusion

	Comparative Analysis
	K8s Audit
	Tetragon
	Falco

	Discussion
	Interpretation of Results
	Connection to Objectives
	Comparison to existing solutions
	Limitations
	Future Research and Development
	Critical Reflection

	Conclusion
	Bibliography
	Repository
	Measurement of eBPF activity
	Go Template

