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Abstract

This thesis presents a modular and standards-compliant framework for enabling
deterministic, time-sensitive communication in Kubernetes-managed environments
through the integration of TSN. It addresses the limitations of traditional container
orchestration systems, which lack built-in mechanisms for bounded latency and jit-
ter—requirements that are critical for Industry 4.0 and real-time control applications.

The proposed architecture introduces a Bash-based CNI plugin for configuring de-
terministic pod interfaces with Linux traffic control and the Time-Aware Shaper
(taprio). A Python-based CNC coordinates switch-level GCL configurations us-
ing NETCONF and standardized YANG models. Synchronization across hosts and
switches is achieved using the IEEE 802.1AS, implemented via LinuxPTP tools.

Experimental validation was conducted on a TSN-capable testbed, analyzing latency
and jitter under various scheduling scenarios and network loads. Results showed
that deterministic behavior can be achieved at the host level with taprio, skbedit
but full end-to-end prioritization was limited by unreliable VLAN PCP propagation
through physical interfaces and switches. These findings underscore the technical
challenges of enforcing TSN guarantees across containerized and hardware layers.

Despite partial limitations, the system provides a reproducible, Kubernetes-native
approach for TSN integration without relying on kernel bypass techniques like DPDK.
This work contributes to bridging the gap between cloud-native orchestration and
real-time industrial networking by offering both a validated prototype and insights
for future research.

Keywords: Kubernetes, TSN, IEEE 802.1Qbv, IEEE802.1AS, CNC, deterministic net-
working, Industry 4.0, containerized systems, NETCONF/YANG, taprio.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

The adoption of Industry 4.0 and smart manufacturing concepts has created a criti-
cal need for real-time, deterministic communication between distributed industrial
devices. Applications such as closed-loop control, predictive maintenance, and au-
tonomous manufacturing processes rely on strict timing guarantees to operate reli-
ably. However, traditional cloud-native platforms like Kubernetes, although offer-
ing scalability and resilience, inherently lack mechanisms for guaranteeing bounded
latency and minimal jitter. Failures in timely communication can result in produc-
tion disruptions, safety risks, and reduced operational efficiency.

Time-Sensitive Networking (TSN) extends Ethernet by introducing mechanisms for
synchronized, time-aware traffic scheduling, enabling industrial networks to meet
strict timing requirements without relying on proprietary technologies [Nas+19]. In-
tegrating TSN capabilities into Kubernetes environments would allow industries to
combine the flexibility of container orchestration with the determinism required for
real-time control, bridging the longstanding gap between information technology
(IT) and operational technology (OT) systems.

Several research efforts have addressed low-latency orchestration within container-
ized environments. Early work by Toka [Tok21] and Eidenbenz et al. [EPR20] fo-
cused primarily on optimizing Kubernetes scheduling strategies and CPU resource
allocation for latency-sensitive edge applications, but did not address network-layer
determinism. Broader studies on TSN and Deterministic Networking (DetNet) stan-
dards [Kir+23] have emphasized the importance of bounded-latency networking but
have not extended these principles to containerized orchestration platforms. At-
tempts to enhance Kubernetes networking, such as KuberneTSN, introduced user-
space system call interception for time-aware traffic control [BHS+18], bypassing
the standard Container Network Interface (CNI) model and lacking tight integra-
tion with Linux kernel queuing mechanisms critical for TSN compliance. Similarly,
SDN-based orchestration platforms like NEON [Pla25] focused on centralized TSN
configuration but were limited to simulated control-plane demonstrations without
real Kubernetes-native integration.

Consequently, despite partial solutions across different layers, a gap remains: a
Kubernetes-native, standards-compliant, and hardware-validated architecture capa-
ble of enabling deterministic communication for containerized workloads synchro-
nized with TSN-capable network infrastructure is still lacking.
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This thesis aims to address this gap by extending Kubernetes with deterministic,
time-sensitive communication capabilities through the integration of TSN mecha-
nisms into its native networking model. The proposed system enables bounded-
latency and low-jitter communication between containerized applications, maintain-
ing compatibility with Kubernetes’ declarative orchestration architecture. The solu-
tion is validated through empirical measurements conducted on a real hardware
testbed consisting of TSN-capable nodes and network infrastructure.

1.2 Scope of the Thesis

This thesis investigates the integration of TSN mechanisms into Kubernetes-based
container orchestration environments to enable deterministic communication. The
system architecture focuses on enhancing Kubernetes pod networking with deter-
ministic queuing disciplines and synchronized transmission control, validated on
a real hardware testbed. A two-node Kubernetes cluster, equipped with Intel I225
TSN-capable network interface cards and Kronoton TSN switches, serves as the ex-
perimental environment. Empirical evaluation concentrates on measuring end-to-
end latency, jitter. The work emphasizes a proof-of-concept implementation aligned
with IEEE 802.1AS, IEEE 802.1Qbv, IEEE 802.1Qbr and IEEE 802.1Qcc standards,
without extending to large-scale deployments or dynamic flow orchestration.

1.3 Research Objectives

The objectives of this thesis are as follows:

• To design a Kubernetes-native architecture for enabling deterministic, time-
sensitive communication between containerized applications using TSN stan-
dards.

• To develop and integrate a custom CNI plugin that configures time-aware
scheduling mechanisms during pod network attachment in Kubernetes.

• To implement a CNC that dynamically configures TSN switches using open
standards such as NETCONF and YANG models.

• To establish end-to-end time synchronization across K8 nodes and TSN-capable
switches based on IEEE 802.1AS.

• To empirically validate the proposed system architecture through real hard-
ware measurements focused on end-to-end latency, jitter, and synchronization
accuracy under different real-time traffic scenarios.

Additionally, this thesis aims to answer the following research questions:

– How can Kubernetes be extended to support deterministic communica-
tion without violating its native orchestration architecture?

– What architectural components (at pod, host, and switch level) are essen-
tial to synchronize scheduling behavior end-to-end?

1.4 Thesis Structure

The remainder of this thesis is organized as follows:
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• Chapter 2: Theoretical Background
This chapter provides an overview of TSN standards, Kubernetes networking
models, and the existing challenges in achieving deterministic communication
within containerized environments.

• Chapter 3: Design and Concept Methodology
This chapter describes the architectural design of the proposed system, includ-
ing the integration of TSN capabilities into Kubernetes, the development of
the custom CNI plugin, the implementation of the CNC, and the conceptual
framework for end-to-end deterministic communication.

• Chapter 4: Implementation Overview
This chapter details the practical implementation of the system, including the
Kubernetes cluster setup, configuration of deterministic networking mecha-
nisms, TSN switch management, synchronization infrastructure, and the de-
ployment of the measurement environment.

• Chapter 5: Validation Overview
This chapter defines the validation objectives, experimental scenarios, mea-
surement tools, and evaluation criteria used to assess the deterministic perfor-
mance of the Kubernetes-TSN integrated system.

• Chapter 6: Results and Analysis
This chapter presents the empirical results obtained from latency, jitter, and
synchronization measurements, and analyzes the system’s performance across
different communication scenarios and load conditions.

• Chapter 7: Discussion
This chapter critically reflects on the design choices, implementation outcomes,
observed limitations, and broader applicability of the proposed architecture.

• Chapter 8: Conclusion
This chapter summarizes the key findings of the thesis, discusses its contri-
butions to the field, and outlines potential directions for future research, in-
cluding dynamic flow reservation and centralized user configuration (CUC)
integration.
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Chapter 2

Technical Background

2.1 Operational Technology

Operational Technology (OT) refers to the hardware and software systems employed
to monitor, control, and manage physical processes, devices, and infrastructure.
These systems are predominantly utilized in industrial settings such as manufactur-
ing plants, energy distribution networks, and transportation systems, where real-
time responsiveness and reliability are paramount. OT systems typically comprise
programmable logic controllers (PLCs), distributed control systems (DCS), supervi-
sory control and data acquisition (SCADA) systems, and other embedded devices
[SFS11].

A defining feature of OT is its deterministic behavior, which ensures the execution of
operations within predefined and tightly controlled timeframes. This characteristic
is crucial in industrial processes, where delays or unpredictability can lead to equip-
ment malfunction, quality degradation, or safety risks. In contrast to information
technology (IT), which is concerned with processing, data management, and user
interaction, operational technology (OT) is committed to maintaining consistent and
dependable control over physical systems [Pla25]. OT is vital in industrial settings
because automation and real-time monitoring are necessary to ensure productivity
and security [Cis25].

Traditionally, OT systems have operated in isolated closed-loop environments with
proprietary protocols and minimal external connectivity. This design has ensured
operational reliability but has also limited flexibility. However, the ongoing con-
vergence of IT and OT, driven by digital transformation, has resulted in more net-
worked and software-defined OT environments [Mic25]. This evolution facilitates
greater automation and data exchange but introduces challenges related to inter-
operability, timing precision, and cybersecurity [SK24]. Consequently, modern OT
infrastructures increasingly necessitate deterministic communication frameworks,
such as Time-Sensitive Networking (TSN), to maintain reliability while enabling
scalable and flexible integration.

2.2 Industry 4.0

Industry 4.0 signifies the fourth wave of industrial advancement, marked by the fu-
sion of digital technologies with manufacturing and industrial frameworks [IBM25].
It extends the concept of automation by incorporating intelligence, connectivity, and
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autonomy into production settings. This revolution introduces cyber-physical sys-
tems, the Internet of Things (IoT), cloud platforms, and sophisticated analytics to
facilitate flexible, real-time, and data-driven operations [OV25][ANR25].

Core principles of Industry 4.0 encompass interoperability, decentralization, real-
time capability, virtualization, and service orientation [Dav24]. A significant shift
brought about by this transformation is the transition from centralized, inflexible
automation structures to decentralized, adaptive, and self-organizing systems. Ma-
chines and devices are anticipated to communicate using standardized protocols,
process data either locally or remotely, and autonomously adapt to changes in oper-
ations. The implementation of digital twins, predictive modeling, and edge com-
puting further boosts the responsiveness and predictive capabilities of industrial
systems [6].

Although Industry 4.0 enhances production efficiency and system intelligence, it
imposes new requirements on communication networks [ANR25]. Traditional in-
dustrial networking technologies often fall short in terms of flexibility, scalability,
and determinism needed for contemporary applications [Eng25]. To address these
needs, Ethernet-based technologies like TSN have been developed to support time-
synchronized, low-latency, and reliable communication. The deterministic features
of TSN, when combined with container orchestration tools such as Kubernetes, pro-
vide a pathway for enabling real-time, scalable industrial applications that align
with the principles of Industry 4.0 [AG23].

FIGURE 2.1: Core components of Industry 4.0 in a smart factory. Im-
age taken from [Del25].
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2.3 Kubernetes

Kubernetes, an open-source platform for container orchestration, was initially cre-
ated by Google and is now maintained by the Cloud Native Computing Foundation
(CNCF) [Fou23]. It facilitates the automation of deploying, scaling, and managing
containerized applications within a distributed computing framework. By abstract-
ing the underlying infrastructure, Kubernetes offers a declarative interface to spec-
ify application behavior, thus supporting resilient and scalable systems based on
microservices [Bur+16].

At its core, Kubernetes employs a master-worker architecture. The control plane,
which oversees the desired state of the cluster, comprises essential components like
the API server, scheduler, controller manager, and etcd, a distributed key-value store
[HBB17]. Worker nodes execute container runtimes such as Docker, CRI-O and host
the actual application workloads organized into pods, the smallest deployable units
in Kubernetes [HBB17].

Additionally, Kubernetes provides services for load balancing, volume management,
and service discovery. Users can specify application needs and system policies
through declarative configuration files written in YAML. Kubernetes continuously
aligns the actual system state with the desired state, enabling features like auto-
scaling, rolling updates, and self-healing [Bur+16]. These capabilities have estab-
lished Kubernetes as a standard in modern DevOps and edge computing.

However, Kubernetes was initially designed for cloud-native applications that op-
erate on a best-effort basis [DS+20] and does not ensure deterministic network per-
formance. Its default networking model lacks time-awareness, packet scheduling,
and latency constraints, which are crucial for real-time industrial systems. To ad-
dress these shortcomings, extensions such as custom Container Network Interface
(CNI) plugins, Multus for multiple network interfaces, and traffic control tools are
being investigated. Incorporating TSN features into Kubernetes-based systems is an
ongoing research effort aimed at adapting Kubernetes for Industry 4.0-grade deter-
ministic workloads.
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FIGURE 2.2: Kubernetes Architecture Overview

2.3.1 Kubernetes Scheduling Architecture

Scheduling in Kubernetes refers to the process of assigning pods to suitable nodes
within the cluster. The kube-scheduler, a component of the control plane that moni-
tors unscheduled pods and selects appropriate host nodes based on a range of crite-
ria, performs this task [HBB17].

The scheduling process proceeds in two main stages: filtering and scoring [Aut23b].
In the filtering phase, nodes that do not meet the pod’s requirements—such as in-
sufficient resources, incompatible labels, or conflicting taints—are excluded. The
remaining nodes are evaluated and ranked in the scoring phase based on metrics
like resource balance and workload distribution. The scheduler then binds the pod
to the node with the highest score [DS+20]. While this approach efficiently han-
dles general-purpose workloads, the default scheduler lacks awareness of temporal
constraints. It does not consider factors such as execution timing, network trans-
mission schedules, or alignment with time-sensitive protocols. This limitation poses
a challenge in environments that rely on precise coordination between application
behavior and network-level timing—such as those incorporating TSN. TSN requires
synchronization between computing tasks and deterministic network transmission.
For example, the IEEE 802.1Qbv standard mandates transmission at predefined time
intervals [IEE16b]. If pods are placed without regard to network timing configura-
tions, the system may fail to meet the required latency or jitter bounds.

Although Kubernetes allows extensibility through features like affinity rules, custom
schedulers, and taints and tolerations, these are primarily oriented toward resource
and topology considerations. They do not provide intrinsic support for time-aware
scheduling. Addressing this gap requires external coordination or enhancements to
the scheduling logic to ensure that workload placement is compatible with deter-
ministic network requirements.
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2.3.2 Kubernetes Networking and Container Network Interface

Networking in Kubernetes is essential for enabling communication among distributed
application components [Kub25]. Each pod is assigned a unique IP address, allow-
ing for direct connectivity without needing network address translation (NAT). This
flat network model makes finding services and communicating between pods, both
inside and between cluster nodes, easier..

Networking abstractions such as services, ingress, and egress rules facilitate commu-
nication between pods, services, and external endpoints. Kubernetes Services offers
load balancing and consistent IP addresses across dynamically shifting groupings
of pods. Through HTTP(S) routing, ingress resources control external access, and
egress configurations specify how pods can access resources outside the cluster.

Kubernetes does not implement its networking stack; instead, it uses the Container
Network Interface (CNI) specification to integrate with various third-party network-
ing solutions. CNI plugins create network interfaces, assign IP addresses, and con-
figure container routing. This pluggable architecture allows operators to tailor Ku-
bernetes’s networking behavior to match specific requirements [Aut23a]. Various
CNI plugins support different operational goals. Flannel, for instance, creates an
overlay network using VXLAN encapsulation, offering a simple solution for ba-
sic connectivity [KHM20]. Calico employs Layer 3 routing and supports advanced
policy enforcement, making it suitable for secure, production-grade deployments
[Cal23].

In some applications, such as industrial automation or real-time communication,
unique CNI plugins are required. These plugins can include TSN-compliant func-
tionality, including traffic priority, time-aware shaping, and VLAN tagging. De-
terministic and domain-specific networking behaviors in Kubernetes-based systems
are thus supported, and connectivity is made possible, thanks in large part to CNI.

FIGURE 2.3: Kubernetes Networking Architecture
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2.4 Time-Sensitive Networking

Time-Sensitive Networking (TSN) is a set of standards developed by the IEEE 802.1
working group to extend Ethernet with deterministic communication capabilities.
These standards enable reliable, low-latency data delivery with bounded jitter and
precise synchronization, making Ethernet suitable for applications with strict timing
requirements [IEE24].

TSN overcomes the drawbacks of conventional Ethernet, which relies on best-effort
and cannot guarantee delivery timeliness. TSN enables the coexistence of best-effort
and real-time traffic on shared network infrastructure by implementing time syn-
chronization, bandwidth reservation, and traffic scheduling techniques.

Rather than forming a single protocol, TSN consists of interoperable standards that
can be selectively implemented. Its adoption supports the convergence of IT and
OT networks by replacing legacy fieldbus systems with scalable, standards-based
Ethernet, reducing cost and complexity while increasing flexibility [TGE19].

TSN is essential to Industry 4.0’s communication infrastructure, as deterministic net-
working is required for robotics, autonomous systems, smart manufacturing, and
other time-sensitive processes. New architectures that combine dynamic applica-
tion deployment and real-time control are made possible by their integration with
software-defined platforms. [PTF20].

FIGURE 2.4: Illustration of the core properties of TSN



2.4. Time-Sensitive Networking 11

2.4.1 Time-Sensitive Networking (TSN) Standards

Deterministic communication over Ethernet is ensured via a set of characteristics
defined by the TSN standards package. IEEE 802.1AS, which uses the Generalized
Precision Time Protocol (gPTP) to provide time synchronization, is one of the fun-
damental standards. For coordinated scheduling and event alignment, this protocol
makes sure that every device in the network runs on a precise, shared time base
[IEE20].

IEEE 802.1Qbv introduces time-aware traffic shaping by segmenting time into re-
curring cycles and allocating specific transmission windows to prioritized traffic
[IEE16a]. This ensures that time-sensitive packets are transmitted without delay
or interference from best-effort traffic. IEEE 802.1Qbu and IEEE 802.3br introduce
frame preemption, allowing urgent traffic to interrupt lower-priority frames, reduc-
ing latency in congested networks [IEE16c] [IEE16a].

IEEE 802.1Qcc provides mechanisms for stream reservation and centralized con-
figuration of TSN flows. It supports both static and dynamic control, facilitating
scalable and automated deployment in complex environments [IEE18a]. Additional
standards, such as IEEE 802.1CB for redundant transmission and IEEE 802.1Qci for
per-stream policing, further enhance reliability and network protection [IEE17].

Together, these standards enable Ethernet to deliver the deterministic performance
required by real-time systems. Their modularity allows them to be integrated as
needed, depending on the requirements of specific applications and industries.

FIGURE 2.5: TSN Components



12 Chapter 2. Technical Background

2.4.2 TSN Control Architecture: CNC and CUC

The Centralized User Configuration (CUC) and the Centralized Network Configu-
ration (CNC) are the two main components of the TSN control architecture, which is
designed to coordinate communication requirements between end devices and the
network infrastructure. [IEE18a].

The CUC collects communication requirements from end systems, such as band-
width demands, timing constraints, and endpoint identifiers. It translates these
high-level application needs into network-specific configurations that the CNC can
understand and implement.

The CNC is in charge of figuring out and implementing the necessary network con-
figuration. It establishes egress queues, assigns time slots, establishes the best route
for every stream, and implements rules in compliance with TSN guidelines. By mon-
itoring the network topology and resources globally, the CNC guarantees that all
accepted streams are schedulable and non-conflicting [IEE18a].

Configuration exchange between CUC, CNC, and TSN-capable switches is performed
using standardized protocols such as NETCONF or RESTCONF [BCL19]. These
leverage YANG-defined data models to convey configuration parameters in an or-
ganized, machine-readable manner via secure connections. This model-driven ap-
proach is ideal for dynamic and programmable networks since it facilitates automa-
tion and interoperability..

Integrating TSN with other control and orchestration platforms, such as Kubernetes,
requires understanding the roles played by the CUC and CNC. These elements serve
as a link between the deterministic behavior that the underlying network infrastruc-
ture enforces and the requirements of the application layer.

FIGURE 2.6: TSN 802.1Qcc Architecture



2.5. Existing CNI Plugins and Their Limitations 13

2.4.3 Time Synchronization in TSN Systems

Accurate time synchronization is a foundational requirement for Time-Sensitive Net-
working. IEEE 802.1AS provides the mechanism for distributing precise time across
the network using the Generalized Precision Time Protocol (gPTP), which is derived
from IEEE 1588 PTP [Unk20]. In a TSN system, one device is elected as the Grand-
master Clock, and other devices synchronize to its time using hardware timestamp-
ing. This ensures that all devices in the network maintain a shared sense of time
with sub-microsecond precision. Synchronization enables features like time-aware
shaping (802.1Qbv) and coordinated transmission schedules [IEE19]. In Linux-based
systems, synchronization is implemented using tools such as ptp4l, which manages
synchronization with the Grandmaster Clock, and phc2sys, which aligns the system
clock with the hardware clock [Cor14]. These tools rely on physical layer support
from Network Interface Cards (NICs) that offer hardware timestamping capabili-
ties. Accurate synchronization ensures that traffic scheduled on one device arrives
at its destination within the expected time window, supporting deterministic com-
munication. It also prevents jitter and ensures consistency across the distributed
control systems in industrial applications.

2.5 Existing CNI Plugins and Their Limitations

While Kubernetes supports a modular Container Network Interface (CNI) architec-
ture, existing CNI plugins were primarily designed for general-purpose network-
ing and lack features essential for time-sensitive communication. This section re-
views several widely used CNIs and highlights their limitations in deterministic
networking. Flannel is a simple overlay network that routes traffic between nodes
using VXLAN encapsulation [Cor23a]. It offers minimal configuration overhead and
ease of deployment, making it a default choice for many Kubernetes clusters. How-
ever, Flannel does not support network policies, traffic prioritization, or hardware
offloading. It also lacks support for VLAN tagging and time-aware scheduling,
making it unsuitable for TSN [Cor23a]. Calico provides Layer 3 networking with
optional support for BGP-based routing and advanced network policies [Cal23]. It
eliminates overlay overhead and offers higher throughput. Despite these benefits,
Calico does not support deterministic queuing, VLAN tagging for TSN flows, or in-
tegration with hardware TSN features. Macvlan is a CNI that allows direct Layer
2 access by creating virtual interfaces bound to a physical NIC [Doc23]. It reduces
latency by bypassing Linux bridges and can be used to isolate traffic at the MAC
level. However, macvlan lacks mechanisms for shaping traffic based on time and
does not provide integration with gate control scheduling. Multus is a meta-plugin
that connects Kubernetes pods to multiple network interfaces using different CNIs
[Cor23b]. This enables the separation of control-plane and data-plane traffic or time-
sensitive and best-effort traffic. Multus is instrumental in combining a TSN-aware
secondary CNI with a standard primary CNI but does not provide TSN features.
While each plugin offers unique advantages, none natively support TSN standards
such as IEEE 802.1Qbv or 802.1AS. As a result, this research introduces a custom
Bash-based TSN CNI explicitly designed to integrate VLAN tagging, time-aware
scheduling via Taprio, and deterministic traffic handling into Kubernetes.
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2.6 Enabling Tools and Technologies

Several foundational tools and protocols are employed to support deterministic com-
munication and orchestration in a containerized TSN environment. These technolo-
gies enable key functions such as time synchronization, traffic scheduling, network
configuration, and multi-interface management . Python and Bash scripting were
chosen as the primary languages for automation and integration. Python supports
NETCONF-based communication through libraries like ncclient, while Bash enables
low-level control over network interfaces and traffic configuration. Go implements
lightweight, concurrent measurement utilities for capturing and analyzing latency
and jitter in real time. YAML is used to define Kubernetes manifests and Net-
workAttachmentDefinitions, supporting the declarative configuration of pods and
network interfaces. CRIO is employed as the container runtime environment, en-
abling the deployment of isolated, reproducible workloads within the Kubernetes
cluster. ptp4l and phc2sys implement IEEE 802.1AS-compliant time synchroniza-
tion across hosts and TSN switches, supporting hardware timestamping and sub-
microsecond precision. taprio, tc, and skbedit are Linux traffic control utilities that
enforce IEEE 802.1Qbv time-aware scheduling and VLAN-tagged stream prioritiza-
tion at the host level. netopeer2 and NETCONF enable centralized, programmable
configuration of TSN switches using YANG data models, aligning with the IEEE
802.1Qcc control architecture. Multus and macvlan are CNI extensions that allow
Kubernetes pods to connect to multiple network interfaces, separating time-sensitive
TSN traffic from standard communication. Flannel is a reference overlay CNI for ba-
sic pod communication used to benchmark non-deterministic baseline performance.
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Chapter 3

Design and Concept Methodology

3.1 Research-Driven Methodological Approach

This thesis employs an experimental, implementation-oriented research methodol-
ogy to investigate the integration of TSN with Kubernetes. The goal is to demon-
strate the feasibility and performance of deterministic, real-time pod communica-
tion within a Kubernetes-managed environment. The research approach is struc-
tured around three key stages: theoretical analysis, system design, and empirical
validation. In the first stage, a detailed literature review and standards investiga-
tion were conducted to define the foundational elements of TSN and Kubernetes.
This included standards such as IEEE 802.1AS-2020 for time synchronization, IEEE
802.1Qbv for time-aware traffic scheduling, and IEEE 802.1Qcc for centralized con-
figuration. K8’s networking capabilities—particularly the CNI model, scheduling
limitations, and support for multi-network configurations—were analyzed in par-
allel. The second stage involved translating theoretical insights into a modular,
standards-compliant system architecture. This includes conceptualizing a custom
CNI plugin to enable deterministic traffic scheduling at the pod level and a Python-
based CNC to configure TSN switches using NETCONF/YANG. The K8’s clus-
ter was planned using Kubeadm and CRI-O as the container runtime, with Mul-
tus proposed to support multi-interface pods. In the final stage, empirical eval-
uation was conducted using a physical testbed to validate key performance met-
rics—latency and jitter various traffic scenarios. These experiments were designed
under controlled conditions and supported by purpose-built Go-based measure-
ment tools, Wireshark, and system monitoring utilities. This research methodology
ensures replicability and practical applicability of the proposed integration model,
particularly for industrial environments requiring deterministic performance within
a cloud-native orchestration framework.

3.2 System Architecture and Integration Layers

The proposed architecture is structured around three primary layers: orchestra-
tion, deterministic networking, and synchronization. Each layer contributes dis-
tinct functionality and integrates with Kubernetes and TSN components to support
real-time communication. The orchestration layer is centered around K8’s control
plane and container lifecycle management. It schedules and deploys pods based on
user-defined policies. The deterministic networking layer introduces mechanisms
for isolating time-sensitive traffic from general-purpose traffic. This includes physi-
cally separating network paths and using dual interfaces per pod enabled by Multus.
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This layer supports scheduled traffic transmission in alignment with TSN require-
ments. The synchronization layer enforces a standard time reference across all nodes
and TSN switches using LinuxPTP tools, as defined by IEEE 802.1AS. This layer en-
ables consistent transmission slot alignment between host and switch components.
A conceptual CNC component supports centralized coordination. This component
distributes network configuration to TSN switches using standardized YANG mod-
els over NETCONF. This layer ensures that host—and switch-level behaviors are
aligned under a unified control strategy. 3.1 illustrates this layered architecture and
its components.

FIGURE 3.1: High-level architecture showing layered orchestration,
dual-NIC node configuration, synchronization via LinuxPTP, and

conceptual CNC coordination over NETCONF/YANG.
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3.3 Key Design Considerations

The scalability of K8s-based systems is greatly impacted by real-time communi-
cation requirements, which call for architectural modifications to satisfy require-
ments for low latency and high availability [Clo25][Gro25b]. Each design choice sup-
ported deterministic networking while maintaining compatibility with open stan-
dards. Each node has one interface for general internet purposes and another dedi-
cated to TSN. To enforce deterministic scheduling at the pod level, the system relies
exclusively on native Linux kernel features, avoiding proprietary software or kernel-
bypass frameworks. The taprio queuing discipline enables IEEE 802.1Qbv-based
transmission scheduling [GP23] [MK23]. This decision ensures long-term maintain-
ability and community support. Standardization was prioritized by using NET-
CONF and YANG to configure TSN switches. This ensures interoperability with in-
dustrial devices and aligns the system with IEEE 802.1Qcc recommendations. Time
synchronization was also a core design pillar. Using ptp4l and phc2sys with hard-
ware timestamping NICs provides sub-microsecond accuracy, enabling precise host
and switch scheduling alignment. Lastly, modularity guided the architecture. Each
functional unit—CNC, custom CNI, sync tools—can be independently deployed or
upgraded.

3.4 Custom CNI Strategy

A tailored CNI strategy was developed to enable deterministic TSN communication
within K8s-managed environments [AG23]. While K8s delegates pod networking to
external CNI plugins, standard solutions such as Flannel and Calico are optimized
for best-effort traffic and lack support for scheduling or prioritization. Therefore,
this system adopts a layered networking approach that combines open-source plu-
gins with a custom-developed extension to meet TSN requirements while preserv-
ing compatibility with K8’s default behavior. The architecture employs Multus CNI
as the first layer, enabling the attachment of multiple interfaces per pod [Gro25a].
Each pod receives two interfaces: one for deterministic pod-to-pod communication
and another for best-effort traffic. This dual-interface design ensures the separa-
tion of time-critical and non-real-time traffic, facilitating independent treatment of
each flow according to its performance requirements. Standard CNI plugins remain
unmodified for best-effort traffic. Macvlan supports Layer 2 routing and policy
enforcement. These plugins handle general traffic and coexist with the real-time
extensions without disrupting core Kubernetes networking. A custom Bash-based
CNI plugin provisioned the TSN interface. Upon pod instantiation, the plugin per-
forms VLAN tagging, sets PCP fields for QoS classification, and prepares the TSN-
capable interface for time-aligned scheduling. The system-level synchronization and
scheduling mechanisms described in the next section manage specific queuing and
scheduling configurations. This modular strategy introduces deterministic commu-
nication paths without altering Kubernetes internals. By integrating TSN configura-
tion at the interface level, the system supports real-time networking while maintain-
ing compatibility with standard orchestration workflows, simplifying deployment,
and supporting future extensibility.

3.2 illustrating each pod receives a best-effort interface and a TSN-configured inter-
face for deterministic communication.
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FIGURE 3.2: Diagram of Multus, custom CNI and second CNI inte-
gration

3.5 Time Synchronization Concept

Accurate time synchronization is a cornerstone for enabling TSN within distributed
containerized environments [SW20]. Deterministic communication protocols such
as IEEE 802.1Qbv rely on precise transmission scheduling, which demands a shared
and highly accurate notion of time across all participating nodes and switches. This
architecture achieves time synchronization by integrating the gPTP specified by IEEE
802.1AS-2020. Each K8’s node participating in the TSN domain has a TSN-capable
NIC supporting hardware timestamping. These NICs are essential for maintain-
ing the sub-microsecond clock precision required for deterministic scheduling. The
network infrastructure, composed of gPTP-aware TSN switches, extends this syn-
chronized time base throughout the system. Typically, the TSN switch acts as the
Grandmaster Clock, broadcasting synchronization messages to all connected nodes,
although mastership can dynamically shift depending on network conditions and
clock quality. On the host side, each node runs the LinuxPTP daemon suite, specif-
ically ptp4l for hardware clock synchronization and phc2sys for synchronizing the
system clock with the hardware clock. These daemons ensure that user-space and
kernel-space processes operate under a unified, precise time reference. The hard-
ware clock synchronization enables correct transmission scheduling through taprio-
managed egress queues [Doc25], while system clock alignment supports consistent
timestamping in user-space applications. The gPTP synchronization process in-
volves periodic exchange of synchronization messages across the network links, in-
cluding Pdelay Request, Pdelay Response, and Follow_Up messages [Abo18]. These
messages allow devices to calculate link-specific delays and clock offsets, adjusting
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their local clocks to maintain tight temporal alignment. A visual representation of
this synchronization process is shown in Figure 3.3, illustrating the message flow
between the Master node, intermediate TSN switch, and Slave node. This timing ex-
change ensures that all devices within the TSN domain maintain sub-microsecond
clock precision, critical for the scheduled gate control operations defined in IEEE
802.1Qbv.

FIGURE 3.3: Precision Time Protocol (gPTP) message exchange dia-
gram
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3.6 Traffic Scheduling Strategy

The system employs a traffic scheduling strategy based on the IEEE 802.1Qbv TAS
mechanism to achieve deterministic communication across the containerized and
network layers [Ass25]. In this model, time is divided into repetitive cycles and
specific transmission windows are allocated to distinct traffic classes. This allows
critical time-sensitive frames to be transmitted at predictable intervals, fully iso-
lated from lower-priority traffic. Outgoing traffic from Kubernetes pods is tagged
at the host level with VLAN headers containing PCP fields. These PCP values are
assigned according to the criticality of the traffic and are configured by the custom
Bash-based CNI plugin during the pod network attachment phase [IEE18b]. Upon
reaching the TSN switch, incoming frames are classified based on their PCP val-
ues and mapped into separate egress queues according to predefined priority lev-
els. Each egress queue is associated with a gate controlled by a schedule defined by
CNC. The CNC programs the GCLs into the switches through NETCONF interfaces,
ensuring that queues are opened or closed at precise time intervals aligned to the
cluster’s synchronized clock domain. Within each scheduling cycle, only the desig-
nated queues are allowed to transmit, while all others are held closed, thus prevent-
ing contention and guaranteeing bounded latency for time-critical flows. This gate
control mechanism enables scheduled traffic to transmit without competition from
background best-effort traffic, even under heavy network load. Additionally, non-
scheduled flows are assigned lower-priority queues with separate, non-interfering
windows, protecting the timing of deterministic streams. The system further sup-
ports per-stream filtering and policing according to IEEE 802.1Qci to enforce traf-
fic compliance and IEEE 802.1Qcc stream reservation protocols to manage dynamic
network resources. ??Time-Aware Shaping inside a TSN switch. Queued traffic is
prioritized and transmitted according to a gate schedule.

FIGURE 3.4: Working principle of IEEE 802.1Qbv Time-Aware Shaper.
Image was taken from [PMP23]
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3.7 Network Configuration and Resource Orchestration via
CNC and CUC

The integration of TSN into a K8s-managed environment necessitates a systematic
and centralized approach to network configuration and resource orchestration. This
functionality is realized through two critical architectural components: the CUC and
the CNC entities. Together, they ensure that application-level communication re-
quirements are dynamically translated into synchronized network-level configura-
tions, enabling deterministic behavior across the entire TSN-enabled infrastructure
[Gar+23]. The CUC operates as the interface between containerized applications and
the underlying TSN control plane. When a pod requiring time-sensitive communi-
cation is instantiated, its specific traffic requirements—such as stream periodicity,
required bandwidth, latency bounds, and priority—are either explicitly defined by
the application or inferred from predefined workload profiles. The CUC aggregates
this information into structured descriptors, formally known as Talker-Listener ad-
vertisements or stream reservation requests, which describe the expected commu-
nication behavior for each real-time flow. These descriptors are passed to the CNC,
which maintains a global view of the network topology, resource availability, and ex-
isting stream reservations. Upon receiving stream requirements from the CUC, the
CNC computes feasible transmission schedules, allocates required resources, and
generates GCLs for each TSN-capable switch in the network. The CNC then pushes
these configurations into the switches via standardized management protocols such
as NETCONF or RESTCONF, operating over machine-readable YANG data models.
This ensures that all critical traffic flows are properly prioritized and scheduled ac-
cording to their deterministic timing constraints. By decoupling application-level
and network-level concerns, the CUC-CNC model enables dynamic, policy-driven
orchestration [WK08]. Applications remain agnostic to network details, while the
CNC ensures consistent enforcement of timing guarantees even as the containerized
environment evolves—such as during pod migrations, scaling operations, or service
updates. This model bridges Kubernetes’ flexibility in orchestrating containerized
workloads with the stringent timing and reliability demands of industrial Ethernet
systems based on TSN.

3.8 Use Case Application and Scope

The system architecture developed in this thesis targets industrial scenarios where
real-time control commands or high-frequency sensor data must be exchanged across
containerized systems with strict timing guarantees. Example application domains
include smart manufacturing cells where robotic actuators require periodic con-
trol signals, predictive maintenance systems where time-correlated vibration data
streams are analyzed, and machine vision platforms that demand bounded-latency
transmission of image frames for defect detection.

A typical application flow involves a talker pod transmitting periodic, high-priority
TSN-tagged traffic toward one or more listener devices or pods. This communica-
tion is routed through a dedicated TSN-capable network interface, configured auto-
matically by the custom CNI plugin to enforce deterministic scheduling and VLAN-
based traffic classification. The TSN switches in the network forward this traffic ac-
cording to hardware-enforced GCLs, ensuring predictable transmission windows.
Synchronization of all network elements is maintained using gPTP mechanisms,
guaranteeing a unified clock domain across pods, nodes, and switches.
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By demonstrating deterministic, time-synchronized communication in a K8s-native
environment, this system addresses the critical gap between flexible cloud-native or-
chestration models and the stringent timing constraints of industrial Ethernet stan-
dards. The subsequent implementation chapter provides a detailed description of
the deployment steps, configurations, and validation processes used to realize this
architecture.
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Chapter 4

Implementation Overview

4.1 Hardware Setup

4.2 Experimental Platform

The experimental platform developed for this thesis consists of two physical ma-
chines configured as a minimal Kubernetes cluster, comprising one master node and
one worker node. Both machines operate on Ubuntu 24.04 LTS with the PREEMPT-RT
real-time Linux kernel, chosen to ensure deterministic task scheduling and low-
latency behavior at the operating system level.

Each machine is equipped with two independent network interface cards (NICs) to
achieve strict separation between best-effort and time-sensitive traffic. The first NIC
on each machine connects to a non-manageable Ethernet switch, providing inter-
net connectivity for remote access, system maintenance, and Kubernetes component
installation. This interface is isolated from the time-critical communication domain.

The second NIC on each machine is reserved exclusively for Time-Sensitive Net-
working (TSN) communication. These interfaces utilize Intel I225 controllers, which
support key TSN features, including:

• Hardware timestamping for IEEE 802.1AS (gPTP) synchronization,

• Time-aware shaping via IEEE 802.1Qbv,

• Centralized configuration using IEEE 802.1Qcc,

• Frame preemption as per IEEE 802.1Qbr.

Each TSN NIC connects to a Kronoton TSN-capable switch—one for the master node
and another for the worker node. The two switches are interconnected, forming a
TSN-enabled path that spans both nodes. This setup provides a dedicated, deter-
ministic communication channel while isolating it from background traffic. The use
of separate switches reinforces domain separation, ensuring the accuracy of latency
and jitter measurements under TSN constraints.

Figure ?? provides a front view of the setup, including the TSN switches and the
machines designated as master and worker nodes. Figure ?? shows the rear panel of
the machines, where the physical cabling of TSN and internet-facing interfaces are
clearly labeled and separated.

This dual-interface topology provides a clean foundation for deterministic commu-
nication experiments. It allows for controlled testing of Kubernetes-TSN integration
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FIGURE 4.1: Front view of the testbed with two PCs, TSN switches,
and non-manageable switch

FIGURE 4.2: Rear view showing of the testing platform

while ensuring that timing-sensitive traffic remains unaffected by unrelated back-
ground communication. The separation of traffic domains is essential for validating
TSN performance guarantees such as bounded latency, low jitter, and precise time
synchronization.

4.3 Testbed Setup Overview

Building upon the physical setup outlined in Section ??, the experimental testbed
is structured to validate deterministic communication between containerized appli-
cations and bare-metal devices through a TSN-compliant infrastructure. The archi-
tecture is intentionally designed to represent real-world industrial topologies where
Kubernetes-managed workloads interact with synchronized network devices and
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endpoints. Each Kubernetes node is equipped with two physical interfaces: one
standard NIC for cluster operations and internet access, and one TSN NIC interfaced
with Kronoton TSN switches. These switches support IEEE 802.1AS for clock syn-
chronization and IEEE 802.1Qbv for time-aware traffic shaping, ensuring scheduled
and low-jitter communication. The testbed topology enables controlled experiments
across isolated and mixed traffic domains. To analyze the behavior under diverse
real-time networking conditions, four experimental scenarios were designed:

4.3.1 Scenario 1: Pod-to-Pod Communication with TSN

Two pods, hosted on separate Kubernetes nodes, communicate via the TSN NIC
path. Traffic traverses Kronoton TSN switches, enabling analysis of containerized
TSN communication under orchestrated conditions.

FIGURE 4.3: Pod-to-Pod communication over TSN-enabled Kuber-
netes cluster.

4.3.2 Scenario 2: Pod-to-Pod Communication without TSN

This scenario evaluates overlay networking via Kubernetes’ default CNI plugins
without TSN integration. It provides a baseline for comparison with deterministic
traffic scenarios.

FIGURE 4.4: Overlay-based communication without deterministic
network support.



26 Chapter 4. Implementation Overview

4.3.3 Scenario 3: Device-to-Device Communication via TSN

Bare-metal devices equipped with TSN NICs communicate across Kronoton switches
without Kubernetes involvement. This serves as a control test to measure determin-
istic networking performance in isolation.

FIGURE 4.5: Bare-metal TSN communication across synchronized
switches.

4.3.4 Scenario 4: Direct Device-to-Device Communication (Bare-Metal)

Two PCs equipped with TSN and standard NICs are directly connected, bypassing
switches. This configuration measures point-to-point behavior, allowing assessment
of scheduling effectiveness without intermediate network hardware.

FIGURE 4.6: Direct PC-to-PC connection using TSN and standard
NICs.

These scenarios collectively test end-to-end determinism, validate orchestration com-
patibility, and highlight the contrast between conventional overlay networking and
TSN-aware designs in Kubernetes-managed environments.
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4.3.5 Testbed Summary and Configuration

Component Specification / Details
Master Node Intel i7, 16GB RAM, 2 NICs (1 for TSN, 1 for Internet)
Worker Node Intel i5, 16GB RAM, 2 NICs (1 for TSN, 1 for Internet)
Operating System Ubuntu 24.04 LTS
Kernel PREEMPT-RT (Real-time Linux kernel)
Kubernetes Version v1.27.1
Container Runtime CRI-O
Custom CNI Plugin Bash-based CNI plugin implementing IEEE 802.1Qbv using

taprio
Multus Version Installed via Helm; deployed as a DaemonSet across all nodes
Macvlan Plugin Configured in bridge mode with static IPAM via

NetworkAttachmentDefinition
TSN NIC Model Intel I225 with hardware timestamping capability
TSN Switch Model Kronoton TSN-Capable Switch
Switch TSN Features IEEE 802.1AS (gPTP), IEEE 802.1Qbv (Time-Aware Shaping),

IEEE 802.1Qcc, IEEE 802.1Qbr
Time Synchronization
Tools

ptp4l, phc2sys (LinuxPTP suite)

CNC Implementation Python-based controller using ncclient and NETCONF with
YANG configuration models

4.4 Kubernetes Cluster Setup

The Kubernetes cluster for this system was deployed using kubeadm, a widely adopted
tool designed to simplify the installation and management of Kubernetes compo-
nents in production-grade environments. The cluster was built using Kubernetes
version 1.27.1, chosen for its enhanced support for modern networking plugins, im-
proved scheduling behavior, and proven stability in edge-computing scenarios.

The cluster consisted of two bare-metal machines running Ubuntu 24.04 LTS with
a PREEMPT-RT patched kernel, allowing for low-latency task scheduling and hard-
ware interaction. One node was configured as the master node, responsible for con-
trol plane operations, while the second was joined as a worker node, intended for
scheduling pods and running application workloads.

Before initializing the Kubernetes control plane, the container runtime CRI-O was
installed on both machines. CRI-O was selected over the default containerd be-
cause of its compliance with the Open Container Initiative (OCI) standards and its
optimized performance in lightweight, real-time environments. It provides a mini-
mal runtime layer that integrates seamlessly with Kubernetes while allowing greater
control over container behavior—an important feature for TSN-based applications.

To initialize the cluster, the following command was executed on the master node:

kubeadm init –pod-network-cidr=10.244.0.0/16

This command bootstrapped the control plane and assigned the pod network CIDR
range to allow communication between pods across nodes.

Once the control plane was active, a join token was generated using:
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kubeadm token create –print-join-command

The worker node then joined the cluster using the provided command, which in-
cluded the token and discovery certificate hash. After the nodes were success-
fully integrated, the kubeconfig file was set up to enable cluster management using
kubectl.

The successful status of both nodes was verified using:

kubectl get nodes -o wide

Figure 4.7 shows the Kubernetes cluster after initialization, with both nodes regis-
tered and the control plane in a ready state.

FIGURE 4.7: Node status following Kubernetes installation, display-
ing roles, internal IPs, and kernel runtime.

4.4.1 Custom CNI Plugin Implementation

To facilitate deterministic network behavior within Kubernetes, a custom Container
Network Interface (CNI) plugin was developed using Bash scripting. This imple-
mentation diverges from conventional CNI plugins such as Flannel and Calico, which
prioritize general-purpose compatibility, by specifically enabling the integration of
IEEE 802.1Qbv Time-Sensitive Networking (TSN) capabilities into the Kubernetes
pod network.

The custom plugin is invoked during the standard CNI lifecycle, executing logic
upon pod creation and deletion. Its primary function is to configure a dedicated
TSN-capable communication path for each pod. This is achieved through the al-
location of a virtual Ethernet (veth) pair, wherein one end is moved into the pod’s
network namespace and the other is attached to the host’s TSN-capable physical in-
terface. The plugin assigns each pod a statically reserved IP address, selected from
a predefined pool stored in a local tracking file, ensuring deterministic IP allocation.

To support traffic classification and time-aware scheduling, the plugin applies VLAN
tagging and assigns Priority Code Point (PCP) values for Quality of Service (QoS).
The queuing behavior is defined using the Linux tc utility by applying the taprio
queuing discipline to the TSN interface. This configuration enables the enforcement
of Gate Control Lists (GCLs), allowing time-aware transmission according to syn-
chronized scheduling windows. The plugin also initializes multiple traffic classes
and assigns corresponding queues using a fixed traffic-class mapping scheme. Gate
open intervals are defined per queue using time-slot entries specified with sched-entry
directives.
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An example taprio configuration executed by the plugin is shown below:

1 sudo tc qdisc replace dev enp3s0 parent root handle 100 taprio \
2 num_tc 4 \
3 map 0 1 2 3 3 3 3 3 \
4 queues 1@0 1@1 1@2 1@3 \
5 base-time 0 \
6 sched-entry S 0x1 250000 \
7 sched-entry S 0x2 250000 \
8 sched-entry S 0x4 250000 \
9 sched-entry S 0x8 250000 \

10 flags 0x2

LISTING 4.1: TAPRIO scheduling configuration

This configuration defines four traffic classes, each assigned a dedicated queue and
gate interval of 250 µs. The use of hexadecimal masks determines which queues are
open at specific transmission cycles, enabling time-aware deterministic delivery.

To register the plugin within the Kubernetes CNI stack, the plugin binary was placed
in /opt/cni/bin/ and a configuration file was created under /etc/cni/net.d/. A
sample configuration file is presented below:

1 {
2 "cniVersion": "0.3.1",
3 "name": "mynet",
4 "type": "bash-cni",
5 "bridge": "cni0",
6 "isGateway": true,
7 "ipMasq": true,
8 "subnet": "10.244.1.0/24",
9 "network": "10.244.0.0/16",

10 "ipam": {
11 "type": "host-local",
12 "subnet": "10.244.1.0/24",
13 "gateway": "10.244.1.1"
14 }
15 }

LISTING 4.2: Bash-based CNI plugin configuration

The plugin was named bash-cni and assigned the highest precedence through the
file 10-custom-cni.conf, ensuring Kubernetes would invoke it by default.

Lifecycle operations, including interface creation (ADD) and cleanup (DEL), are
logged to /var/log/bash-cni-plugin.log. These logs serve both as operational
diagnostics and as evidence of correct plugin behavior during dynamic container
activity. An excerpt of such runtime logs is shown in Figure 4.8 and 4.9, illustrating
the execution flow during pod provisioning and deprovisioning.
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FIGURE 4.8: Master Node Runtime log showing interface creation
and IP assignment.

FIGURE 4.9: Worker Node Runtime log showing interface creation
and IP assignment.
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To validate the integration, the plugin was designated as the default CNI plugin
within the Kubernetes cluster. Prior to deployment, critical system pods such as
CoreDNS failed to start due to missing network connectivity. Following plugin ac-
tivation, these pods transitioned to a healthy running state, thereby demonstrating
the plugin’s compatibility with the Kubernetes networking lifecycle and confirming
its baseline correctness. This outcome is depicted in Figure 4.10.

FIGURE 4.10: CoreDNS pods running after plugin activation.

The plugin thus establishes a foundation for deterministic pod-to-pod communi-
cation in time-sensitive applications. Its Bash-based implementation, while mini-
malistic, provides sufficient control over Linux networking primitives to implement
TSN-compliant behavior and supports flexible debugging through transparent log-
ging.
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4.5 Multus Installation and Configuration

To enable multi-interface support for pods in Kubernetes, the Multus CNI plugin
was installed and configured in the cluster. Multus acts as a meta-plugin, allowing
pods to attach to multiple networks by chaining additional CNI plugins through
NetworkAttachmentDefinition (NAD) resources. This setup maintains compatibil-
ity with Kubernetes’ default networking model while enabling flexible pod-level
connectivity.

In this architecture, Multus was used to attach a secondary interface, net1, using the
macvlan plugin. This interface facilitates Layer 2 communication between pods and
TSN-capable switches for best-effort traffic. The default interface, eth0, is provided
by the custom Bash-based CNI and is responsible for deterministic traffic aligned
with TSN scheduling requirements.

Multus was installed via the official Helm charts and its deployment was verified
using kubectl. Figure 4.11 shows the Multus DaemonSet running across all cluster
nodes.

FIGURE 4.11: Multus deployed as a daemonset across all cluster
nodes.

A representative NAD manifest is shown below. It defines the macvlan configuration
attached to the TSN NIC and includes static IP allocation.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:

name: tsn-macvlan-net
spec:

config: |
{

"cniVersion": "0.3.1",
"type": "macvlan",
"master": "ens9",
"mode": "bridge",
"ipam": {

"type": "static",
"addresses": [

{
"address": "192.168.5.203/24",
"gateway": "192.168.5.1"

}
]

}
}
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Pods that require this secondary interface are annotated as follows:

metadata:
annotations:

k8s.v1.cni.cncf.io/networks: tsn-macvlan-net

This annotation enables a pod to communicate using both the primary TSN interface
(eth0) and the macvlan-based best-effort interface (net1).

4.5.1 Macvlan Setup for Secondary Interface

The macvlan plugin was selected to provide Layer 2 connectivity for net1 interfaces.
Within each pod, this interface is instantiated by Multus and mapped to the TSN
NIC. The configuration uses bridge mode, enabling multiple pods to share the phys-
ical NIC while maintaining separate IP identities.

Figure 4.12 shows the pod’s internal interface structure, confirming the presence of
both eth0 (custom CNI) and net1 (macvlan).

FIGURE 4.12: Pod with net1 (macvlan) interface for Layer 2 reacha-
bility.

Connectivity between the pod and host was validated using ICMP echo requests, as
shown in Figure 4.13.

Figure 4.14 demonstrates pod-to-pod communication across the TSN switches using
the macvlan interface.
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FIGURE 4.13: ICMP ping from macvlan-enabled pod to host.

FIGURE 4.14: Ping test between macvlan-enabled pods across TSN
infrastructure.

This dual-interface configuration effectively separates deterministic TSN traffic (eth0)
from best-effort Layer 2 traffic (net1). It enables flexible testing and reliable evalua-
tion of communication behaviors without interference between traffic classes.
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4.6 CNC and Switch Configuration via NETCONF

To orchestrate deterministic communication across the TSN infrastructure, a CNC
was developed using Python and the ncclient library. The CNC facilitates remote
configuration of GCLs and time-aware scheduling parameters compliant with the
IEEE 802.1Qbv standard.

The CNC establishes NETCONF sessions with TSN switches using XML-encoded
edit-config operations aligned with YANG data models supported by the switch.
Pre-deployment validation of NETCONF connectivity was performed using the netopeer2-cli
command-line interface, as illustrated in Figure 4.15.

FIGURE 4.15: Using Netopeer2 CLI to retrieve system information
from a TSN switch via NETCONF.

The CNC successfully executed dynamic configuration commands such as host-
name updates and GCL distribution. Figure 4.16 shows the Python-based CNC ap-
plying NETCONF edits to a TSN switch during an active session.
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FIGURE 4.16: Python CNC pushing TSN configuration to a switch
using NETCONF and YANG.

Prior to applying transmission schedules, the CNC confirms that time synchroniza-
tion is established between the master and worker nodes using the PTP stack. This
alignment ensures accurate gate timing for scheduled traffic transmission across
TSN links.

4.7 Experimental Traffic and Measurement Setup

The testbed was designed to evaluate the performance of TSN-enabled Kubernetes
communication using controlled traffic and synchronization mechanisms. It con-
sisted of a Kubernetes master node, a worker node, and interconnected TSN switches.

Each node was provisioned with two network interfaces:

• One interface for standard Kubernetes control-plane communication

• One dedicated interface for TSN-based data exchange

Clock synchronization was achieved using the LinuxPTP toolset. On the master
node, ptp4l was configured to serve as the Grandmaster Clock. A representative
log of this service is shown in Figure 4.17.

The worker node synchronized its system clock using phc2sys, ensuring alignment
with the hardware clock and the Grandmaster. Figure 4.18 shows a sample log of
this process.

To evaluate the communication path, traffic was generated using a Go-based UDP
sender and receiver deployed across the TSN interfaces. These applications ex-
changed timestamped packets and logged transmission latency and jitter. Tests were
performed under multiple traffic conditions, with and without active scheduling or
TSN-enabled paths.
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FIGURE 4.17: ptp4l operating on the master node to establish grand-
master clock synchronization.

FIGURE 4.18: phc2sys running on the worker node to maintain syn-
chronized time with the Grandmaster.

The experimental data collected from these measurements is analyzed and presented
in Chapter 5, with a focus on evaluating the effects of synchronization, scheduling,
and CNI configurations on real-time network performance.
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Chapter 5

Validation Overview

5.1 Validation Goals and Scope

The purpose of the validation phase is to rigorously evaluate whether the integra-
tion of Kubernetes with TSN—as implemented through custom CNI extensions and
synchronized TSN switch configurations—supports the deterministic communica-
tion requirements expected in industrial environments.

This evaluation focuses on two primary performance metrics:

Bounded End-to-End Latency: The system must ensure that latency between com-
municating pods remains tightly bounded and stable, even under background traf-
fic and real-time scheduling. Based on TSN use cases in factory automation and
robotics, the target latency for this system is ≤ 1 millisecond, with preference to-
ward sub-500 µs operation where possible.

Minimal Jitter: Jitter, or variation in packet delivery intervals, should remain under
50 microseconds to support time-critical operations such as sensor-actuator loops
and motion control tasks. This requirement aligns with OPC UA and IEEE TSN
industrial profiles.

Although synchronization accuracy is not a primary validation metric in this study,
it is a critical prerequisite. The reliability of time-aware scheduling (IEEE 802.1Qbv)
depends on tight clock alignment across TSN switches and host NICs. Therefore,
PTP-based synchronization was monitored to ensure sub-microsecond offset levels,
enabling valid latency and jitter testing.

These metrics were initially evaluated across foundational communication scenar-
ios described in Chapter 4, including Kubernetes pod-to-pod, pod-to-device, and
device-to-pod interactions. Though exttttaprio was configured inside the custom
CNI plugin and the TSN switch, the resulting measurements did not reflect effective
traffic prioritization.

Therefore, the testbed was extended with three refined scenarios to consider from a
measurement and performance evaluation perspective.

5.2 Extended Experimental Communication Scenarios

To systematically validate the deterministic networking capabilities of the Kubernetes–
TSN integrated system, three experimental communication scenarios were designed.
Each scenario incrementally applies TSN scheduling mechanisms, allowing a com-
parative evaluation of their impact on end-to-end latency and jitter.
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Note: Throughout all measurements, background network load was generated us-
ing iperf3 sessions between non-tested pods to simulate network congestion and
stress test the deterministic capabilities of the system.

5.2.1 Scenario 1: Baseline VLAN Priority Communication (Without Time-
Aware Scheduling)

In the initial baseline scenario, basic VLAN-based priority marking was applied to
outgoing UDP packets, but no time-aware scheduling mechanisms were activated
at either the host or switch side.

• Host Setup:

– VLAN tagging was applied using Priority Code Points (PCP):

* PCP=7 for high-priority real-time traffic.

* PCP=1 for low-priority background traffic.

– No taprio queuing discipline configured on the host TSN NICs.

• Switch Setup:

– TSN switches operated in standard Layer 2 forwarding mode.

– No Gate Control Lists (GCLs) applied.

• Objective: Establish a baseline to observe latency and jitter behavior with PCP
tagging alone, without strict time-slot-based control.

• Expectation: Minor prioritization based on PCP, but high variability in latency
and jitter due to lack of synchronized gating.

• Measurement Notes: UDP packets were transmitted at 1 ms, 2 ms, and 4 ms
cyclic intervals. Background iperf3 traffic was continuously active.

FIGURE 5.1: Baseline VLAN Priority Communication Setup (Scenario
1)

5.2.2 Scenario 2: Switch-Level Time-Aware Scheduling

In this intermediate scenario, Time-Aware Scheduling (TAS) was activated at the
TSN switches to enforce deterministic transmission windows based on time.
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• Host Setup:

– VLAN tagging (PCP=7 and PCP=1) remained active.

– No taprio configuration applied at the pod or node NIC level.

• Switch Setup:

– Gate Control Lists (GCLs) manually configured on TSN switches.

– Critical traffic streams (PCP=7) allocated exclusive transmission windows.

• Objective: Validate the improvement in latency stability and jitter reduction
when only switch-side TAS is applied.

• Expectation: Lower jitter and more predictable packet delivery for high-priority
traffic compared to Scenario 1.

• Measurement Notes: Identical packet generation settings and background
iperf3 load maintained.

FIGURE 5.2: Switch-Level Time-Aware Scheduling (Scenario 2)

5.2.3 Scenario 3: Full TSN Scheduling (Pod + Switch Synchronization)

This final scenario represents the complete deterministic system where scheduling
is tightly coordinated between Kubernetes pods, hosts, and TSN switches.

• Host Setup:

– The custom Bash-based CNI plugin configured taprio queuing disci-
plines on TSN NICs.

– Host-side taprio schedules synchronized with switch-side GCLs.

– VLAN PCP tagging dynamically assigned based on pod annotations.

• Switch Setup:

– Gate Control Lists (GCLs) dynamically pushed by the Centralized Net-
work Controller (CNC) using NETCONF/YANG.

– Switches operated in synchronized mode, using a gPTP-distributed clock.

• Objective: Demonstrate bounded low-latency and minimal jitter performance
under complete TSN scheduling coordination.

• Expectation: Highest determinism achieved with minimal latency variation
and microsecond-level synchronization.

• Measurement Notes: UDP traffic at 1 ms, 2 ms, and 4 ms cycle times under
active background iperf3 load.
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FIGURE 5.3: Switch-Level Time-Aware Scheduling (Scenario 2)

5.3 Measurement Methodology

To ensure statistical robustness and technical accuracy, a structured measurement
methodology was designed and applied across all validation scenarios. This method-
ology involved controlled traffic generation, clock synchronization verification, pre-
cise timestamping, and standardized offline analysis of latency and jitter behavior.

5.3.1 Measurement Architecture

The experimental architecture consisted of a two-node Kubernetes cluster intercon-
nected via TSN-capable Ethernet switches. Each node was equipped with two net-
work interfaces:

• One interface for Kubernetes control-plane communication and Internet ac-
cess.

• One dedicated interface for TSN-enabled data-plane traffic.

Time synchronization across the entire system was achieved using IEEE 802.1AS
Generalized Precision Time Protocol (gPTP). Hardware timestamping was enabled
on the TSN-capable Intel I225 NICs to ensure microsecond-level accuracy.

Within the Kubernetes environment:

• Pods were attached to TSN NICs using Multus and a custom Bash-based TSN
CNI plugin.

• taprio queuing disciplines were dynamically configured where applicable (Sce-
nario 3).

Traffic was exclusively routed through the deterministic TSN interfaces, bypassing
the Kubernetes overlay network for minimized latency and jitter influence.
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5.3.2 Measurement Tools and Software Environment

The following tools and frameworks were utilized during the measurement cam-
paigns:

Tool/Framework Purpose
Custom Go UDP Traffic Generator Generation of timestamped UDP packets with

configurable cyclic intervals (1 ms, 2 ms, 4 ms).
LinuxPTP (ptp4l, phc2sys) Synchronization of hardware clocks and sys-

tem clocks across nodes and switches.
iperf3 Generation of background network traffic to

simulate congestion scenarios.
Wireshark Packet capture and inspection using hardware

timestamping capabilities.
Python (Pandas, Matplotlib, Seaborn) Offline latency and jitter analysis, statistical ag-

gregation, and graph generation.
tc (Traffic Control) Configuration and inspection of taprio queu-

ing disciplines on TSN NICs.
NETCONF and Netopeer2-cli Switch configuration validation and GCL

schedule verification.

TABLE 5.1: Measurement tools and their purposes.

To simulate congested environments, background traffic was generated using the
iperf3 tool. The sender node initiated 10 parallel TCP streams towards the receiver
node during test runs. These streams saturated the standard Ethernet channel and
helped evaluate the effect of background load on latency and jitter performance.
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FIGURE 5.4: iperf3 sender-side: Generating 10 parallel TCP streams
to stress the network.

5.3.3 Latency and Jitter Calculation

Latency and jitter metrics were derived based on precise timestamp data collected
during transmission and reception of each UDP packet.

Latency Calculation

The latency for each packet i was calculated as:

Latency(i) = t(i)Received − t(i)Sent (5.1)

where:

• t(i)Sent is the transmission timestamp,

• t(i)Received is the reception timestamp.

The average latency across all received packets was computed as:

Avg. Latencyµs =
1
N

N

∑
i=1

t(i)Received − t(i)Sent
1000

(5.2)

where N is the total number of received packets.

Latency values were scaled appropriately to microseconds (µs) for standardized pre-
sentation.
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FIGURE 5.5: iperf3 server-side: Receiving concurrent streams to sim-
ulate congestion during TSN measurements.

Jitter Calculation

Jitter was calculated as the variation from the expected cyclic packet transmission
interval T (typically 1 ms):

Jitter(i) = |ti − (ti−1 + T)| (5.3)

where:

• ti and ti−1 are consecutive packet reception timestamps,

• T is the configured cyclic interval (1 ms, 2 ms, or 4 ms depending on the test).

This method captures irregularities in packet inter-arrival timings, isolating trans-
mission and scheduling effects from network propagation variations.
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Key Metrics Evaluated

The following performance indicators were extracted for each scenario:

• Average End-to-End Latency

• Minimum and Maximum Latency

• 99th, 99.9th, and 99.99th percentile Latency

• Average Jitter

• Maximum Jitter

• Jitter Distribution Profiles

5.3.4 Measurement Procedure

Each measurement campaign followed a repeatable, scripted procedure to ensure
consistency:

1. Environment Preparation: Kubernetes cluster re-synchronized via ptp4l and
phc2sys. taprio queues and GCL schedules configured as per the scenario.

2. Traffic Generation: Go-based UDP sender and receiver applications deployed
inside designated pods. Traffic generated at fixed intervals (1 ms, 2 ms, 4 ms)
for approximately 100,000 packets per run. Background iperf3 traffic initiated
between auxiliary pods.

3. Data Logging: Transmission and reception timestamps recorded into struc-
tured CSV files. Wireshark captures collected using NIC hardware timestamp-
ing.

4. Offline Analysis: Latency and jitter calculated based on timestamp logs. Sta-
tistical summaries and graphs generated using Python libraries. Verification of
VLAN tagging, PCP prioritization, and GCL behavior via Wireshark analysis.

5. Repetition: Each configuration measured in at least three independent runs to
verify result stability. Averages and standard deviations reported.
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Chapter 6

Results and Analysis

6.1 Measurement Scenarios and Goals

In order to validate the proposed Kubernetes-TSN integration architecture, a sys-
tematic evaluation was conducted across multiple test environments and traffic con-
ditions. Each scenario was designed to progressively introduce more deterministic
network features, allowing direct comparison between baseline and TSN-augmented
setups.

The primary goals of the measurements were:

• Quantify latency and jitter under varying configurations.

• Observe the impact of TSN mechanisms via taprio and switch GCL schedul-
ing) on communication performance.

• Evaluate system behavior under both idle and network-congested conditions
(background iperf traffic).

• Benchmark improvements compared to k8 custom CNI and traditional CNI-
based Kubernetes setups like Flannel and macvlan.

While recording timestamps for end-to-end latency and inter-packet jitter compu-
tation. Whenever applicable, iperf3 was used to simulate background traffic and
stress-test the network under load.

The measurements were categorized into three groups:

• Host-Level (bare-metal to bare-metal, with and without TSN switches)

• Docker Containers (container-to-container communication)

• Kubernetes Pods (Pod-to-Pod with various CNIs, including Multus and cus-
tom TSN CNI)

Results were analyzed using:

• Latency scatter plots

• Latency histograms

• Jitter scatter plots

• Jitter histograms

This multi-dimensional approach ensures a robust evaluation of deterministic be-
havior at all layers of the proposed system.
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6.2 Overview of Measurement Method and Result Analysis

After completing each measurement run, raw timestamp data was exported to CSV
format by the Go-based client/server applications. These CSV files contained per-
packet send and receive times, from which latency and jitter were calculated.

The analysis workflow consisted of:

• Running a custom Python script (analyze_application_latency.py) to pro-
cess the CSV files.

• Calculating average, minimum, maximum, and 99th/99.9th/99.99th percentile
values for latency and jitter.

• Generating plots, including:

– Scatter plot of packet latency vs packet count

– Histogram of latency distribution

– Scatter plot of jitter vs packet count

– Histogram of jitter distribution

Each plot provided critical insight:

• Latency Scatter Plot: Highlights individual outliers and variations across packet
transmissions.

• Latency Histogram: Shows the statistical spread and clustering of packet la-
tencies.

• Jitter Scatter Plot: Reveals how packet-to-packet variation changes over time.

• Jitter Histogram: Aggregates jitter behavior to detect systemic patterns.

These results allow identification of:

• Maximum deviation in packet timing.

• Stability and predictability of network behavior.

• Presence of microbursts, delays, or jitter spikes.

In this chapter, a detailed explanation of one representative measurement will be
provided alongside all relevant plots. Additional scenarios and measurements are
summarized in tabular form for comparative analysis in Section ??.
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6.3 Bare-Metal Direct Connection Measurement

This section presents the results of the bare-metal direct connection measurements
without Kubernetes or Docker overhead. Two physical hosts exchanged UDP pack-
ets directly, without passing through any TSN switch or additional network infras-
tructure. The test involved sending 1 million packets at 10 ms intervals using a cus-
tom Go-based UDP measurement script.

6.3.1 Latency Analysis

FIGURE 6.1: Latency Scatter Plot: Bare-Metal Host-to-Host

Interpretation:

• The majority of packet latencies cluster tightly around the mean value.

• Sporadic outliers are visible, reaching up to approximately 8000–9000 µs.

• The yellow dashed line indicates the calculated average latency of around
243 µs, confirming low average delay in the direct connection setup.
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FIGURE 6.2: Latency Histogram: Bare-Metal Host-to-Host

Interpretation:

• Over 95% of the packets experienced latency below 500 µs, as indicated by the
steep peak on the left side of the histogram.

• A few extreme cases are recorded beyond 1000 µs, but they are statistically
negligible.

6.3.2 Jitter Analysis

Interpretation:

• The jitter values mostly remain under 1000 µs, with a small number of isolated
spikes up to 8000 µs.

• The distribution remains relatively stable over the packet transmission dura-
tion, suggesting no major drift over time.

Interpretation:

• The majority of packets experienced jitter values below 200 µs.

• A minor tail towards higher jitter values indicates occasional packet bursts or
delays, but the overall occurrence remains low.
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FIGURE 6.3: Jitter Scatter Plot: Bare-Metal Host-to-Host

FIGURE 6.4: Jitter Histogram: Bare-Metal Host-to-Host



52 Chapter 6. Results and Analysis

6.3.3 Statistical Summary

To complement the graphical analysis, Table 6.1 summarizes the key numerical statis-
tics extracted from the measurement logs using a Python-based analysis script.

FIGURE 6.5: Python script output showing detailed latency and jitter
statistics for the bare-metal direct measurement.

TABLE 6.1: Latency and Jitter Statistics for Bare-Metal Direct Connec-
tion

Metric Value

Average Latency 243.2 µs
Maximum Latency 55,724.5 µs
99th Percentile Latency 339.8 µs
Average Jitter 31.5 µs
99th Percentile Jitter 1987.2 µs

These results confirm that, while most packets experienced minimal latency and
jitter, rare outliers introduced much higher delays. Such occurrences highlight the
need for tighter scheduling and queue control, motivating the application of TSN
scheduling techniques in subsequent tests.
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6.3.4 Measurement Table

The maximum latency and jitter results collected across different test scenarios are
summarized in Table 6.2.

Test Scenario Max Latency (µs) Max Jitter (µs)
Bare-Metal (Direct Connection) 55725 54970
Bare-Metal via TSN Switch 5991 4605
Custom CNI without TSN Switch 46409.849 42450.39
Custom CNI via TSN Switch 35916 35719
Docker with TSN Switch 26514 26366
Macvlan Interface (Multus) 32042 31860
Flannel CNI (default) 47782 47631
Bare-Metal under Background Load (iperf3) 46829 34818
Pod 50k Packets, 1ms Cycle 35474 35232
Pod 50k Packets, 1ms Cycle with iperf3 Load 55058 60592
Pod 50k Packets, 2ms Cycle 36044 35807
Pod 50k Packets, 2ms Cycle with iperf3 Load 65894 62037

TABLE 6.2: Summary of Maximum Latency and Maximum Jitter
Across Test Scenarios

6.3.5 Interpretation

The measurement results provide key insights into latency and jitter behavior across
various deployment scenarios in the Kubernetes–TSN integration framework. The
bare-metal direct connection scenario exhibited the highest latency and jitter, both
exceeding 55,000µs, underscoring the unpredictability of unmanaged Ethernet com-
munication in the absence of queue scheduling or transmission control. By con-
trast, introducing a TSN switch into the bare-metal path significantly reduced both
metrics to below 6,000µs, validating the effectiveness of hardware-level Time-Aware
Scheduling (TAS) even without host-side intervention. Scenarios involving the cus-
tom CNI, with and without the TSN switch, demonstrated moderate improvements
but failed to consistently meet deterministic expectations—highlighting the limita-
tions of software-only traffic shaping in containerized environments. Containerized
setups using Docker and macvlan also displayed elevated jitter, suggesting that vir-
tualization layers and interface attachment mechanisms contribute to timing insta-
bility. As anticipated, the Flannel CNI—which relies on overlay networking and
lacks support for real-time traffic control—performed poorly, confirming its unsuit-
ability for TSN-style workloads. Introducing background traffic using iperf3 im-
posed substantial stress across all configurations. In particular, 1ms and 2ms cyclic
transmission scenarios experienced a sharp increase in latency and jitter, in some
cases exceeding 60,000µs. While this exposed the system’s limited ability to isolate
high-priority traffic under contention, it also confirmed the realism and sensitivity
of the test environment. These findings prompted the integration of skbedit filters
and explicit VLAN PCP tagging within the CNI plugin to enforce traffic prioritiza-
tion at the kernel level and ensure correct classification in both host and switch-side
queuing hierarchies.



54 Chapter 6. Results and Analysis

6.4 Scenario 1: Baseline VLAN Priority Communication (With-
out Time-Aware Scheduling)

In the first validation scenario, UDP traffic was transmitted between hosts with
VLAN PCP tagging applied to differentiate traffic classes. However, neither the host
nor the switch enforced time-aware scheduling. The aim was to observe whether
basic priority tagging alone could influence packet delay characteristics under real-
world conditions.

6.4.1 Results

Without Background Load (iperf)

• 1 ms cycle: Maximum latency ≈ 35,822 µs; jitter ≈ 35,677 µs

• 2 ms cycle: Maximum latency ≈ 42,709 µs; jitter ≈ 42,346 µs

• 4 ms cycle: Maximum latency ≈ 10,729 µs; jitter ≈ 10,448 µs

With Background Load (iperf)

• 1 ms cycle: Maximum latency ≈ 96,995 µs; jitter ≈ 92,896 µs

• 2 ms cycle: Maximum latency ≈ 189,999 µs; jitter ≈ 180,871 µs

6.4.2 Interpretation

Although VLAN PCP markings were applied, no strict transmission ordering was
enforced. Consequently, prioritized packets were still subject to queuing delays and
contention, especially under background traffic conditions. While there was some
observable differentiation in delay between priority and non-priority packets, the
absence of gate-based scheduling meant that these priorities could not guarantee
deterministic behavior. Thus, VLAN PCP tagging alone provided relative improve-
ment but did not ensure absolute bounded latency or eliminate jitter spikes under
network congestion.

6.5 Scenario 2: Switch-Level Time-Aware Scheduling (TAS)
Enabled

In the second validation scenario, the previous setup was extended by enabling
Time-Aware Scheduling (TAS) at the TSN switches through Gate Control List (GCL)
configurations. Hosts continued to transmit packets based on VLAN PCP tagging,
but the switches now enforced strict transmission windows aligned with time cycles.

6.5.1 Results

Without Background Load (iperf)

• 2 ms cycle: Maximum latency ≈ 40,486 µs; jitter ≈ 40,187 µs

• 4 ms cycle: Maximum latency ≈ 9,017 µs; jitter ≈ 8,789 µs
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With Background Load (iperf)

• Standard TAS GCL (Q7, 100 µs cycle):

– Maximum latency ≈ 98,673 µs; jitter ≈ 93,101 µs

• TAS GCL (512B SDU, 1 ms cycle):

– Maximum latency ≈ 9,156–11,309 µs; jitter ≈ 5,351–7,134 µs

• TAS GCL (1024/512B SDU, mixed queues):

– Maximum latency ≈ 10,017–11,149 µs; jitter ≈ 4,940–9,090 µs

• TAS GCL (1536B SDU, Q7 queue):

– Maximum latency ≈ 98,674 µs; jitter ≈ 93,191 µs

6.5.2 Interpretation

Activating TAS at the switch level directly improved latency and jitter distribution
compared to Scenario 1. The switch enforced deterministic forwarding based on the
VLAN PCP priority, offering better handling of high-priority traffic. In particular,
packets marked with PCP 7 (highest priority) were consistently forwarded within
reserved transmission windows, resulting in substantially tighter latency bounds
at relaxed cycle times (e.g., 4 ms cycle). However, under tighter cycles (1 ms) and
larger SDU sizes, background congestion still caused some transmission misalign-
ments, particularly without synchronized host-side control. This underscores that
while VLAN PCP tagging combined with switch-side TAS enhances prioritization
and bounded transmission, full real-time compliance still requires time-aware trans-
mission scheduling at the sender side as well. Thus, Scenario 2 builds upon Sce-
nario 1 by enforcing VLAN priorities within GCL-defined transmission windows at
the switch, leading to visible improvements in deterministic behavior, although not
yet sufficient for strict sub-millisecond guarantees.

6.5.3 Scenario 3: End-to-End Time-Aware Scheduling

This final scenario tested the complete integration of TAS as discussed chapter 5.

Result: Due to time constraints and logistical limitations, complete quantitative
measurements—such as latency, jitter, and percentile analysis—were not conducted
in this scenario. Instead, qualitative validation was performed to assess whether
the scheduling and classification logic were correctly applied across the stack using
tools such as Wireshark, ping, and system-level logs.

Observed Behavior:

• skbedit filters successfully mapped high-priority packets (PCP=7) to SKB pri-
ority class 3, and best-effort traffic (PCP=1) to class 0.

• tc -s filter show output confirmed increasing packet counters in the re-
spective priority queues, indicating correct queue mapping at the host level.

• taprio scheduling was successfully applied to the TSN NIC interfaces, as ver-
ified using tc qdisc show dev <interface>.
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• The TSN switch was synchronized to the host via gPTP, and GCLs were con-
firmed to be active using netopeer2-cli and interface counters.

• However, VLAN prioritization did not fully propagate across the TSN switch.
While intra-host prioritization and scheduling were confirmed, end-to-end dif-
ferentiation between high- and low-priority traffic was not consistently ob-
served. This issue was likely caused by missing or improperly applied VLAN
tags at the pod interface, or by incorrect PCP propagation through the switch
ports.

6.5.4 Detailed Analysis of last three Results

Initial trials using TSN-enabled configurations revealed substantial differences in
latency patterns when varying the TSN cycle duration. In configurations using
4ms cycles under no additional background load, the maximum observed latency
dropped below 11ms. At first glance, this may seem counterintuitive given that
longer cycle durations generally introduce additional buffering delay. However, this
behavior is consistent with expectations in a lightly loaded network: a longer gate
cycle provides more tolerance for timing misalignment, especially when synchro-
nization or packet classification is suboptimal. However, this improvement does not
necessarily imply an optimized deterministic behavior. Rather, the lowered latency
observed in 4ms cycles likely stems from the relaxed transmission window allow-
ing packets to pass through gates more often—even if they arrive late. Thus, while
latency values improved, deterministic behavior in terms of tightly controlled gate
openings was not necessarily validated. When background IPerf traffic was intro-
duced to simulate high network load, the system’s response was not uniformly de-
terministic. In some cases (e.g., 1ms cycle with mixed traffic), the latency increased
up to 190ms, which is far beyond the intended transmission schedule. This sug-
gests that either (1) gate control was ineffective, or (2) traffic classification was un-
successful. Upon closer inspection, both of these turned out to be contributing fac-
tors. Specifically, Wireshark captures and system logs revealed that although taprio
scheduling and SKB-priority settings were applied via tc and skbedit, VLAN PCP
tagging failed silently in many trials. The outgoing packets, as captured on egress
interfaces and mirrored ports, either lacked VLAN tags entirely or carried a default
PCP of 0. As a result, TSN switches, which rely on PCP to map traffic to queues
and corresponding GCLs, treated all traffic as best-effort. This meant that even
traffic meant to be prioritized (e.g., PCP=7) did not benefit from the deterministic
treatment expected under IEEE 802.1Qbv. This phenomenon directly compromised
the intended behavior of GCL-based scheduling and validates why prioritized and
non-prioritized traffic experienced nearly identical latency under congestion. In the
third scenario—where the sender was outside Kubernetes and the receiver resided
within a Kubernetes pod—TSN prioritization was entirely undermined. Despite cor-
rect SKB-priority stamping and taprio configuration on the pod’s interface, VLAN
headers were either stripped or never injected. This led to a systemic breakdown in
queue mapping at the switch level. All frames were received with PCP=0, render-
ing the GCL ineffective. Consequently, traffic arrived in the correct window only by
chance, not by enforcement. This outcome reaffirms that deterministic TSN behavior
depends not only on timing and scheduling, but also critically on packet marking in-
tegrity. Failure to ensure PCP propagation across veth pairs and physical interfaces
resulted in loss of prioritization semantics and a return to best-effort transmission
behavior. To quantify the benefit of TSN in the absence of classification errors, early
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test scenarios without IPerf traffic and with VLAN tagging enabled (where success-
ful) offer a baseline. Under these ideal conditions, 2ms and 1ms cycles achieved
bounded latency values between 35–40ms and 90–100ms respectively. Although not
perfect, this range was relatively stable, suggesting that when packet marking and
gate control worked in tandem, the TSN architecture did enforce traffic separation.
However, even in these trials, latency frequently exceeded the configured cycle time.
From a TSN perspective, this is undesirable. It suggests transmission outside the
gate-open window, likely caused by drift between the system clock and PHC, or
misalignment between taprio schedules and switch GCLs. This hypothesis is sup-
ported by phc2sys logs, which were inconsistent across test runs and occasionally
indicated synchronization errors exceeding 5µs. Since taprio is sensitive to system
clock drift, such misalignment leads to gate-miss transmission.
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Chapter 7

Discussion

7.1 Framwork Design Discussion

The framework developed in this thesis in chapter 4 and 5. The primary objective
was to enhance Kubernetes’ networking stack in a modular, standards-compliant
manner, suitable for industrial applications requiring bounded latency, minimal jit-
ter, and synchronized traffic scheduling, without altering the fundamental operation
of Kubernetes itself.

One notable strength of this architecture lies in its rigorous commitment to mod-
ularity. Each key component—the network plugin, synchronization stack, traffic
controller, and switch configuration utility—was individually developed and inte-
grated through open and standardized interfaces. This modularity facilitated flex-
ible development, simplified independent testing, and enabled straightforward ex-
tensibility. Specifically, the custom CNI plugin, implemented in Bash, leveraged the
Linux tc and the taprio queuing discipline to configure deterministic traffic behav-
iors at the pod level. This plugin dynamically managed static IP addresses, MAC
addresses, VLAN tagging, and priority classes during pod initialization. Despite
being scripted in Bash, this approach provided transparency and ease of debugging,
avoiding complex kernel bypass solutions such as DPDK or eBPF.

Leveraging the Kubernetes-native Multus meta-plugin allowed each pod to simul-
taneously manage dual network interfaces: a dedicated TSN interface (eth0) con-
figured deterministically via the custom Bash CNI, and a secondary macvlan inter-
face (net1) for non-critical, best-effort communication. The deliberate selection of
macvlan for best-effort flows effectively bypassed Kubernetes overlay networking,
thus minimizing latency and isolating deterministic flows from general cluster traf-
fic, which was critical for maintaining low jitter.

A significant architectural decision was the use of a CNC implemented in Python.
This CNC communicated with TSN-capable switches using NETCONF sessions, ap-
plying IEEE 802.1Qbv-compliant GCL configurations. Employing standard YANG
data models and open communication protocols ensured interoperability and ven-
dor neutrality, aligning switch scheduling behaviors precisely with the pod-level
transmission schedules. While this CNC implementation supported static schedul-
ing configurations effectively, future enhancements would benefit from incorporat-
ing dynamic and runtime-adjustable scheduling.

Time synchronization across the Kubernetes nodes and network switches was real-
ized using the gPTP, compliant with IEEE 802.1AS, through LinuxPTP tools. The
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tools ptp4l and phc2sys facilitated hardware and system clock synchronization, re-
spectively. A shared, synchronized time base was crucial for ensuring deterministic
scheduling consistency throughout the system. However, maintaining robust syn-
chronization under heavy network load introduced notable challenges, particularly
highlighting areas for further improvement in synchronization stability.

The reproducibility of the framework was prioritized through version-controlled
management of YAML manifests, CNC scripts, synchronization tools, and measure-
ment procedures. These structured resources were designed to be executable in
isolated environments, ensuring experiments’ repeatability and ease of validation.
Moreover, compatibility with standard Linux distributions and standard Kubernetes
components enhanced accessibility for replication in both academic and industrial
contexts.

Despite these strengths, the design revealed certain limitations. Primarily, the re-
liance on static configuration files for scheduling logic, pod IP addresses, and queue
mappings restricted adaptability to dynamically changing environments, where work-
loads frequently scale or undergo lifecycle changes. Additionally, K8s inherent schedul-
ing mechanisms lack awareness of real-time constraints, necessitating manual inter-
ventions for pod placement and CPU affinity configurations—pointing to a signifi-
cant gap in K8s native capabilities regarding real-time workload management.

Furthermore, the absence of comprehensive feedback mechanisms from the TSN in-
terfaces posed challenges in real-time diagnostics. Tools such as tc and Wireshark
facilitated packet-level inspection; however, the architecture lacked sophisticated
runtime introspection for queue states, gate timing accuracy, or detailed packet drop
analyses. This limited observability indicates a critical area for future enhancement.

Lastly, the developed framework successfully demonstrates a practical, modular
approach for integrating TSN within K8s without modifying its core orchestration
model. It effectively bridges cloud-native principles with industrial-grade determin-
istic networking requirements using established open standards, leveraging existing
Linux networking capabilities and container orchestration mechanisms. While this
initial implementation validates the feasibility of Kubernetes-native deterministic
communications, further development focusing on dynamic scheduling, real-time
observability, and improved synchronization robustness is necessary for deploy-
ment at production scales.

7.2 Testbed Reflection

The experimental testbed detailed in Chapters 4 and 5 provided the essential infras-
tructure for systematically evaluating the integration of Kubernetes and TSN. Al-
though the original validation was structured around three defined scenarios, iter-
ative experimental observations necessitated further refinements, ultimately enrich-
ing the assessment by uncovering previously unforeseen challenges and subtleties.

While the testbed architecture performed satisfactorily under controlled, idealized
configurations, the measurement procedures revealed several intricate challenges.
Notably, these difficulties included sustaining clock synchronization accuracy dur-
ing network congestion, aligning host-to-switch transmission windows precisely,
and achieving reliable traffic prioritization across multiple networking layers in con-
tainerized environments.
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A significant initial challenge arose from the early reliance on ICMP-based diag-
nostic tools, such as ping. These tools, inherently lacking support for VLAN tag-
ging and queuing prioritization mechanisms, provided misleading results and ob-
scured underlying timing irregularities. This issue underscored the necessity of
adopting more sophisticated, application-layer measurement approaches capable of
accurately characterizing deterministic communication. Consequently, the evalua-
tion strategy transitioned to a custom-developed Go-based UDP traffic generator,
facilitating high-resolution timestamping of packet transmissions and receptions.
This tool proved essential in rigorously quantifying latency and jitter characteris-
tics, yielding data that effectively reflected the true deterministic capabilities of the
network stack.

Another critical challenge involved configuring the Linux traffic control mechanism,
specifically the taprio queuing discipline, on TSN-capable NICs. Correct operation
of taprio required meticulous synchronization of scheduling parameters, such as
base-time alignment, cycle durations, and explicit queue-to-priority mappings be-
tween hosts and switches. Minor misconfigurations or timing deviations led to
unpredictable transmission behaviors. Moreover, under conditions involving large
packets or intensive background network loads introduced by tools like iperf3, pack-
ets occasionally exceeded their designated transmission windows, further compli-
cating accurate latency measurement. The absence of built-in introspection or di-
agnostic feedback mechanisms in the Linux kernel’s TSN implementation required
reliance on indirect verification methods, such as Wireshark packet captures and of-
fline statistical analyses, to detect and correct scheduling misalignments.

Clock synchronization, a cornerstone of deterministic TSN communication, was suc-
cessfully implemented using gPTP tools—namely ptp4l and phc2sys. While these
tools demonstrated the ability to achieve sub-microsecond accuracy under stable
conditions, their synchronization precision notably deteriorated under conditions of
high network traffic generated by iperf3 stress tests. Observed synchronization drift
during periods of intense network load adversely impacted gate control accuracy,
disrupting predictable transmission patterns and thus compromising deterministic
network performance. These results highlight the critical requirement for robust
synchronization protocols that maintain high accuracy and reliability, even under
stress conditions typical of industrial environments.

Additionally, complexities associated with network interface management emerged.
Utilizing Multus CNI combined with macvlan facilitated effective isolation between
deterministic and best-effort traffic flows. However, these configurations occasion-
ally introduced operational anomalies such as race conditions or duplicated net-
work interfaces, particularly during pod initialization stages involving static IP allo-
cations. These complications, while manageable in experimental settings, suggest a
clear necessity for improved error handling, interface management logic, and tighter
integration within Kubernetes production deployments to ensure consistent perfor-
mance and reliability.

In summary, the testbed provided a robust platform for extensive scenario validation
and offered deep insights into practical constraints and complexities encountered in
real-world TSN and Kubernetes integrations. The identified limitations in synchro-
nization stability, queue scheduling alignment, interface management, and diagnos-
tic visibility are essential findings. These observations significantly contribute to the
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practical understanding of deploying deterministic containerized systems, outlin-
ing clear pathways for future enhancement and highlighting the need for improved
tooling, feedback mechanisms, and dynamic configuration capabilities.

7.3 Measurement Reflection

The measurement phase revealed important insights into the practical behavior and
limitations of the Kubernetes–TSN integration framework. While the architecture
successfully demonstrated time-aware communication under certain configurations,
the actual results—particularly in terms of latency and jitter—highlighted several
technical gaps between theoretical determinism and real-world performance.

One of the most consistent patterns observed across all test scenarios was the sig-
nificant variability in both latency and jitter under background network load. As
shown in Table 6.2, best-case results (e.g., bare-metal via TSN switch) achieved sub-
6 millisecond latency, while worst-case configurations, particularly under high con-
tention or without proper scheduling, exceeded 90 milliseconds. These results un-
derscored the fact that VLAN PCP tagging alone is insufficient to ensure predictable
delivery in containerized environments. Without enforced scheduling (as in Sce-
nario 1), priority information may be present but is often ignored or diluted in
the forwarding pipeline, especially when standard Linux queuing mechanisms or
switch-level defaults are used.

In Scenario 2, the introduction of TAS at the switch level led to noticeable improve-
ment. GCLs helped isolate high-priority traffic into reserved transmission windows,
significantly reducing jitter. However, tight cycles and large SDU payloads still
showed performance degradation under stress. This suggested that switch-side TAS
alone cannot fully shield critical traffic from interference, particularly when trans-
mission initiation remains unsynchronized at the sender (host) level.

Scenario 3 provided qualitative verification of full TAS integration, including taprio
scheduling at the host and synchronized GCLs at the switch. Even though numerical
latency/jitter measurements were not collected due to time constraints, diagnostic
tools such as tc -s filter show, netopeer2-cli, and Wireshark validated the correct
setup of queuing and scheduling mechanisms. Traffic marked with PCP 7 was cor-
rectly routed through high-priority queues, and increasing counters for SKB priority
classes confirmed that packets were being enqueued as expected.

Despite this alignment, one critical limitation emerged: VLAN tagging was incon-
sistently handled by the NIC. This led to a breakdown in end-to-end prioritiza-
tion—while traffic was prioritized inside the host and classified correctly at the soft-
ware layer, the switch did not consistently differentiate between high and low pri-
ority frames. The root cause likely lay in hardware-level inconsistencies, incorrect
egress tagging, or misalignment between skbedit behavior and NIC offload features.

The measurement phase also highlighted the fragility of synchronization. Although
LinuxPTP tools enabled gPTP-based alignment with microsecond precision under
normal conditions, stress tests (e.g., iperf3 load) occasionally introduced clock drift,
leading to gate misalignment. This further impacted cycle timing and added varia-
tion to transmission intervals. In a TSN system, such timing drift directly compro-
mises deterministic behavior—even when the scheduling logic is correct.
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From a tooling perspective, the decision to rely on a Go-based measurement utility
proved effective. The application enabled millisecond-level cyclic UDP transmis-
sion, in-pod timestamping, and structured CSV output. Combined with Python-
based analysis, this allowed for detailed time-series plots and statistical aggregation.
However, validation also relied heavily on Wireshark for hardware timestamping,
which was not always straightforward due to NIC driver limitations and VLAN vis-
ibility issues.

7.4 Observed Limitations and Insights

While the integrated Kubernetes–TSN system developed in this thesis successfully
demonstrated deterministic communication capabilities using IEEE 802.1Qbv and
time-synchronized traffic scheduling, several limitations emerged during implemen-
tation. These reflect technical and architectural boundaries affecting scalability, vis-
ibility, and operational robustness. The system exhibited high sensitivity to clock
synchronization accuracy. Although ptp4l consistently synchronized the hardware
clock at the NIC level, phc2sys—responsible for aligning the system clock—often
showed instability, particularly under load. Since the taprio scheduler relies on
the system clock, even microsecond-level drift led to desynchronized gate control
windows. This misalignment occasionally resulted in traffic being transmitted out-
side the intended time slot, which compromises the deterministic behavior of the
system. Improved tuning of phc2sys, use of real-time kernels, and CPU pinning
may offer mitigation, but the fragility of software-based synchronization remains
a limiting factor. Another constraint was the static nature of the switch schedul-
ing configuration. The CNC implemented for this work used predefined GCLs to
configure switches via NETCONF and YANG. However, the complementary CUC
component was not implemented, which dynamically negotiates bandwidth and
traffic flows. Without CUC, all stream characteristics had to be known in advance
and manually incorporated into the CNC, making it challenging to accommodate
changing workloads or dynamic pod orchestration. This limited the framework’s
flexibility and highlighted the need for runtime stream registration mechanisms in
future iterations. The testbed also lacked sufficient visibility into hardware queue
behavior. While VLAN PCP tagging and taprio scheduling were correctly applied
using tc filters and skbedit, it was difficult to confirm whether the NIC or switch
prioritized traffic as expected. Tools such as Wireshark and tcpdump provided
partial evidence but did not confirm queue-level treatment or gate timing. Pack-
ets from different traffic classes appeared nearly simultaneously, raising questions
about firmware behavior or incomplete isolation in the queuing pipeline. Without
access to vendor-specific introspection tools or telemetry, validating deterministic
enforcement at the hardware level remained inconclusive. Resource allocation and
traffic scheduling configurations were statically defined. IP addresses and MAC
assignments for TSN-enabled pods were hardcoded using Multus and NAD files,
and traffic class mappings were manually assigned. Although this approach was
manageable for a controlled test environment, it is not sustainable for large-scale
or dynamic workloads. The lack of Kubernetes-native integration for traffic-aware
admission control, dynamic IP allocation, or traffic class enforcement exposes a sig-
nificant operational bottleneck. Bare-metal deployment further introduced main-
tenance complexity. Unlike virtual environments, misconfiguration in the testbed
often led to full system resets, BIOS reconfiguration, or PTP drift that required man-
ual intervention. The absence of orchestration support for TSN-specific lifecycle
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events made automation difficult, and minor errors in GCL syntax or pod anno-
tation sometimes caused critical failures. These operational challenges underscore
the importance of tooling abstractions such as TSN-aware Helm charts or configura-
tion operators to support reproducibility and scalability. Early experimentation with
traffic prioritization also revealed limitations in tag visibility. VLAN PCP markers
inserted via TC and egress-QoS-map were not consistently observed in packet cap-
tures. It was unclear whether NIC firmware removed tags before transmission or
whether veth devices suppressed them. This ambiguity complicated the validation
of priority-based scheduling and made it challenging to link observed jitter or de-
lay patterns with configuration logic. Finally, the most systemic limitation was that
Kubernetes is not inherently designed for real-time workloads. Core Kubernetes
components lack awareness of timing constraints, deadline enforcement, or latency
sensitivity. TSN features had to be integrated through external mechanisms: Multus
for multi-networking, a custom CNI plugin for taprio scheduling, and a separate
CNC for switch orchestration. This disjointed integration required precise coordi-
nation and remained fragile in the face of pod churn, system restarts, or configura-
tion drift. For TSN to be deployable at scale within Kubernetes, native primitives
for deterministic networking must be introduced at the orchestration level. Despite
these challenges, the system validated the feasibility of integrating TSN within a
containerized environment and highlighted critical areas for future enhancement.
These include improving synchronization robustness, enabling dynamic stream ne-
gotiation, enhancing queue observability, and embedding real-time semantics di-
rectly into Kubernetes’ resource model.
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Chapter 8

Conclusion

8.1 Conclusion

This thesis investigated the feasibility of enabling deterministic, time-sensitive com-
munication within a Kubernetes cluster by integrating core TSN mechanisms into
the container networking stack. The architecture combined IEEE 802.1Qbv for time-
aware scheduling, IEEE 802.1AS for synchronization, and NETCONF/YANG for
centralized switch configuration, implemented through a custom Bash-based CNI
plugin and a Python-based CNC.

Through scenario-based experiments, the system demonstrated host-level determin-
istic scheduling using taprio, skbedit, gPTP synchronization, and VLAN tagging to
prioritize traffic. However, practical constraints—particularly inconsistent VLAN
PCP propagation across virtual and physical interfaces—prevented reliable priori-
tization at the switch level. As a result, even correctly marked packets were often
processed as best-effort, undermining end-to-end determinism under load.

Despite these limitations, the thesis contributes a reproducible and vendor-neutral
framework for partially implementing TSN principles within Kubernetes. It vali-
dated that real-time scheduling is possible without relying on DPDK or kernel mod-
ifications, and it surfaced key integration challenges such as the lack of native TSN
support in Kubernetes, limited visibility into TSN runtime behavior, and fragility in
synchronization under stress.

This work establishes a solid foundation for future TSN-Kubernetes research, es-
pecially in areas like dynamic stream negotiation (e.g., CUC integration), enhanced
monitoring, and automated adaptation to real-time constraints. It offers actionable
insights for system architects seeking to converge IT and OT domains in Industry
4.0 deployments using open-source, cloud-native infrastructure.

8.2 Future Work

While this thesis has demonstrated the potential for integrating deterministic TSN
capabilities within Kubernetes-managed environments, several areas of exploration
remain for future research. The following points highlight the most promising and
necessary enhancements to advance the integration of Kubernetes with TSN:

• The current implementation leverages a CNC for static GCL management.
Introducing a Centralized User Configuration (CUC), as specified by IEEE
802.1Qcc, would allow dynamic negotiation of network resources. Future work
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should focus on developing a CUC module integrated with Kubernetes’ sched-
uler, enabling real-time updates to traffic scheduling based on changing net-
work conditions, pod lifecycle events, and workload demands.

• The experiments revealed issues related to VLAN Priority Code Point (PCP)
propagation, significantly impacting traffic prioritization. Future investiga-
tions should concentrate on enhancing the Container Network Interface (CNI)
plugin or implementing kernel-level modifications to guarantee reliable VLAN
tagging and PCP handling across virtual-to-physical network boundaries. This
would ensure end-to-end deterministic behavior critical for real-time indus-
trial communication.

• The existing system, using Bash-based CNI scripting and Python CNC imple-
mentations, served well for prototyping purposes but demonstrated limita-
tions in scalability and performance. Future efforts should explore optimized
and compiled languages (e.g., Rust or Go) for critical components, allowing
higher throughput, lower latency, and improved reliability under high-load
industrial scenarios.

• The current testbed demonstrated deterministic behavior under controlled and
simulated stress conditions. Future studies should extend validation efforts to
larger-scale deployments, diverse hardware configurations, and realistic in-
dustrial workloads. This would assess the robustness, resilience, and stability
of Kubernetes-TSN integration under real-world operational scenarios, includ-
ing transient network failures and varying load patterns.

• Current monitoring approaches were largely manual and limited in granular-
ity. Future work should aim at developing comprehensive monitoring tools
integrated directly within Kubernetes, enabling real-time visibility into TSN
parameters (e.g., gate control state, queue utilization, synchronization accu-
racy). Advanced analytics and automated alerting systems would significantly
enhance operational transparency and proactive fault mitigation capabilities.

By addressing these outlined directions, subsequent research efforts can further re-
fine the integration of deterministic networking principles into Kubernetes, signifi-
cantly bridging the gap between cloud-native orchestration and real-time industrial
communication requirements.
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