I ———
Fakultat far

Informations-, Medien-
und Elektrotechnik

Masterarbeit Technische Informatik

Automated Management and
Performance Analysis of Wi-Fi 6E (6
GHz) Networks for loT-Systems

Automatisiertes Management und Performance-Analyse von
Wi-Fi 6E (6 GHz) Netzwerken fur [0oT-Systeme

vorgelegt von
Philipp Kalytta

Mat.Nr. 11109927

Erstgutachter: Prof. Dr. Andreas Grebe (Technische Hochschule Kdln)

Zweitgutachter: Prof. Dr. René Worzberger (Technische Hochschule Kéin)

Juni 2022

Technology
Arts Sciences

TH Koln

Masterarbeit

Masterarbeit

Titel: Automatisiertes Management und Performance-Analyse von Wi-Fi 6E (6
GHz) Netzwerken fur 1oT-Systeme

Gutachter:

— Prof. Dr. Andreas Grebe (TH KolIn)
— Prof. Dr. René Wdorzberger (TH Kdln)

Zusammenfassung: Geréate im Internet of Things (IoT), z.B. Sensoren und
Aktoren verfligen Uber verschiedene Verbindungsmaoglichkeiten. Ein verbreiteter
Standard zur Kommunikation ist IEEE 802.11 Wireless LAN. Fur diesen Standard
ist zuletzt die Erweiterung 802.11ax erschienen, die neben neuen Technologien
wie OFDMA, BSS coloring u.a. auch die Nutzung des 6 GHz Frequenzbandes
ermdglicht. Die Wi-Fi Alliance nennt diese neue Erweiterung Wi-Fi 6E. Die
zentrale Verwaltung von loT-Geraten, die Uber diese neue Technologie
kommunizieren, sowie die Evaluierung der Moglichkeiten und Einschrdnkungen
von Wi-Fi 6E und der bisher daflr verfugbaren Hardware werden im Rahmen

dieser Arbeit naher beleuchtet.

Stichworter: Wi-Fi, WLAN, IEEE 802.11, Data-Rates, 6 GHz, 802.11ax, Wi-Fi
6E, OFDM, OFDMA, Roaming, Device Management, loT

Datum: 16. Juni 2022

Master’s Thesis

Master’'s Thesis

Title: Automated Management and Performance Analysis of Wi-Fi 6E (6 GHz)
Networks for 10T-Systems

Reviewers:

— Prof. Dr. Andreas Grebe (TH KdoIn)
— Prof. Dr. René Woérzberger (TH Kéln)

Abstract: Devices on the Internet of Things (loT), e.g. sensors and actuators,
have various connection options. A common standard for communication is IEEE
802.11 Wireless LAN. The latest extension to this standard is 802.11ax, which
enables the use of the 6 GHz frequency band in addition to new technologies such
as OFDMA, BSS coloring and others. The Wi-Fi Alliance calls this new extension
Wi-Fi 6E. The central management of 10T devices that communicate via this new
technology as well as the evaluation of the possibilities and limitations of Wi-Fi 6E

and the hardware available for it so far are examined in more detail in this work.

Keywords: Wi-Fi, WLAN, IEEE 802.11, Data-Rates, 6 GHz, 802.11ax, Wi-Fi 6E,
OFDM, OFDMA, Roaming, Device Management, 0T

Date: June 16th, 2022

Table of Contents

Table of Contents

Y= TSy (=T = U o L= | SRRSO Il
Y= TSy (T G I g L= 1= RO 11
TaDIE OF CONTENTS . ..ot e e et e e e e e et b e e e e e s aneaeeeaas v
INdeX Of ADDIEVIALIONS .. e e e \Y
€10 17T 1Y/ X
Tl Ao To [N o111] o I TP XV
1 Problems and ODJECTIVESuuuuiiiiiiiiiieee e 1
2 L F- L] 1 PP UPUP 2
2.1 IEEE 802.11 WIr€IESS LAN ..ottt e e e 2
0 S U o 1 o = 11 SRR 3
2.1.2 Standard Extension 802.11ax (Wi-Fi 6, High-Efficiency Wi-Fi)....................... 4
2.2 6 GHZz Wi-Fi NetWorks (Wi-Fi BE)uuuuiiiiiiiiiiie e e e e e e e e e e 4
A R = (= To [=1 (0] YA @0]] (= R 5
2.3 10T and DeVvice ManN@gEMENT.......cviiiiiiee e e e e e ettt e e e e e e e e e e e e e s e e e e s s snnneeeneeeneeeeees 7
3 Technical FrameWOorKoooi i 9
3.1 WIFT BE ...ttt a e e aaas 10
311 INtEl WIrEIESS NICS ...ttt e e e e e e e e s e e e 10
3.1.2 Aruba ACCESS POINTS ...ttt e e e e e e e e e e e e e e e e e 12
3.2 10T ManagemeENt SOMIWEAIEcoiiiiiiii i ea e e 14
3.2.1 TRINGSBOAIA ... 14
I I 110 To 1= X o T PP PRI 15
Y] =10 0 B L= o | o PRSPPI 16
4.1 ArChItECUIAl DESIGN ...eeii ittt e e e e et e e e e e s eneees 16
411 NEWOIK PIAN ..o 18
4.1.2 Software Design: ThingsSBoard...........ccceeeviiiiieeeeiiic e 19
4.1.3 Software Design: ThINGEI.IOuuuiiiiiiiiiiiiieeee e e e e e 21
4.2 Wi-Fi 6E Measurement Environment and SCeNariosc..coocuvveveeeiiiiiiieeen s 23
4.2.1 QUAlILY-Of-SEIVICE ...cciiie e a e e e 24
A = (o T 211 T PSR 24
4.2.3 DiStance MEASUIEMENTS........ciiiiiiiiiieie ettt e ettt e e e e e s sribb e e e e e eneees 25
4.2.4 MCS and Spatial SIreaMSccccuiiiiiiiiiiiiir e e e e 25
A.2.5 OFDM(A) cieiiiiee ittt ettt et e et e e e ate e e e aaeeeeanaeeeeas 26
5 [g T o 1T g =T 1= 1T 0 o PP 27

5.1 Program Structure: ThingSBOArdcooiiiiiiiiiiiiiieeee e 28

Table of Contents

B.LL ClINE DY et 28
L0 o] 1= o1 oo o | P UUPPPUPRR 31
B5.1.3 SECIEIS-FlE e 32
5.1.4 Server-side ProCeSSINGccccuiiuiuiiiieiiiiiiiiee e eeiie e e seee e et e e e nnneaee e 33
5.2 Program Structure: Independent Measurement Clientccccoocieeiieniiiiiiceee e 33
L R 1o 1=T 1 1)PP 34
5.2.2 NI ACE.PY et 38
6 Test and EVAIUALIONcooiiiiiiee e e e 40
6.1 Comparison of the Management SOftwarecoooccciiiiiiiiieeeeeec e, 40
6.1.1 Features and FUNCLONANLIEScccooiiiiiiiiiiiii e 40
6.1.2 Structural DIiffEreNCESeeiiiiiiiiiie e 52
6.1.3 PerIfOrMENCE ... 52
6.1.4 OperationN/FroNteNdccc.euiiiiiiiiiiiieie e e e e e e e e e e e s e e e s e ennnnes 54
6.1.5 Managing Wi-Fi enabled Network Devices centrally.........ccccccceeveeeeeeiiiiinnnnnn. 58
6.2 Evaluation regarding Wi-Fi 6Ecoooiiiiiiiiiier e 60
B.2.1 HAIAWAIE ...ttt 60
6.2.2 Quality of Service and PerformancCe............cccccviiiiiiiiiiiiiieeeee e 62
6.2.3 Measurement scenario: Client-to-Client in one WLAN cellcccceeeens 66
6.2.4 Measurement scenario: Client-to-external-Server outside of the cell 68
6.2.5 Measurement scenario: Client-to-AP-t0-AP-to-Client..........cccccevieeeeinininnnn. 71
6.2.6 Measurement scenario: AP-Handover/Roaming...........cccccccevvieeeeeeneeensiinnnns 73
6.2.7 Measurement scenario: Distance Measurements.........ccccooecvveeeeesiiciineeeenns 75
6.2.8 Regarding OFDMA ...ttt e e e e e s anebeeeees 82
6.3 Reference values in the 5 GHz Frequency Band.............ccccceeiiiiiiiiiie e 85
6.4 NetworkManager Problems on Debian ... 87
7 Summary and FUtUIre ProOSPECES ...coiiiiiiiiii et 89
RETEIENCES ...ttt e ettt e e e e ekttt e e e e e e bbbe e e e e s sbbreeaaeeann 92
I ES] o] = Lo 1T PR UPTPT 98
LISt Of FIQUIES oo et e e e e e e e e e e e e s s e s bbb e e araeaaaens 99
LISt Of SOUICE COAR ...ttt e et e e e e aabaeeeaeas 103
N o o 1= [0 P PEEEERT 104

Eidesstattliche ErKIArUNGuueeiiiiiiiiie et eee e 125

Index of Abbreviations

\4

Index of Abbreviations

Abbreviation Term

ACK Acknowledgement

AP Access Point

API Application Programming Interface

ATIM Announcement Traffic Indication Message

BPSK Binary Phase Shift Keying

BSS Basic Service Set

BSSID Basic Service Set Identifier

BNetzA Bundesnetzagentur/Federal Network Agency of Germany
CCK Complementary Code Keying

CF Contention Free

CoAP Constrained Application Protocol

CRC Cyclic Redundancy Check

CRDA Central Regulatory Domain Agent

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance
CTS Clear to Send

DFS Dynamic Frequency Selection

DSSS Direct Sequence Spread Spectrum

EEPROM Electrically Erasable Programmable Read-only Memory

Index of Abbreviations

Abbreviation

Vil

Term

EIRP Equivalent Isotropically Radiated Power

ETSI European Telecommunications Standards Institute
ESS Extended Service Set

FCS Frame Check Sequence

GNU GNU Project

HE High Efficiency

HT High Throughput

IBSS Independent Basic Service Set

ID Identifier

IEEE Institute of Electrical and Electronics Engineers
IFS Interframe Space

INI-File Initialization File

loT Internet of Things

ISO International Organization for Standardization
JWT JSON Web Token

LAN Local Area Network

LWM2M Lightweight Machine 2 Machine Protocol

LPI Low Power Indoor (Devices)

MAC

Media Access Control

Index of Abbreviations

Abbreviation

Vil

Term

MBSS Mesh Basic Service Set

MCS Modulation and Coding Scheme

MIMO Multiple Input Multiple Output

MQTT Message Queuing Telemetry Transport
NDP Null Data Packet

NIC Network Interface Card

OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
Oul Organizationally Unique Identifier
OSI-Model Open Systems Interconnection Model
PCAP Packet Capture

PPDU Physical Protocol Data Unit

PLCP Physical Layer Convergence Procedure
PSDU PLCP Service Data Unit

PS Power Save

QAM Quadrature Amplitude Modulation

QoS Quiality of Service

QPSK Quadrature Phase-Shift Keying

RPC

Remote Procedure Call

Index of Abbreviations

Abbreviation

Term

RTS Request to Send

SSID Service Set Identifier

STA Station

TP Transmit Power

TSFT Time Synchronization Function Timer

TU Time Units

VHT Very High Throughput

VLP Very Low Power (Devices)

Wi-Fi Here: Synonym to WLAN, except when referring to the Wi-

Fi Alliance

WLAN

Wireless Local Area Network

Glossary

Glossary

Term

Explanation

Central Regulatory Domain
Agent (CRDA)

The CRDA mediates between the kernel and
user space through the Netlink interface,
ensuring that the regulatory framework in which
a WLAN-enabled device operates is met [1]. This
process is implemented using the Regulatory
Database, which is used by CRDA to comply with
the regulatory framework for individual states or

territories.

Carrier Sense Multiple
Access/Collision Avoidance
(CSMA/CA)

A method of avoiding collisions of data
transmissions on a carrier medium that is used
by several subscribers. The transmission
channel is actively monitored by the participants
(carrier sense) and if the medium is busy,
transmission does not take place. The system
always checks whether the medium is free before

transmitting.

Equivalent Isotropically
Radiated Power (EIRP)

The equivalent isotropic radiated power is the
product of the power delivered to the antenna
and the antenna gain in a given direction in

relation to an isotropic antenna.

Glossary

Term

Explanation

Hidden-Node-Problem

The Hidden-Node-Problem describes a problem
in wireless networks where a station (node) can
communicate with the access point, but not
directly with other stations. Thus, the data
transmission of the other station cannot be
detected, which allows the station to
communicate with the access point at the same
time as the other stations. The interference this
creates ensures that the access point does not
understand either transmission. The RTS/CTS
algorithm in WLAN networks solves this problem
by allowing clients to request send authorization

before sending.

Media Access Control (MAC)

MAC describes part of the data link layer
described in the OSI model (layer 2), which is
divided by the IEEE into two sublayers: Media
Access Control and, above it, Logical Link
Control. The MAC layer controls the physical

transmission on a shared transmission medium.

Modulation and Coding
Scheme (MCS)

The MCS indexes the data rate used in WLANS.
The MCS index can be used together with other
parameters (such as the number of spatial
streams) to determine the data rate for a WLAN

connection.

Xl

Glossary

Term

Explanation

Monitor Mode

Monitor mode is an operating mode for WLAN
adapters in which all received network frames are
forwarded to the kernel or applications and not
only those originally intended for the adapter
(destination fields are ignored). Depending on the
manufacturer this also applies to corrupted
frames, but not every manufacturer forwards

these.

Multiple Input Multiple Output
(MIMO)

MIMO refers to a method in which multiple
transmitting and receiving antennas are used
between the participants in a wireless
communication. This can significantly increase
the data rate if both the transmitter and receiver

are capable of MIMO.

Multiple User MIMO (MU-
MIMO)

With MU-MIMO a station can transmit to multiple
stations simultaneously using multiple antennas,
this means the airtime can be used to
communicate with multiple participants at the

same time.

Orthogonal Frequency
Division Multiplexing (OFDM)

Orthogonal frequency division multiplexing
(OFDM) is a modulation method that uses
multiple orthogonal carriers (zero crossing of
neighboring carriers is at the maximum of the
carrier). This reduces signal crosstalk compared
to non-orthogonal frequency division
multiplexing. WLAN uses 48 carriers (+4 pilot
carriers) and a carrier signal is usually pre-
modulated separately using quadrature
amplitude modulation (QAM) (or BPSK/QPSK).

Xl

Glossary

Term

Explanation

Orthogonal Frequency
Division Multiple Access
(OFDMA)

With OFDMA, the OFDM carriers (see OFDM)
are split over more than one user channel. The
prerequisite is that bidirectional communication is
used and that the channel is measured. Passive
measurement means that the transmitter knows
the reception quality of the orthogonal carriers to
the individual users and the spectral efficiency
can be optimized.

Promiscuous Mode

In promiscuous mode a network controller
forwards all data to the CPU that is received on
the interface, i.e. not only data that is actually
intended for its own system. This mode lays the
foundation for recording network traffic. For
WLAN adapters this mode is not to be confused
with Monitor Mode.

Quadrature Amplitude
Modulation (QAM)

Quadrature amplitude modulation is a
modulation method that combines phase
modulation and amplitude modulation. In this
process, two carriers with a phase shift are
multiplied and added in such a way that the
transmit signal is created from them. In WLAN
QAM is used in conjunction with OFDM to
modulate the individual carriers of OFDM

modulation within themselves.

Xl

Introduction

Introduction

In July 2021, the German Federal Network Agency made it possible for everyone
to use WLAN! devices and applications in the 6 GHz frequency band with a new
general allocation. The new 480 MHz spectrum will again expand the WLAN
frequency range that can be used by businesses and consumers in order to meet
the ever-increasing requirements. The previous frequency bands are already
often heavily utilized in densely populated areas. It is to be expected that the other
European countries will also make it possible for the general public to use the 6
GHz frequency band in the near future on the basis of the technical guidelines
published by ETSI.

The German Federal Network Agency has designated the frequency range
approved in Germany in particular for low-power indoor devices (LPI) and very
low-power devices (VLP). These are devices with a maximum isotropic radiated
power of 200 mW (LPI) or 25 mW (VLP). Especially outdoors, but also indoors,
for VLP, an application for the Internet of Things (IoT) is to be expected, since the

devices used there are usually optimized for low power consumption.

In the context of the research work by the Computer Networks Research Group
at the University of Applied Sciences of Cologne, the new radio network standard
802.11ax of the IEEE (in the following Wi-Fi 6), in particular the part of the
standard which refers to the operation in the 6 GHz frequency band (Wi-Fi 6E), is
to be considered. Measurement sensors are used (Linux-based), which are to
communicate with each other and with a central server over the 6 GHz frequency
band via wireless LAN. The management software for this server will also be

evaluated as part of this master thesis:

The focus is on the evaluation of two different software solutions for the
management of 10T devices in 6 GHz networks as well as on the possibilities for
analyzing the quality of service (QoS) and performance and their assessment for

these devices.

1 The terms WLAN (Wireless Local Area Network) and Wi-Fi are not the same. WLAN refers to the wireless technology described
by the IEEE 802.11 standard. Wi-Fi is the marketing term used by the Wi-Fi Alliance for devices and networks that use WLAN
and are tested for compliance with the standard. They are nevertheless often used synonymously.

XIV

Problems and Objectives 1

1 Problems and Objectives

The problems informing this work can be divided into two groups for which
independent objectives apply: The considerations concerning the technical
properties of the new Wi-Fi 6E standard can be summarized as one group. The
other group comprises the problems concerning the management of devices in
networks operating in the 6 GHz band. The problems can therefore be divided as

follows:

1. Which software is suitable for managing Wi-Fi 6E-enabled network
devices in the IoT environment?

2. How can these devices be automatically provisioned, configured and
operated through central management?

3. What can be said about the performance of the currently available
hardware for Wi-Fi 6E in this environment?

4. 1s Wi-Fi 6E with current hardware suitable for the operation of networked

loT devices with centralized, automatic management?

Special attention is paid to the technical framework of the current Wi-Fi 6E-
capable hardware: The associated limitations and possibilities (e.g., channel
bandwidths, modulation) are to be tested and evaluated in various measurement
scenarios, with the focus on the areas of quality of service (QoS) and
performance. The basis for this is the construction of a hardware platform that
must be capable of communicating over the 6 GHz Wi-Fi band. This hardware
platform will also be used to implement central configuration and operation with
the aid of central management software. Two different management software
solutions are being evaluated for this purpose. This also requires the design of an
additional software architecture to allow the Wi-Fi 6E-enabled devices to
communicate with the management software. This will be implemented in a

laboratory environment with the available hardware.

Basis

2 Basis

This chapter describes the basics of wireless networks based on the IEEE 802.11
standard (also referred to as WLAN, wireless LAN or the marketing term Wi-Fi in
the following). The 802.11 standard describes the lowest two layers in the 1SO
standard Open Systems Interconnection (OSI) Model for the exchange of
information in wireless systems: The physical layer (PHY) and the medium access
control layer (MAC) [2]. Also described is the general functionality of 10T device

management software.

2.1 |EEE 802.11 Wireless LAN

The 802.11 standard specifies the transmission of data via a radio link for local
area networks. Usually, the data is exchanged in the next higher OSI layer (layer
3) between two (or more) devices using the Internet Protocol (IP). In wired
networks Ethernet is generally used which specifies the two lowest layers of the
OSI model. For data transmission in wireless networks the IEEE adopted the first
of several standards in 1997, which has been extended several times since. In
2018 the Wi-Fi Alliance, a consortium of organizations including network hardware
manufacturers, Internet companies, and mobile network operators [3], introduced
marketing terms for the various versions of the standard under the designation
Wi-Fi N, where N denotes an ascending version number (e.g. Wi-Fi 5) [4]. The
term Wi-Fi refers to certified products of the Wi-Fi Alliance that are 802.11
standard-compliant for the respective standard version. The 802.11 standard has
been extended several times, in particular to meet the increased data rate
requirements. The original standard specifies for transmission in the 2.4 GHz
frequency band with a maximum data rate of 2 Mbit/s gross. As early as 1999, the
standard was extended: 802.11a (first extension) allows data rates of up to 54
Mbit/s gross in the 5 GHz band. To achieve this, the modulation method was
changed from Direct Sequence Spread Spectrum (DSSS) to Orthogonal
Frequency Division Multiplexing (ODFM). Further enhancements have been
adopted for networks in the 2.4 GHz frequency band as well as in the 5 GHz band
and most recently also in the 6 GHz band (which increases the data rate and
transmission quality/efficiency in part with the aid of multi-antenna systems or

channel bundling as well as other mechanisms).

Basis

Figure 1. Generational naming scheme of the Wi-Fi Alliance and corresponding IEEE standard
version

2.1.1 Functionality

Wireless LANSs are networks in which the participants must share the transmission
channel, a so-called shared medium. This means that only one station (STA) can
transmit at a time if a collision of radio transmissions is to be avoided. A

corresponding control mechanism is therefore required.

The IEEE 802.11 standard provides three fundamentally different architectures
for transmission: The common case is the connection of several stations (STA) to
a so-called access point (AP). This, known as infrastructure mode, enables the
stations to be connected to other networks through the access point (the access
point is usually equipped with several Ethernet-capable wired ports). If there is
only one access point in such a wireless network it is called a Basic Service Set
(BSS). An architecture that bundles several APs is called an Extended Service
Set (ESS); this consists of several BSSs and a station can switch between the
BSSs. A station connected to an ESS perceives the BSSs of an ESS as an
overarching service set. In addition to the Infrastructure Mode the Ad-hoc Mode
has been specified: This allows two stations to establish a radio link without an
AP and thus exchange data directly (Independent Basic Service Set). The third
mode is the mesh mode, which, similar to the ad hoc mode, does not require an
AP, but can connect more than two stations to each other in a mesh BSS (MBSS).
In order for a station to associate with a BSS it must know on which radio
frequency communication with the AP can take place. This is made possible by
the station iterating through the radio frequencies specified by the standard (the

radio channels) and listening for special data frames, the beacon frames, prior to

Basis

association (scanning process). These data frames contain information that
enables the station to establish a connection with the AP. Alternatively, a station

can also actively ask for a BSS by means of probe requests.

2.1.2 Standard Extension 802.11ax (Wi-Fi 6, High-Efficiency Wi-Fi)
The 802.11ax standard is the successor to the 802.11ac standard (also Wi-Fi 5).
The general conditions have not changed (same channel bandwidths and MIMO),
only the 2.4 GHz band is now also addressed again. What is new, however, is
modulation with OFDMA, for which the support by 802.11ax-compatbile stations
must be given [5]. In theory, this allows higher network efficiency at high radio
density (many subscribers on one channel). The standard also allows the use of
the frequency range at 6 GHz. In addition, the target wake time (TWT) mechanism
makes it possible to reduce power consumption for stations, since it is possible to
coordinate centrally how often a device should wake up for data transfer. The
utilization of the channel can thus be further optimized since stations do not use
the channel unnecessarily. Furthermore, non-AP stations can now also use MU-
MIMO (i.e. in the upload to the AP (UL)). This was previously only possible in the
download. Now bidirectional MU-MIMO is possible. Target wake time should
reduce the energy consumption of STAs and reduce the efficiency of the network
through lower airtime. Also, Stations that support High-Efficiency (HE) have to
support 802.11ac in 5 GHz or 802.11n in 2.4 GHz networks, too if they want to
operate in that band [5].

2.2 6 GHz Wi-Fi Networks (Wi-Fi 6E)

The 802.11ax standard also specifies the use of the frequency band from above
around 6 GHz. The use of this range is also called Wi-Fi 6E in the Wi-Fi Alliance
generation scheme. The frequency range specified for this in the USA is 1200
MHz (5925-7125 MHz), a significant increase over the width previously permitted
in the 5 GHz band. This therefore makes it possible for the first time to make
sensible use of 160 MHz channels, which are usually out of the question at 5 GHz
due to heavy utilization and regulatory restrictions. The spectrum is also not
occupied by sources of interference such as weather radar, so there is no need
to resort to DFS. During the realization of this work (February to May 2022), the

spectrum band is also not expected to be used by other participants, so little or

Basis

no interference can be assumed. Of course, the other advantages and changes
of the 802.11ax standard can also be used in the 6 GHz band: OFDMA, MU-
MIMO, TWT and 1024-QAM as well as transmit beamforming are also possible

here.

6 GHz Channel
Allocations
Germany
Note

Usage only for LPl and VLP Devices in DE

US Radio Band U-NII-5

Center Freqin
MHz

|

|

| || 5995 || 6015 || 6035][6055 || 6075 || 6095 || 6115 || 6135 |
20MHz || 1 5 [9 [13 [27 [21][25 || 29 33 || 37 |

| ||

|

|

||
| |
11 || 19 || 27 || 35 |
| |
||

40 MHz
80 MHz
160 MHz

7 | | 23 39
15 47

Note Usage only for LPl and VLP Devices in DE

US Radio Band U-NII-5

Center Freqin

i [6155 || 6175 || 6195 || 6215 || 6235 || 6255 || 6275 || 6295 || 6315 || 6335 |
20MHz || 41 [a5 [49 || 53][57 |[61 J[65 || 69 |[73 || 77]
40 MHz || 43 || 51 || 59 || 67 || 75 |
|| || |
||

80 MHz 39 55 71
160 MHz 47 79

Note Usage only for LPI and VLP Devicesin DE |

US Radio Band U-NII-5 | | U-NII-6 | [u-ni7

Center Freqin

i [6355 || 6375 || 6395 || 6415 || 6435 || 6455 || 6475 || 6595 ||

20mMHz |81][8 [8 |[93 |[97 |[202][205][209][213 |[117 |
40 MHz || 83 || 91 || 99 | | 107 | | 115 |
80MHz || 87 | | 103 | | 119
160 MHz 79 ||

6515 | [6535 |

111

I:' Allowed Channel in Germany I:' Not Allowed in Germany

Figure 2: Spectrum and channel allocations for 6 GHz in Germany

2.2.1 Regulatory Context

The regulatory authority responsible for the EU, the ETSI, regulates the use of the
6 GHz frequency range for wireless access systems (WAS) in TR 103 524 [6]:
According to this the frequency range between 5925 MHz and 6725 MHz is to be
used for wireless access systems or radio local area networks (RLANS). There is
no mention of a restriction on transmitting power compared with operation at
5GHz.

The Federal Network Agency has imposed further restrictions for Germany
compared with the limits and frequencies previously permitted in the USA and

compared with the ETSI recommendation: The general allocation from Order

Basis

55/2021 [7] specifies that use is permitted only from 5945 MHz to 6425 MHz. This
extends the guard band at the lower end (towards the 5 GHz band) by a further
20 MHz compared with the ETSI recommendation. At the upper end even 300
MHz less are allocated. This allows the use of only three 160 MHz channels, since
the other 160 MHz channels usable in the other U-NII bands in the USA are not
available. In addition, only the use of Low Power Indoor (LPI) devices and Very

Low Power (VLP) devices is permitted according to the following conditions:

Table 1: BNetzA regulatory limitations for LPI Devices

Low Power Indoor Devices

Usable frequency range 5945 — 6425 MHz

Maximum EIRP for in-band broadcasts 0,2 W or 200 mW (23 dBm)

Maximum EIRP-density for in-band 0,01 W/MHz or 10 mW/MHz

broadcasts

Maximum EIRP density for out-of-band 6,3 x 10¢ W/MHz

emissions below 5935 MHz

Permissible operation Limited indoor use, also in trains and

aircraft. No outdoor use.

Table 2: BNetzA reguatory limitations for VLP Devices

Very Low Power Devices

Usable frequency range 5945 — 6425 MHz

Maximum EIRP for in-band broadcasts 0,025 W or 25 mW (14 dBm)

Maximum EIRP-density for in-band 0,00125 W/MHz or 1,25 mW/MHz
broadcasts

Basis

Very Low Power Devices

Maximum EIRP density for out-of-band 3,16 x 108 Watt/MHz

emissions below 5935 MHz

Permissible operation Indoors and outdoors. Not for use on

unmanned aerial vehicles (UAS).

Device category The VLP device is a portable device.

This is a strategic disadvantage compared with the power of up to one Watt
permitted in the 5 GHz band (5470-5725 MHz) [8], because the range of radio
transmission for example at 6 GHz is much shorter with this limit, even indoors.
For outdoor areas the reduction of the emission maximum to 25 mW (6 GHz) (in
comparison: 1 Watt at 5 GHz) is extreme. Here, only close-range use is to be

expected.

2.3 loT and Device Management

The "Internet of Things" or 10T is seen as a collective term for the networking of
objects or devices through communication technologies. In particular wireless
communication comes into consideration here. The embedded computers thereby
simplify or improve people's lives by increasing comfort or by adding new
interaction possibilities or data. These physical devices, mostly sensors and/or
actuators or combinations of these types to more complex structures (e.g., heat
pumps or environmental sensors, smart appliances in the kitchen or industrial
machines), are usually managed by a virtual representation on the Internet or an

Internet-like structure [9].

The functions implemented on the Internet of Things allow interaction or
management of the networked devices by humans or by automation. In detail,
network devices such as access points or wireless clients (STAs) that provide or
use wireless communication can also be seen and implemented as part of the

Internet of Things. In the context of this work, therefore, the management of these

Basis

WLAN devices in the 6 GHz band is considered. Device management in the loT

environment includes the following points in particular:

1.

Provisioning and deployment: Devices should be able to connect to the
management software solution on their own and retrieve their own
configuration from there.

Authentication: Devices must be centrally managed (device identity
management) and have a secure channel for authentication.
Configuration: Devices and their internal parameters must be adjustable
and automatically configurable from the management software solution.
Control: Commands or actions should be centrally triggerable on the
active devices and the state of the device should be changeable (in the
context of this work, e.g., start a throughput measurement on a Wi-Fi
client).

Monitoring: System metrics should be centrally recordable and can be
presented in an appealing way for the user.

Security: Devices mainly use a secure communication channel (e.g.
HTTPs, mTLS or similar) for communication and actions in the software
by the user are covered by a security concept (e.g. role-based access
control).

Diagnostics: The device status is recorded and is visible to the user;
Logging data and metadata can be accessed.

Up-to-dateness: The installed device software can be updated centrally
as well as managed; The up-to-dateness of the device configurations

can also be managed and viewed.

Technical Framework

3 Technical Framework

For this work, primarily freely available open-source software was used where
possible. This means that the measurement systems (server and client) are based
on Debian GNUY/Linux in the unstable "Sid" version. Debian stable at this time was
Debian 11 "Bullseye". A few packages, such as the regulatory database (wireless-
regdb), are only up-to-date enough in Sid to enable 6 GHz. A self-compiled kernel
in version 5.17 also had to be used, as no official kernel build was available at the
time that could correctly use 6 GHz with the provided hardware (Intel AX210).

Two slightly different systems were used for the hardware: A Dell Optiplex 9020
with Intel Cire i5-4570, 8GB RAM and 256 GB SSD was used as the first wireless
client. Here, the Intel Wireless NIC is connected via an mPCle adapter via PCle.
The server system (where the measuring station/server runs) uses an HP
EliteDesk 800 G2 Mini with an Intel Core i5-6500, 8 GB RAM and a 256 GB SATA
SSD. The system has a USB 3.1 Type-C interface, via which a 2.5 Gbit/s-capable
Ethernet interface (chipset: RTL8156B [10]) is connected (for throughput
measurements against an external server). The Intel Wireless NIC is connected

here directly via the available M.2 slot.

The Intel AX210 Wireless NICs are not suitable for working as APs in a radio cell,
so access points from the manufacturer Aruba are used. Magellan netzwerke
GmbH [11] kindly provided two Aruba 630 series access points for use in this

project.

The APs and server were connected via a Netgear GS110EMX multi-gigabit

switch to enable wired communication.

Technical Framework

3.1 Wi-Fi6E

Establishing communication via Wi-Fi 6E is essential for the implementation of the
project: Hardware is therefore needed that can use the 6 GHz band and that is
available on the market?. For client NICs, only the following NICs from the

manufacturer Intel were available:

a. Intel Wi-Fi 6E AX210 Gig+ M.2 Module
b. Intel Wi-Fi 6E AX211 Gig+ M.2 Module
c. Intel Wi-Fi 6E AX1675 Gig+ M.2 Module

In the following text option (a) will be abbreviated as AX210. Option (b) is identical
in construction to the AX210 NIC, but with an Intel-proprietary interface
communication via M.2, so it can only be used in hardware systems intended by
Intel for this purpose and is therefore ruled out for this project. Option (c) is also
identical in construction to the AX210 but does not have all the management

options (no Intel vPro [12]) and was also recently about twice as expensive.

Aruba AP-635s are used for the access points. APs from Extreme Networks (AP
4000 series) were also requested, but these could not be provided by the

manufacturer in time.

3.1.1 Intel Wireless NICs

Intel's AX210 enables tri-band 2x2 communication via WLAN as well as the use
of Bluetooth 5.2. The NIC used is available as an M.2 2230 plug-in card. It
supports gross data rates of up to 2.4 Gbit/s at 6 GHz and 160 MHz channel
bandwidth, as well as MU-MIMO and OFDMA. [13].

a) Driver, Firmware and EEPROM

Due to the new general allocation of the Federal Network Agency for 6 GHz in
Germany, a client cannot use this band without further ado as the network card
itself may not yet be cleared for the frequency band. This is the case with the
AX210: According to Intel, the card itself manages a list of permitted channels per
location. If, for example, the current kernel 5.16 with the latest Intel driver and the
latest Intel firmware is used for the card, it is still not possible to use the 6 GHz

2 During the implementation period of this work, supply problems and bottlenecks occurred in the context of the Corona pandemic,
which also affected chips and electronic products in particular.

10

Technical Framework

band in Germany [14]. This is related to the internal determination of the

regulatory domain in the Intel firmware:

1) Determination of the regulatory domain

Intel Wireless NICs use the Netlink interface under Linux to offer their hardware:

Userspace Kernelspace Hardware

cfg80211
mac80211
Intel Wireless NIC

c
o
=2
@
L
o
[}
<
S
a
2
)

Device
Driver

MAC Drivers

Figure 3: Access to an Intel Wireless NIC via the Netlink interface of the 802.11 driver stack (here
with iwlwifi driver)

The operating system maintains a so-called regulatory database (for Linux in the
package wireless-regdb), which contains the regulatory restrictions for each
country, e.g. maximum transmission power, usable channels, DFS etc. [15]. This
list can be accessed via the CRDA module, the Central Regulatory Domain Agent,

in order to retrieve the restrictions on use for the hardware [1].

A wireless NIC registers with the Netlink interface via the c¢fg80211 MAC driver.
In doing so, the NIC must provide an API that Netlink can use to specify the
regulatory rules that apply to the device. The device therefore specifies during
registration which frequency bands and which channels are supported therein.
During registration, the cfg80211 driver checks against the regulatory database
which rules apply to the current location and forms the intersection of the sets (i.e.
only those operation modes remain that are both supported by the device and

allowed by the regulations).

In addition, the firmware of the Intel NIC itself can now further tighten the rules.
With Intel, this is done by the "Location Aware Regulatory” (LAR). The exact mode
of operation is not published by Intel, but it can be assumed that the card itself

11

Technical Framework

performs a scan and determines, on the basis of the received management
frames, in which state/regulatory domain it is located. Then the card uses a list
stored in the EEPROM and managed via the firmware, similar to the Regulatory
Database, to restrict the usable frequencies and transmitting powers etc. This
means that even if, for example, US is set as the regulatory domain via the CRDA,
as long as the card is located in Germany (DE) and receives at least one
management packet with a different country code, the card will continue to restrict
itself. Therefore, although the 6 GHz band can be used in the USA, the card

cannot use this band.

In the test phase of Intel's LAR it was possible to switch off this functionality via a

driver option (lar_disable). This is no longer possible [16].

2) Solving the regulatory domain problem

However, since 6 GHz can actually also be used in Germany since 2021, but this
was not possible at first, Intel was informed accordingly [14]. The solution is to
use the Linux 5.17 kernel, which presently was not yet available as a compiled
package for Debian during this work, and to use a specific firmware version from
Intel. With this firmware version, the Intel AX210 selects the correct list of
frequencies and allows operation as a station in the 6 GHz band. Only the display
and retrieval of some parameters (e.g. transmission power), as well as operation

as an Access Point, do not yet seem to function completely correctly [14].

3.1.2 Aruba Access Points

The access points were provided to us by Magellan Netzwerke GmbH, Cologne.
They are AP-635 (model with internal antennas for indoor use) from the Aruba
630 Wi-Fi 6E AP series. [17]. Aruba is a Hewlett Packard (HP) company. The
Aruba 630 series allows simultaneous use of all three bands (2.4 GHz, 5 GHz and
6 GHz) and has two 2.5 Gbps Ethernet ports that can be used as uplinks. The
access point supports 2x2 MIMO on all three bands [18]. This means that at 6
GHz and a channel bandwidth of 160 MHz, up to 2.4 Gbit/s is theoretically

possible as a gross bit rate.

According to the manufacturer OFDMA, TWT, transmit (TX) beamforming and
BSS coloring are also supported. In the 5 GHz band, allocating up to 8 OFDMA
Resource Units (RU) are supported, in the 6 GHz band even up to 37 RUs. The

12

Technical Framework

maximum transmit power is 21 dBm [18] (without antenna gain). The AP-635 is
designed for ceiling mounting. The AP can be powered via PoE+ (802.3at) directly
through a connected Ethernet cable.

13

Technical Framework

3.2 loT Management Software

In the course of initial research the following (open-source) candidates for the

software-side management of 10T devices were elaborated:

OpenRemote [19]
Thinger.io [20]
ThingsBoard [21]
Mainflux [22]

0w NP

For these four software options, the points listed in chapter 2.3 were then used to
work out the extent to which the software solutions basically meet the
requirements. For this purpose, the documentation of the respective software
solutions was used. A points-based evaluation scheme was worked out, the
complete table for which can be found in the appendix. The two solutions that
achieved the highest and second highest scores were selected for further
comparison of function and evaluation with regard to Wi-Fi: ThingsBoard and

Thinger.io.

The other software solutions were discarded for further consideration, as they did
not meet some requirements: OpenRemote, for example, does not allow the
configuration of the device to be backed up (MUST requirement), Mainflux does
not inherently allow any control options for the managed devices, and also does
not provide a front-end through which a user with further in-depth technical
experience can operate the 10T devices.

3.2.1 ThingsBoard

ThingsBoard is an open-source [23] loT platform for device management, data-
collection as well as data processing, which also prepares the data graphically in
a frontend. Industry standards such as MQTT and HTTPS are used to connect to
the devices. Both local installations and installations in the cloud are possible.
ThingsBoard offers server-side APIs for the overall management of the devices
through which the IoT platform itself and the devices can be managed, controlled,
and monitored. The platform allows multiple customers/tenants to be managed in
their own separate environment and devices/assets can be assigned to customers
respectively. Telemetry data can also be collected centrally via the APl and can

be prepared in dashboards. The dashboards can then also be used directly by the

Technical Framework

customers. For the telemetry data, so-called rule chains can be used for data
processing. This allows the data to be processed and transformed. Alarms can be
triggered by rule chains, attributes of the devices can be updated and actions can

be initiated.

ThingsBoard offers online documentation [24] and was released in 2016 in the
first major version 1.0. The most recently released version is 3.3.4. The software
can be used free of charge in the Community Edition. A paid Professional Edition
is also distributed, which offers additional support options and customization of

the software to a corporate design.

3.2.2 Thinger.io

Thinger.io describes itself as an "Open Source Platform for the Internet of Things"
[20]. The focus is on connecting and managing loT products. The software
integrates with the devices via its own client software or via a REST API. The
software can also be installed on-premise as a container stack, or, alternatively,
Thinger.io's own cloud solution can be used. Both options incur costs,
ThingsBoard is only free with up to a maximum of two managed devices.
Especially the Arduino Ecosystem is in focus: These devices (such as ESP8266
or Arduino MKR 1010) are directly supported by the Thinger.io library. However,
MQTT- and HTTP-based devices can also be connected. The software supports
the management of devices from the frontend, collection of data in so-called "data
buckets" [25] and the visualization of data in dashboards. The software has been
under development since 2015. In the context of this work, version 3.4.6 was
evaluated in a local deployment in the "Medium" license plan, which was made

available by the manufacturer upon request.

15

System Design

4 System Design

The required functionality, i.e. the management of the Wi-Fi devices (like IoT
devices) as well as the measurements are mapped by a client-server architecture.
At least necessary is a client-side measurement program, which is executed on
one of the client PCs described above and the server, which takes over the
management (on which the ThingsBoard software or Thinger.io software is
executed). In addition, it is useful to set up an independent server that can collect
the measurement data and metrics independently from the management
software, so that in case the desired result cannot be achieved with the software,
at least Wi-Fi 6E can be evaluated without any problems caused by shortcomings
from the management software. In addition, one of the (measurement) clients
should also be able to act as a measurement counterpart, i.e. in this sense as a
measurement server for the performance measurement. The client program itself
should be able to communicate with the management software in encrypted form,
using at least the standard HTTPS protocol; in the event that the measurement
data is written to an independent system, this should also be done via HTTPS for

the sake of clarity.

At the physical hardware level it is important to ensure that the measurement path,
I.e. all components between the measurement client and the measurement server
(e.g. Ethernet interfaces and switches), also support at least the theoretical
maximum data rate of the wireless connection. Otherwise, it cannot be ensured
that a restriction of the measurable performance does not occur there, which is

not due to the actual wireless connection but created by the limiting wired link.

4.1 Architectural Design
The setup contains the following components:

ThingsBoard-Server

Thinger.io-Server

Netgear-Switch

2 x Aruba-Access-Points

HP-Client (Used partially as a measurement server)
Dell-Client

S e oA

16

System Design

The majority of the components can be clearly differentiated from each other:
ThingsBoard and Thinger.io servers each serve to centrally manage the clients
used: They are to provision, control and configure the devices. Likewise, they are
to receive data such as telemetry, measurement data, etc. from the clients. The
Netgear switch is capable of connecting the components at 2.5 Gbit/s via
Ethernet, but it does not support PoE+, which the Aruba APs need in order to
operate. A PoE injector, which is also 2.5 Gbit/s-capable, is provided for this

purpose.

The Aruba access points were placed in the lab with the help of a spatial survey
so that testing the roaming ability of clients can be carried out at an easily
accessible point in the central corridor. The transmission power of the APs was
also reduced accordingly for the time being in order to be able to define the
roaming point well (This was later adjusted for maximum throughput). This should
simplify the measurement of the roaming behavior of the clients.

The HP client is equipped with a 2.5 Gbit/s Ethernet adapter via USB 3.1 Type-C
in order to be able to be used not only as a Wi-Fi-based test station (e.g., for tests
between clients in the same cell) but also as a wired test station behind an access
point via the switch. This enables the measurement of a single client in a cell. The
Dell client is intended as a measurement client and is to run either the client

program for ThingsBoard/Thinger.io or the independent measurement program.

17

System Design

4.1.1 Network Plan

18

Qarvoa — — arvoa

_____ =

' |

| i |

AP1 AP2
192.168.1.101/24 192.168.1.102/24
ThingsBoard
Server
87.78.128.238
VLANSs: VLANSs:
1. Management 1. Management
2. Client 2. Client
Thinger.io
Server
- 139.6.19.30
HP-PC Netgear Multi-Gig-Switch
192.168.2.115/24
_____ =
' |
! . -
MGMT:
192.168.1.1/24 @
CLIENT: @ @
VIAN: VLANS: 192.168.2.1/24 P
1. Management————————

Client 2. dlient
. Clien’
Router

Figure 4: Network plan/setup of the network for the test environment in the laboratory. The HP PC
either takes the role of the server (via cable or wireless) or is used as a second client. The images
of the Aruba access points are designs of the VSD Grafx Inc [26].

The access points are connected to the switch via multi-gigabit-capable ports, so
that the total theoretically possible data rate is not restricted by the Ethernet
connection during cross-cell communication. The Dell PC, since it is operated
exclusively as a client, does not require a wired connection, but only has a radio
connection. For this wireless connection the data is collected and it is over this
connection that the QoS and performance measurements are made. For the
scenario of communicating with a second wireless device, the HP PC can do
without its wired connection, since it is also equipped with an AX210 interface and

therefore also supports Wi-Fi 6E.

Not drawn in the diagram above are the POE+ injectors used between the switch
and the APs. They are not relevant for the logical structure since they only ensure

the power supply of the APs.

System Design

Internally two private IPv4 networks are used to separate the management and
client networks. The 192.168.1.0/24 network can be used to manage the router,
the switch, and the APs via a virtual controller running under the IP 192.168.1.10
(not shown in the figure above, as it can move between the two APs). The two
clients talk over a network logically separated by a VLAN: 192.168.2.0/24. The
servers for the ThingsBoard and Thinger.io applications are hosted externally and
are accessible via a router, which simultaneously enables DHCP in the respective

network as well as NAT for the APs and the clients.

4.1.2 Software Design: ThingsBoard

ThingsBoard manages so-called entities. These can be, for example, a tenant, a
customer, a user, a dashboard or a device [27]. Devices can send telemetry data
to ThingsBoard and respond to RPC commands. These can be sensors or
actuators, to name some examples. In this instance a device is a Wi-Fi 6E-
enabled Linux computer that can also collect telemetry data (e.g., channel quality
of the connection) and should respond to commands (e.g., start a performance

measurement).

A device not only collects telemetry data, but also has self-defining properties.
ThingsBoard names these as attributes. These are key-value pairs that belong to
the device. This is used in the context of this work, for example, to store and
change the configuration of the device centrally or to log the firmware version of

the Intel firmware.

19

System Design

Figure 5: ThingsBoard device details show for example client attributes that can contain
information like firmware version or operating system information

Devices can additionally send time series data to ThingsBoard: Either directly as
telemetry (this is stored in a central database as a JSON object) or as a response
to an RPC call (also JSON-based). This can then be used in dashboards to

prepare, for instance, the measurement data sent in this way. This data can also

be processed in a rules engine or react to unusual data points (alarms).

20

System Design

Figure 6: ThingsBoard web overview: The different entity types are visible as well as the more
specific points as over-the-air updates and the dashboard management

ThingsBoard offers various possibilities to connect client devices: In addition to
an MQTT API, CoAP, LWM2M, HTTP and SNMP are available. The Linux client,
as a powerful computer, can easily make complex API calls and therefore also
use a stateful protocol like HTTP. HTTP is also supported by Thinger.io, so it was
chosen as the protocol for communication between the platform and the device in
both cases. This makes it possible to potentially reuse some of the communication
logic.

4.1.3 Software Design: Thinger.io
According to the manufacturer, Thinger.io allows bidirectional communication of
the server with any client devices, regardless of the hardware platform. The

devices can be assigned to a client.

Devices can be connected via MQTT, Sigfox or via LoORaWAN. Alternatively, an
HTTP (RESTful) APl can be used to interact with Thinger.io. Through the
endpoints a device can receive and send JSON data. Communication is possible
over encrypted HTTPS and the client must authenticate via an Authorization
header. Sent JSON objects are stored in so-called data buckets. Each device has
properties that are comparable to the attributes in ThingsBoard. These are JSON
objects that are uniquely assigned to a device and can, for example, contain the

configuration.

21

System Design

Here, however, a limitation of Thinger.io already becomes apparent: Since the Wi-
Fi 6E clients are much more complex than a simple I0T sensor or actuator, not
only data of one type must be stored, but different types (configuration, telemetry,
measurement data, system state, etc.). However, a Data Bucket can only contain
one type of data at a time. If a client now writes configuration data to its assigned
bucket, the client will only be able to write configuration data to the bucket and
read it from there. If it writes other data to it, the bucket can no longer be used on
a dashboard to display data, because it is not clear which of the various data sets
should now be displayed. Also, only one property can be sent to the device in
response to a request from the device. This is problematic since a device may
send either telemetry data or properties. l.e. a device that sends measurement
data cannot update its own configuration (e.g., when it switches between two
WLAN service sets) and a device that should be able to change its configuration
cannot send measurement data. This makes the Thinger.io approach unsuitable

for use with complex devices that combine multiple tasks in one endpoint.

Figure 7: Thinger.io device configuration allows only one data bucket to write to. Also, only one
device property can be sent to the client.

22

System Design

Additionally, it should be mentioned that the connection of HTTP devices is
directly presented as a feature in Thinger.io by the vendor [28], but is actually
implemented via a plugin that is not further documented: The documentation of
the plugin was removed during the writing of this paper, but was originally
available during the evaluation phase [29]. Automatic provisioning of devices can
also be performed via this plugin.

Since Thinger.io already does not fulfill basic requirements that are relevant for
the objective of the work, a direct comparison of the software with ThingsBoard
regarding the performance in the management of Wi-Fi 6E devices cannot be
carried out. Therefore, only a functional comparison of the two software solutions
will be carried out in the further course of this work. Only the features of
ThingsBoard are then considered in more detail with regard to the management
of Wi-Fi 6E devices and a client program is implemented that allows the
management by ThingsBoard.

4.2 Wi-Fi 6E Measurement Environment and Scenarios

In order to be able to perform an assessment of the current status of 6 GHz Wi-Fi
networks, the parameters that are relevant from the user's perspective in
particular must be considered, i.e. also the parameters that represent the
innovations from a technical perspective, which can then be evaluated in more
detail in test measurements. From the user's point of view, the following
parameters were considered relevant, with a particular focus here on the first four

parameters, which are usually used as metrics determining the quality of service
(Qo0S):

The data throughput for applications (TCP/UDP)

The latency between client and server (round-trip time)

The jitter of the latency

The availability of the data connection for longer lasting transmissions

Roaming Behavior of Client Devices in an Extended Service Set

-~ ® a2 o0 T p

Behavior of the clients with increasing distance to the next access point

(distance limits)

23

System Design

Other scenarios that can occur in a multi-client environment can also be
considered (such as hidden nodes) but these are not considered further in this

paper.

From a technical point of view, it is also interesting to consider the newly defined
MCS for High Efficiency WLAN (indices 10 and 11) and the possibility of
communicating with OFDMA as a modulation in comparison with the OFDM

modulation that has been common up to now.

4.2.1 Quality-of-Service

A subscriber in a WLAN network expects a reliable connection to the desired
destination. The quantitative recording of the above-mentioned parameters is
interesting here: Latency, jitter, throughput and availability. It is therefore
necessary for the measurement system to be able to record the latency, jitter and
throughput of the wireless data connection at regular intervals. Longer-term
measurements of throughput should also be possible, so that fluctuations in
availability or lost data packets can be recorded. If these measurements are
performed for a 5 GHz 802.11ac-based network and a 6 GHz 802.11ax-based
network, for example, the parameters can be compared on this basis and
statements can be made about differences or similarities. In order to optimize the
throughput the measurements are performed with the maximum possible channel
bandwidth of 160 MHz (6 GHz band) and 80 MHz (5 GHz band).

4.2.2 Roaming

The Federal Network Agency has explicitly earmarked the 6 GHz band for mobile
devices as well [7], e.g., smartphones, tablets, mobile 10T devices, robots or
comparable mobile hardware. In extended service sets (more than one AP), it is
therefore inevitable to expect devices to be roaming. This is also an integral part
for users to achieve good quality of service. If a client moves too far away from
the associated AP, standalone (802.11k), or AP-supported (802.11v) roaming
should be enabled if other APs are available. Of particular interest here are
threshold values (received power, link quality) at which the clients switch, and how
high the stickiness (delay in switching between two APs or clients that do not
switch at all, although the connection is getting worse) is. Here, the selection of

parameters such as the transmission power of the adjacent access points

24

System Design

between which the handover is to take place, which are decisive for roaming, is
then also interesting.

4.2.3 Distance Measurements

IoT devices in particular can be distributed over the entire site or building and
therefore also have large distances to the next access point. For this reason, the
measurement of the performance for increasing distances is also important with
regard to the low maximum transmission power in the 6 GHz band. In addition,
the increased frequency also means that there is possibly already a measurable
difference in the RF reception parameters compared with 5 GHz networks. The
measurement of the QoS metrics listed above is therefore also performed with
increasing distance to the AP. Since the lowest possible complexity is required in
this scenario, 20 MHz is set as the channel bandwidth.

4.2.4 MCS and Spatial Streams

It is also interesting to look at the newly defined MCS indices 10 and 11 for HE,
which offer 1024-QAM and a coding rate of 3/4 and 5/6 respectively. This in
combination with the lowest guard interval (0.8 ps) allows the transmission of
more than one Gigabit (MCS-HE 10: 1080.9 Mbit/s, MCS-HE 11: 1201 Mbit/s)
with one Spatial Stream (SS) at 160 MHz channel bandwidth. With 2 spatial
streams even 2402 Mbit/s gross are theoretically possible. The measurements
are to determine whether these MCSs can be reliably selected by the clients and

what data throughputs can thus be achieved at the transport layer.

The MCS as well as the number of spatial streams is selected by the client and
can also be retrieved there. The measurements are recorded in a background
process so that these parameters, which are significant for the connection, are
also recorded during a series of measurements. In the case of a distance
measurement, for example, the distance or signal reception strength at which the

client switches to a lower MCS can be recorded.

25

System Design

4.2.5 OFDM(A)

For the first time the 802.11ax standard allows the distribution of the individual
carrier frequencies to several simultaneous participants within an OFDM symbol
in both directions. This makes it possible to achieve true simultaneity of radio
transmissions in upload and download. The standard only allows data frames to
be transmitted via OFDMA; management and control frames continue to be
transmitted via OFDM [30]. An access point must also use trigger frames to assign
subcarriers to the clients that it is to use for OFDMA. The client must confirm this
(via clear-to-send/CTS response). This behavior, if it occurs, as well as the actual
OFDMA-based data transmission is to be observed and evaluated in the

measurement series.

26

Implementation

5 Implementation

The functionality to perform throughput measurements via WLAN was
implemented on the program iperf3 [31], a throughput measurement tool that
offers a wide range of configuration options. The program works with a client-
server architecture. With iperf3, for example, the throughput on an interface can
be recorded simultaneously over several parallel streams for a certain period of
time by the client measuring the throughput to the server (or vice versa). The data
can then be programmatically processed as JSON. Around this program as a
basis, a Python 3 wrapper program has been created as part of this thesis, which
has been extended with additional functions and wrapping program parts. These

functions/program parts include (not exclusively):

— The use of iw as a program for controlling and configuring wireless
interfaces (e.g. the Intel NICs used) as well as retrieving the interface
parameters (MCS, channel bandwidth, spatial streams, etc.).

— Direct InfluxDB integration (via Python package) for storing captured time
series data.

— Integration of the ping3-Python package [32] for ICMP ping to capture
latency.

— The Python multiprocessing package for mapping the concurrent program
parts (e.g. acquisition of channel parameters during a measurement series).

— The Python-ConfigParser package for reading and creating configuration
files.

— The ThingsBoard REST Client for Python [33], for partial connection to
ThingsBoard.

Python was chosen as the programming language because programs are easily
portable and can be run on most client systems without problems. Integration with
the 10T management software can be easily done via Python's HTTP package
(such as urllib) and operating system modules or calls can be integrated directly.

27

Implementation

5.1 Program Structure: ThingsBoard

For ThingsBoard the entire test functionality was implemented within one Python
file. This makes a function update very easy by replacing the file with a new
version. For storing the persistent configuration options an INI file for the

configuration, client.conf, and a file for storing secrets is used.

The client software takes care of reading the local configuration, registering with

the management platform, and all communication during program execution.

5.1.1 client.py
The client program contains various functions and routines that can be triggered
by different mechanisms on the client or by the remote management software:

a) main()-Function:

This is the entry point when starting the client: first the configuration and secrets
are read from the configuration files and a new instance of MeasurementClient is
created, a Python class that contains the further functionality. Then the global
logging instance is created, which can be used to keep a debug log. After that,
the network connection desired in the configuration is established via WLAN.

def register device(self):
url = "https://" + REMOTESERVER + \
":" + REMOTEPORT + "/api/vl/provision"
body = {
"deviceName": DEVICENAME,
"provisionDeviceKey": DEVICEKEY,
"provisionDeviceSecret": DEVICESECRET
}
json_body = json.dumps(body)
ca_path = self.config["CONNECTION"]["TrustedCADirectory"]
response = requests.post(url, json_ body, verify=ca_path)
decoded_response = response.json()
received_token = decoded_response.get("credentialsValue™)
if (received _token is not None):
self.secrets["SERVER"]["Token"] = received_token
with open(".secrets”, "w") as secretsfile:
self.secrets.write(secretsfile)

Code 1: register_device() function that allows a device to self-register it with the remote
ThingsBoard server and obtain an API token for further communication

28

Implementation

If there is already a registration with a ThingsBoard server in the Secrets file, then
the main loop of the MeasurementClient is started, if not, then the client is

registered by the register_device() function.

b) Main-Loop run_loop():
The main loop executes an endless loop over which the following functions are
mapped and executed accordingly when the prerequisites are met:

1. Collect device parameters (attributes) and send them to the server
(operating system version, client software version, firmware version for
the Intel WLAN NIC).

2. check if new firmware versions are available on the server. If so, then
install the latest version.

3. Wait for remote procedure calls (RPC) from the server.

4. If there is an RPC for a throughput measurement by the server, then the
throughput measurement is performed via
do_throughput_measurement() and the obtained measurement data is
sent back to the server as telemetry data.

5. If there is an RPC for a latency measurement by the server, then the
latency measurement is performed via do_rtt_measurement() and the
obtained measurement data is sent back to the server as telemetry data.

6. Finally, additional system metrics are collected before the next loop pass
and sent as telemetry (send_telemetry()): CPU usage, RAM usage,
hard disk usage and data about the used WLAN interface (e.g. transmit

power, ESSID, MAC address of the access point).

Sending telemetry data is basically possible via a dedicated APl endpoint of the
ThingsBoard server, which can be used with the authentication token obtained by
registering the device: /api/v1l/<token>/attributes allows the sending of
device attributes as telemetry. However, it is not possible to set shared attributes
(e.g., the client configuration) via token only. For this purpose conventional access

data (user name/password) must be used.

29

Implementation

c) update_firmware():
This function contains the exemplary handling of a firmware update where the

updates are distributed centrally by ThingsBoard.

Figure 8: ThingsBoard Over-the-Air dashboard allows for upload or URL reference to a firmware
or software file (package type) that can be pushed to devices or device groups (profiles)
automatically.

After the client has verified that a newer firmware version is available the client
retrieves the URL of the download file from the server and then performs the
download. Firmwares are a tar archive compressed with gzip, which is then
unpacked over the previously installed firmware. Afterwards the downloaded
archive can be removed again. Now the local configuration file is updated (writing
the new firmware version into the configuration file), so that the new firmware is

not retrieved again.

d) wait_rpc():

The response of the client to remote procedure calls is mapped via the
wait_rpc() function: Here, the client retrieves the first available RPC from the
server via GET request and unpacks its payload. The payload contains an ID to
identify the RPC (This could also be used by a client to send back asynchronous
responses to an RPC) as well as the "method" field, which is filled with
"rpcCommand” (Indicates that itis an RPC command). Furthermore, it can contain
several parameters in the "params" field, which may contain, for example, various

commands or their parameters:

Implementation

{
"id": 162,
"method" : "rpcCommand",
"params”: {
"command": "doPerfMeasurement"
}
}

Code 2: Example RPC payload from ThingsBoard when the client receives an RPC command,

in this case: doPerfMeasurement, which starts a 13 second iperf3 measurement on the client

In the case of a throughput measurement, this is carried out when the
corresponding command is coded in the payload. Afterwards the client sends the
measurement results as telemetry to ThingsBoard. Further commands are
possible, e.g., doRttMeasurement, which calls the corresponding function for the

latency measurement (see below).

e) send_telemetry():

The client uses this to regularly record system metrics such as CPU and memory
usage as well as swap and local hard disk utilization. Information about the WLAN

interface is also collected. These data are sent as telemetry data to ThingsBoard.

f) do_throughput_measurement():

The client performs a throughput measurement with iperf3 after disabling all other
unused network interfaces. This ensures that, for clients which may still have an
Ethernet interface or a second Wi-Fi interface, it is not preferred for the
measurement due to routing. The exact execution of the measurement and the

parameters used with iperf3 is described in chapter 5.2.1.

g) do_rtt_measurement():

This function enables the latency measurement to the Iperf3 server. Three ICMP

echo messages are sent and the ping delay is returned in each case.

5.1.2 client.conf

The configuration of the client is stored in a file and contains the defaults for the
initialization of the program as well as some changeable options: Generally, over
a timestamp in the configuration file the last conditions are compared with the
version of the client configuration held on the server. Thus, updates can be played

out from server side to the client as well as the client can synchronize

31

Implementation 32

configuration changes to the server. The newest timestamp is seen as source-of-
truth.

One can also configure settings for connection to the ThingsBoard server and
iperf3 server, as well as logging and a few parameters for the Wi-Fi interface

(Used interface, country, transmit power and WPA configuration):

[GENERAL]

timestamp = 2022-03-11T13:39:34.899415
firmwareversion = 2022-01-11

[CONNECTION]

remoteserver = thingsboard.home.kalytta.net
#remoteport = 8080

remoteport 443

devicename = wifi-client
trustedcadirectory = certs

[IPERF]

iperfserver = 192.168.2.144

iperfport = 5201

[LOGGING]

logfile = ./client.log

loglevel = DEBUG

[WIFI]

wlaninterface = wlplse

country = DE

txpower = 20

wpa_configfile = /etc/wpa_supplicant.conf
wpa_configfile_local = wpa_supplicant.conf

Code 3: client.conf configuration file allows for basic configuration of the client program, i.e. setting the
remote server address for ThingsBoard

5.1.3 .secrets-File

Part of the configuration should be readable and writable only for the client
program - this part is outsourced to a second configuration file (.secrets), which is
also not synchronized centrally with the server. At the beginning on a new client,
it contains the key and the secret for the registration as well as Wi-Fi access data
for the provisioning with the server. The client token needed for APl access is then
added later. Once the file is updated accordingly it can be easily reused by the

client program even after updates or reboots.

Implementation

5.1.4 Server-side Processing

The server can respond to incoming telemetry through rule chains instead of just
storing it (which is the default behavior). It can also respond to attribute changes
or RPC commands from the client. Arbitrarily complex sequences of rules in a
kind of tree structure are possible. In the case of an API call the root rule chain is
always triggered. Depending on the message type this can then trigger various
other rule chains or actions: e.g. messages can be filtered, data can be
subsequently enriched or transformed (adding metadata, changing the data

content based on a script) or alarms can be triggered:

Figure 9: ThingsBoard Root Rule Chain: Allows for granular actions on API events: Here "Post
telemetry" also calls another rule chain in a chained call.

The client can therefore also actively trigger alarms by, for example, packaging
information in an RPC and a rule chain extracts and evaluates this information
(e.g. via threshold values). Alternatively, it can also react to unusual changes in

the configuration of a client (client suddenly changes the country).

5.2 Program Structure: Independent Measurement Client

The independent measurement client allows the measurement of throughput and
channel parameters independent of a management software like ThingsBoard.
The data generated by iperf3 is not sent here as telemetry or RPC response but
stored locally as JSON object. In addition, this data is written to an Influx database

as time series data to enable subsequent evaluation.

33

Implementation

The independent measurement client is divided into two parts: The first part
(iperf.py) serves as program entry point and performs the actual measurement as
foreground process. In addition, this part is responsible for sending the
measurement data to Influx. The second part takes care of measuring the channel
parameters in the background of the actual throughput measurement and runs as
a second process separate from the main part. This allows independent detection
of variations in environmental variables (such as the strength of the received

signal from the access point) during the measurement.

5.2.1 iperf.py

The iperf.py program controls the actual measurement process and makes the
preparations for the measurement as well as performs the post-processing after
the measurement. This file can be called directly as a command line program. The

following parameters are supported:

Table 3: Parameter set of the iperf.py program

Parameter Description

--protocol, -p Switch for changing between TCP and
UDP for the throughput measurement.

Default is udp.

--interface, -i Sets the interface that will be used for
the measurement (This prevents the
program from disabling it while

measuring).

34

Implementation

Parameter Description

--duration, -d Sets the measurement duration in
seconds. Note that the actual
measurement time will be double this
time as upload and download are both
measured this same amount of time.
The first three seconds of data for each
direction are omitted by iperf3 but are
contained when using JSON output.

Default is 60 seconds.

--bandwidth, -b Target bandwidth for UDP
Measurements. The sender will
generate this amount of packets (i.e.
setting this to 1G, the client will
generate 1 Gbit/s of continuous UDP
data). Default is 5 Gbit/s.

--streams, -S Number of transmission streams for
TCP and UDP. Default is 10 streams.

--windowsize, -w Sets the initial TCP window size.

Default is 512 Megabytes.

When called, the program first creates a background process to capture the
round-trip times (via ICMP echo) between server and client and starts another
process to monitor the interface and channel parameters (call interface.py). Then
the throughput measurement is performed with the specified parameters. Here, it
is to be noted that on the target server, which is to be defined in the program

configuration, an instance of the iperf3 server must be started on port 5201.

35

Implementation

First the client measures the download (i.e. the RX channel of the client is tested),
directly after that the upload (TX channel of the client):

print("Start Measuring Download to Client")
try:
result = subprocess.run(
['/usr/bin/iperf3", '-c', str(IPERF_SERVER), "-p",
str(IPERF_PORT), "-R", "-b", str(bandwidth), "-P", str(
num_streams), "-w", str(window_size bytes), "-z", "-0",
"3", "-C", "reno", "-t", str(duration), "-3", add _option,
length_option_a, length_option_b],
stdout=subprocess.PIPE,
check=True,
text=True,
)
result_down = json.loads(result.stdout)
except subprocess.CalledProcessError as cpe:
print(cpe)
result_down = None

Code 4: Starting the iperf3 download measurement in a subprocess on the operating system: -c
denotes this process as the client, -R denotes that his is a download test (without it, it would be
upload), -Z will make iperf3 use Zerocopy, which reduces CPU load, -O lets iperf3 omit the first

3 seconds of data (which are usually not used), -C tries to set the linux TCP congestion
algorithm. add_option switches between UDP/TCP. length_option_a and length_option_b are

for sending differently sized datagrams/segments.

Since iperf3 was called here with the -J option, a granular report in JISON format,
split by seconds and streams, is generated after the completion of the
measurement, which can be further processed by the program. This report
explicitly refers to the data processed by the iperf3 process on the client. This
means that for upload measurements that are performed with UDP, the data of
the server must be used, since the client will most likely send more datagrams
than the server will receive. On the client side, one would otherwise see all
packages, whose transmission was tried, and not only those, which were received
successfully. This is realized via the --get-server-output option, which allows
the client to retrieve the iperf3 server statistics via the control connection after the

measurement from the server is complete:

36

Implementation

print("Start Measuring Upload from Client")
Get the json from the server (via --get-server-output), as the json
from the client will not represent the correctly transferred data
try:
result = subprocess.run(
['/usr/bin/iperf3', '-c', str(IPERF_SERVER), "-p",
str(IPERF_PORT), "-b", str(bandwidth), "-P", str(
num_streams), "-w", str(window_size_ bytes), "-z", "-0",
"3", "-c", "reno", "-t", str(duration), "-J", "--get-
server-output", add_option, length_option_a,
length_option_b],
stdout=subprocess.PIPE,
check=True,
text=True,
)
result_up = json.loads(result.stdout)
except subprocess.CalledProcessError as cpe:
print(cpe)
result_up = None

Code 5: Starting the iperf3 upload measurement in a subprocess on the operating system

After the two measurements have been performed a JSON object is now
available, which contains the throughput recorded by iperf3 broken down by
second, as well as some statistics about lost packets, whereby one evaluation per
stream is possible, since the JSON contains an array with all used streams. For

example, one second in a stream is encoded like this:

"socket": 9,

"start": 0,

"end": 1.000072,

"seconds": 1.0000720024108887,
"bytes": 8992080,
"bits_per_second": 71931460.76140644,
"jitter_ms": 0.1281063357932468,
"lost_packets": 50922,

"packets": 57132,

"lost_percent": 89.1304347826087,
"omitted": true,

"sender": false

Code 6: JSON object containing the data of the first second of stream nine of an iperf3 UDP
measurement and information about the transmitted data. With UDP most of the transmitted
data is lost (Target bandwidth was chosen much higher than actual throughput on the NIC).

37

Implementation

As soon as the measurements are completed the two background processes for
the latency measurement and the channel parameters are now also terminated.
The second-by-second data of these background processes (see chapter 5.2.2)
are now first stored locally as files together with the throughput data. This ensures
that the measurement data is not lost even if it is not possible to upload the data
to the Influx database. Then the data will be sent to Influx, if this is possible. If no
connection can be established, e.g., because there is no connection to the

Internet, no upload will take place and the program will end prematurely.

5.2.2 interface.py

The interface.py is the subroutine that monitors the channel, transmission and
interface parameters in a background process. The following data is collected
every second, provided that the interface provides this data (not all parameters

can be retrieved with every configuration of the interface):

— MAC address of the associated AP

— Number of lost beacons of the AP

— Number of received beacons of the AP

— Bytes received by the AP and sent to the AP

— Number of frames dropped for various reasons

— Total number of transmit retries

— Negotiated bitrate in transmit and receive channel

— Channel ID

— Channel width

— Extended Service Set ID (ESSID)

— Frequency of the channel

— Link Quality (Intel-specific value (no further manufacturer
specifications), between 70/70 (maximum) and 0/70 (minimum)

— Interface Mode (e.g., "'managed" for Associated)

— Power management status

— Total bytes transmitted and received

— Guard Interval Type

— MCS index for transmit and receive channel

— MCS type (HT, VHT or HE, defined by the standard version)

— Number of Spatial Streams

38

Implementation

— Receive signal strength of the AP signal
— Configured transmission power of the client

Originally, additional parameters such as transmission times and timing, and the
negotiated modulation (OFDM/OFDMA) were to be retrieved, but this could not
be realized via the Intel driver and this data could therefore not be retrieved with

the interface used.

39

Test and Evaluation

6 Test and Evaluation

The research questions can be divided into two parts: Evaluation of the software
solutions for the management of 10T devices and the evaluations regarding Wi-Fi
6E and the technical capabilities of the available hardware. In this chapter, a
functional comparison of the management software solutions is performed first.
Since a client was only created for ThingsBoard (the prerequisites are not given
for Thinger.io, as described previously), only ThingsBoard will then be discussed
with regard to performance and operation with Wi-Fi 6E-capable devices.

In the following section, the performance of the Wi-Fi 6E hardware is examined in
more detail and evaluated in terms of quality of service. Various measurement

scenarios are described and analyzed for this purpose.

6.1 Comparison of the Management Software

ThingsBoard and Thinger.io differ in the characteristics and implementation of the
basic functions of loT management software. In the following, a direct comparison
between ThingsBoard and Thinger.io is therefore presented for each of the basic

functions.

6.1.1 Features and Functionalities

The features of IoT management software regarding device management can be
summarized in subgroups like presented in chapter 2.3: Provisioning,
authentication, configuration, control, monitoring, security, diagnostics and up-to-
dateness. A comparison table was also created in advance, which assigns the
individual subgroups to a point system in order to select the software to be

considered in this work. This table can be found in Appendix A.

a) Provisioning

As part of provisioning, a device should be able to set itself up independently: It
should be able to register itself independently with the platform and retrieve
configuration data that it requires for further operation (e.g., access data). This
can be done either via a predefined image for the device, or via a script that
performs the necessary steps at system startup (automatic registration and
preconfiguration). Only Thinger.io offers direct integration of the platform as a C

40

Test and Evaluation

client library [34], for ThingsBoard this is only provided via defined HTTP API
interfaces (which can then be called in a script) [35]. Automatic registration of
devices is also possible on Thinger.io via an API, but this is provided by a plugin
and is not usually part of a Thinger.io instance [29]. Without this plugin,
provisioning must be triggered via the frontend by manually creating the device
and so-called "device credentials". With ThingsBoard automatic provisioning is
possible directly via a data pair: The device provision key and the device provision
secret - including automatic assignment to a device group. A basic configuration
can then also be directly retrieved by the device, including the latest firmware and
software versions, should an update be directly available. Both software solutions

show the (registration) status of the devices in the web interface [36] [37].

Figure 10: ThingsBoard showing the current state of a registered device "wifi-client". The device
reports back when it successfully registered and the server will report connectivity information via
the server-side attributes.

What is problematic in both cases is finding the management server: If the WLAN
preconfigured on the devices is not available, the client cannot retrieve a
configuration from the server (which cannot be reached), which may contain a

different SSID-PSK combination for connecting to the server. However, this is only

a limitation for WLANSs that perform authentication via pre-shared key. This can

41

Test and Evaluation

be circumvented, for example, by the clients basically using a certificate as part
of EAP-TLS-based authentication. However, this is a restriction that does not

result from the software.

Overall, registration to a ThingsBoard server is technically possible without user
intervention once a device group has been created. With Thinger.io this can only
be integrated via plugin, and this plugin is currently no longer available. So

ThingsBoard is clearly preferable here.

b) Authentication

For authentication, it is important that the devices can uniquely identify
themselves to the server. Thinger.io regulates this via the so-called Device ID, a
string that globally uniquely identifies the device. This can be defined by the user
himself [38]. In ThingsBoard there is also a device name, by which the device can
be identified, but in addition each device is also assigned a device ID, which here,
in contrast to Thinger.io, is a UUID (this is structured according to the Distributed
Computing Environment (DCE) specification [39]). Other entities in ThingsBoard,
such as Customer, are also identifiable via a UUID and can also be managed via

the API. So here the implementation is consistent.

Figure 11: Thinger.io allows for a string without spaces as device ID. No two devices can use the
same ID.

42

Test and Evaluation

Both ThingsBoard and Thinger.io rely on JWT with Authorization Bearer Token
for API authentication [40] [41]. This means that a user must first authenticate
himself to the API with his access data before further APl endpoints can be
accessed via a bearer token. ThingsBoard allows sending telemetry data without
JWT, but with a device token (or alternatively via X.509 certificate), which is static
and does not need to be renewed [42]. However, since, for example, the device
itself can only change device attributes with JWT, the device must still have
classic access data (e-mail address and password) with which the device can
authenticate itself to the API. This contradicts the basic idea behind the device
tokens. Both softwares do not allow the device to authenticate itself directly via its
device identity. The authentication parameters can be viewed in the frontend and
can also be changed there (changing the token and the user credentials is

possible).

c) Configuration (Over-the-air programming):

Over-the-air programming refers to methods of distributing software updates,
configuration settings and sometimes key material to the target devices via a
wireless interface (Like WLAN). Here it is also important that the devices can also
communicate their current configuration and state to the management platform.

This allows the identification of the devices and their configuration state.

ThingsBoard allows devices to update their attributes directly from the platform
while also supporting updates by devices towards the platform [43]. Thinger.io
also allows setting and retrieving the configuration (called "Device Properties"”
there), but this is only possible if user data (such as throughput measurement data
in the context of this work) is not to be written to a bucket alternatively. Only one
of the two options can be used exclusively via the API callback [44]. This is a
strong restriction by the API and limits the usage options here. If we disregard this
restriction there is another one: The API also only allows writing to and reading
from a single "device property". Thus, in the given case, at most all configuration
options of a device can be stored as one JSON object (or array), and no granular

partitioning is possible, which is possible with ThingsBoard.

With ThingsBoard it is even possible to passively maintain configuration changes
(persistent polling with timeout via HTTP GET). This is especially useful for

changes that have to take effect immediately in case of doubt and cannot wait for

43

Test and Evaluation

a polling interval: e.g. in case of necessary changes to the radio parameters of
the Wi-Fi interface (in order not to lose the connection to the device) these

parameters could be permanently requested by the device.

Figure 12: ThingsBoard shows device attributes either via a dashboard widget or the user can
navigate to the device information page shown here.

Additionally possible with ThingsBoard, but limited to the "Device Properties” (i.e.
the configuration) with Thinger.io, is the possibility to roll out software and
firmware updates centrally for several devices in addition to the configuration. See
section h) “Up-to-dateness” for more details. Device grouping is possible with both
solutions and the current configuration of the devices can be viewed in each case.
The clear advantage here lies with ThingsBoard, especially since no other data
can be transferred from the devices to the management platform when using the

configuration feature in Thinger.io.

d) Control

Thinger.io and ThingsBoard follow different approaches here: While Thinger.io
lets the device itself determine which control options are available, ThingsBoard
relies on remote procedure calls (RPC), which are then evaluated and executed

by the device accordingly.

44

Test and Evaluation

Figure 13: Devices can be configured to have input and output resources. On input resources the
data can be manually sent to the device (Run button) and the outputs will be computed. Image
taken from [45].

Thinger.io enables the device to define internal controllable input and output
options via the so-called Device API, which are then discoverable in the web
interface and can be addressed there [45]: Commands can be sent to the device
and results can be returned. It can also be used to map more complex
functionality, such as changing the device status (e.g., restarting or disconnecting

the network connection) or starting measurement series.

ThingsBoards RPCs are also very flexible: It is possible for the client to make
requests to the platform via RPC and for the management platform to respond
with data (e.g., to retrieve information about whether the measuring station is
currently occupied by another device) as well as sending calls by the platform to
the device. For information on the use of this feature, please refer to the chapter
5.1.1.

45

Test and Evaluation

Overall, both approaches can be used to map sufficiently granular control to

trigger commands such as device state changes, updates or moving an actuator.

e) Monitoring

Devices, especially devices equipped with sensors, generate data for which
monitoring is useful. Thinger.io offers the two known possibilities to store data in
the system, either as "Device Property" or in the Data Buckets, which record time
series data similar to a database table [44] [25]. Devices can regularly send data
to the platform for this purpose [46]. Both options can be used to record system
metrics such as CPU utilization or local hard disk usage, for instance. For regular
measurement data, however, as in the case of this work, only a data bucket for
large amounts of data comes into question. This data can also be presented to
the user in dashboards. It is not possible to notify or alert the user in the event of

unusual values or limit values being exceeded.

Figure 14: Thinger.io dashboard can show device properties and data from data buckets via
different widgets.

ThingsBoard, on the other hand, enables such alerting by using the rule engine
as mentioned in the previous chapter [47]. There, for incoming data, a client can
individually define at which limit values or according to which logic alarms are to
be triggered.

46

Test and Evaluation

Clients can send their system metrics and other telemetry and measurement data
to the telemetry upload API. For this the client only needs the appropriate access
token [43]. Overall, the ThingsBoard approach is more robust because custom
rules can be defined for monitoring in the rule engine and a central collection point

for incoming data is available with the telemetry API.

Figure 15: ThingsBoard dashboards can get data from device attributes, the internal rule chain or
from the telemetry data. Also, Remote-Procedure-Calls can be directly triggered from a
dashboard.

f) Security

To be able to guarantee the security of communication the transmission channel
for information must be secured and there must be authentication for the devices.
Regarding the operation of the user interface the rights and options of the users

should be limited by role-based or attribute-based access control.

Thinger.io does not specify in the documentation whether the http connections
are encrypted. In the test environment, however, it could be determined that the
environment is generally run with HTTPs support enabled by default. This allows
encrypted transmission of configuration and measurement data, which is
particularly necessary for wireless communication. The devices must also
authenticate themselves to the platform when accessing the API. Authentication

via JWT Authorization Bearer Token is offered for this purpose:

47

Test and Evaluation

Figure 16: The Thinger.io web interface allows for access control for devices via tokens: i.e. a
token can be specifically created to only allow write access to one data bucket.

What is not possible in the tested version of the software is securing through role-
based access control (RBAC) - this is only possible in the Professional or
Enterprise Edition of Thinger.io [48]. In the tested version only one user account
was possible. Additionally, no multi-tenant capability is given. According to the
documentation, this is possible by separating into projects in the Professional or

Enterprise Edition of Thinger.io [49].

ThingsBoard takes a similar approach to Thinger.io regarding securing
connections to connected devices: After creating a ThingsBoard server as
described in the documentation, encrypted communication is not yet possible at
first, but HTTPs can be enabled via the ThingsBoard configuration file, both for
the web interface and the API [50]. ThingsBoard also relies on token-based
authentication for endpoints (but not with JWT) but its own token concept that
integrates directly with the API URL, so that a token co-defines the API endpoint

[42] [43]. Likewise, a granular role-based access concept for users is only possible

48

Test and Evaluation

in the Professional Edition [51]. In the tested free Community Edition, a distinction
can only be made between System Administrators (can create and delete
tenants), Tenant Administrators (can manage devices, dashboards, customers
and other entities) and Customers (can read dashboards and control devices). In
contrast to Thinger.io, however, any number of users can be assigned to these
roles. It also results from this that already in the free version of ThingsBoard a
multi-tenant capability of the software is given. Here ThingsBoard is clearly better

suited for larger deployments.

g) Diagnostics

Thinger.io records the general connectivity of a connected device, i.e. when
communication was last established and whether the device is currently sending
data. It is also possible to access the server logs in which all accesses are
recorded centrally. However, this is not possible from the web interface, but only
directly on the server for an administrator. No audit logs are created for the user

interface.

Figure 17: ThingsBoard shows user and device generated events in a "Audit Logs" tab on the
webinterface.

49

Test and Evaluation

ThingsBoard also enables device status recording, but in two different ways: On
the one hand, it records when telemetry data was last sent - this can be viewed
per device for diagnostic purposes. On the other hand, the API also offers the
option of setting attributes for the device's status (e.g., CPU utilization or firmware
version), which can then be evaluated centrally [52]. ThingsBoard does not
provide central logging for all data in the basic configuration, but rule chains can
be used to perform granular logging through the "log" module for data in a rule
execution. This data is then written to a central server log that, like Thinger.io, is
not accessible in the web interface. Additionally, ThingsBoard provides audit logs
in the web interface. These logs record events such as user logins, device

registrations and changes to attributes, dashboards and entities.

h) Up-to-dateness

ThingsBoard, in addition to updating attributes on the server side (which the client
can retrieve) and the ability to deliver information and updates to devices via RPC,
also provides a third way to ensure actuality, especially of installed software:
Over-the-Air (OTA) update packages:

Both software and firmware updates can be stored in the administration interface
and assigned to a device profile. Devices in this profile can then compare the
assigned version with the installed version and download the newer version if
there is a mismatch. The administrator can either specify an external download
link (good for e.g. content delivery networks), or the update can be downloaded
directly from the ThingsBoard server. The process is also then protected from
integrity problems by a checksum. System updates can therefore be managed
well centrally, rollbacks are also possible by simply assigning another version of

the firmware or software for a device profile.

50

Test and Evaluation

Figure 18: ThingsBoard enables the tenants to centrally manage software and firmware updates
for single devices or for bulk updates to a device group. This is useful to update a lot of devices at
once.

Configuration backups are not possible via this functionality, however. In this
case, ThingsBoard must fall back on RPC or Device Attributes, which can be used
to store several versions of a configuration on the server side for example.
However, the import of an older configuration version is not automated in this

case.

Thinger.io only supports firmware update for various microcontrollers, not for
generic devices connected via HTTP API [53]. The functionality is implemented in
the case of microcontrollers via a plugin in Visual Studio Code, a management of
multiple versions must be performed as here in Visual Studio Code and not in the
web platform of Thinger.io by the user. Performing configuration backups for

devices and rollbacks via Thinger.io is not currently possible.

Overall, the question of which of the two softwares is better used to manage Wi-
Fi 6E-enabled devices can be answered clearly: Thinger.io does not provide some

of the necessary features provided by ThingsBoard:

The automatic provisioning of the devices including the provision of configuration
data as well as the latest firmware and software versions is much easier to realize
via ThingsBoard. Especially for software updates, Thinger.io would have to rely
on external sources, since provisioning by Thinger.io is not only possible for
microcontrollers. In ThingsBoard, the configuration of the devices can be mapped
by attributes, from which, for example, measurement data can be separated by

supplying them to the platform as telemetry data. This is another clear advantage

51

Test and Evaluation

over Thinger.io, where this separation also exists, but only one of the two data
types can be sent to or retrieved from the server due to the API limitation.
ThingsBoard is therefore preferable because of the available features and
functions, since a connection of generic Linux Wi-Fi devices can be implemented

here more completely and clearly.

6.1.2 Structural Differences

Particularly noticeable is Thinger.io's clear reference to microcontrollers: The well-
known microcontrollers from Espressif ESP32 and ESP8266 as well as the Wi-Fi,
Ethernet and GSM-supporting controllers from Arduino are explicitly mentioned
as supported [54]. There are also coding examples for these platforms in the
documentation. This also differentiates Thinger.io from ThingsBoard in that
ThingsBoard does not directly specify devices that are supported here but defines
a number of protocols that any device can use to communicate with the platform:
In the free community edition these are MQTT, CoAP, HTTP, SNMP and LWM2M
[55]. Each device group can be connected via one of the protocols. An existing
MQTT infrastructure can even be connected via external MQTT gateways..

The approach to multi-tenant capability is also clearly different. ThingsBoard is
shipped with this feature and at least one tenant must be created, even if no other
tenants are served on the system. There are also versions of Thinger.io (like the
one used for this work) that do not have this feature enabled at all.

Thinger.io uses JWT authentication for every data transfer between the platform
API and the devices, while ThingsBoard differentiates between the tokens used
for telemetry or provisioning, for example, and the username/password access
data required for writing shared attributes, for instance. In the case of
ThingsBoard, the uniform control of the devices via RPC should be emphasized,
while in the case of Thinger.io, the API is not complete in this respect and offers

the features and shortcomings described in chapter 4.1.3.

6.1.3 Performance
Sending data by connected devices to ThingsBoard never caused any problems
in several tests. Even larger amounts of data generated by the throughput

measurements over several minutes and then sent collectively to the platform

52

Test and Evaluation

could be processed without problems. No statement can be made here regarding
Thinger.io, since this functionality could not be tested due to the lack of a basis.

ThingsBoard states in the documentation that firmware and software updates can
be delivered to 100 connected devices simultaneously by default [56]. This can
lead to problems in reality: Several hundred TCP sessions heavily loaded by
downloads may be impossible to handle with weak hardware. However, the
number of simultaneous downloads can be adapted to the hardware conditions in
the configuration of ThingsBoard. Problematic in the current setup was the
limitation of software and firmware packages stored on the ThingsBoard instance
to a maximum of 2 gigabytes. Updating the complete firmware stack on the Linux
clients was therefore not possible from the local instance, but only via direct

download from the Linux kernel repositories.

ThingsBoard's web interface scores 56 out of a possible 100 points in Google's
Lighthouse Performance Test. Points are deducted for heavy JavaScript usage
and the lack of text compression. Furthermore, the browser is not prompted to
cache resources. Thinger.io scores much better with 78 out of 100 points in
Lighthouse, where only the lack of HTTP/2.0 support and the missing cache policy
(like ThingsBoard) are criticized. Both platforms react sufficiently fast to user

inputs in the frontend or show a loading animation when loading for a longer time.

53

Test and Evaluation

6.1.4 Operation/Frontend
Thinger.io offers after the login screen directly an overview page with the statistics

of the currently connected devices and the transferred data:

Figure 19: The start page for Thinger.io shows the number of connected devices, dashboards,
data buckets and other endpoints over a world map, that shows currently connected devices that
send their coordinates. Below that, the data transmissions for the last thirty days are shown.

On the left side Thinger.io’s web interface offers a list of configuration options
grouped in menus: Dashboards, Devices, Data Buckes, Endpoints, Access
Tokens and File Storages are listed at the top and can be listed, edited and
created from there. Further down in the menu is the plugin management, the
configuration options for the installed plugins (here: The HTTP-Device Plugin) and
the administration options. The admin options are not usable in large parts
although they are displayed. This is due to the fact that the license used does not

allow the creation of user accounts, but the option is still displayed.

Individual sub-items in the menu, e.g. the Devices sub-item, then always offer

further configuration options for this menu item in the right part of the window:

54

Test and Evaluation

Figure 20: Under the menu point "Devices” Thinger.io will show a list of all configured devices and
allows for creation of new device configuration.

ThingsBoard offers two separate web interfaces depending on whether one is
working as a system administrator or as a tenant. The system administrator can
change system settings and manage tenants and tenant profiles from his

interface:

Figure 21: Web GUI for the ThingsBoard system administrator after login. It is similar in design to
a tenant web GUI but shows different options in the menu on the left.

55

Test and Evaluation 56

The menu structure is also integrated into the left part of the browser window in a
column. The sub-items are not divided into groups (except for Edge management
and System settings), which makes it difficult to keep track. Only on the start page

(Home) a grouping of the individual sub-items as tiles in a grid can be found:

Figure 22: The ThingsBoard dashboard start page shows large tiles that allow navigation to the
specific configuration options, dashboards and other parts.

Test and Evaluation

Similar to Thinger.io, further configuration for a topic can then also be realized via
the individual sub-items. Devices can be created, configured and deleted via the

"Devices" subitem:

Figure 23: The menu point "Devices" will show all configured devices on the right part of the
browser window. Clicking on a device will open a slide-in window with the devices configuration
options.

Thanks to the rule chains, ThingsBoard can perform any number of complicated
dependencies and data transformations via the front end: Since JavaScript can
be used as a scripting language, sent JSON data, for example, can be fully
processed. There are also already predefined so-called "nodes" with which data

can be enriched, filtered and transformed and actions can be triggered.

57

Test and Evaluation

Figure 24: ThingsBoard Rule Chains can filter incoming data, transform outgoing data and react
to it, i.e. by logging it, sending an RPC or generate an alert.

The web interfaces of Thinger.io and ThingsBoard are very similar in structure
and operation: Both offer a menu structure on the left side and display the
corresponding content on the right side (e.g., configuration options, lists of
devices, tokens or dashboards or, if a dashboard is selected, the content of this
dashboard. By specifying meaningful names in the menu (e.g., item "Dashboards”
shows the list of configured dashboards"). Operation is intuitive even for
inexperienced users. Thinger.io additionally relies on color delimitations
(individual menu items have different colors), while ThingsBoard uses a corporate
design here that has uniform design elements (blue background, white icons and
font). In the ThingsBoard Professional edition a customization of this design is
possible [57].

6.1.5 Managing Wi-Fi enabled Network Devices centrally

When it comes to managing generic Wi-Fi enabled network devices, such as
Linux-based access points, metering stations or routers, ThingsBoard is clearly
preferable to Thinger.io. ThingsBoard's HTTP API can be used in a hardware-
agnostic way and provides a good basis for connecting arbitrarily complex devices
to the management platform through auto-registration, the ability to send

telemetry data to device-specific API endpoints and control via RPC. The data

58

Test and Evaluation

can be further processed via the rule chains, e.g. can also be sent to the Amazon
Cloud (AWS) or an external MQTT broker.

Thinger.io offers some functions only for the C client software specifically intended
for microcontrollers. Functions that are actually necessary, such as saving
measurement data and configuration data for a device at the same time, cannot
be performed via the HTTP API.

The management of Wi-Fi 6E-capable Linux devices is thus only sensibly possible
with ThingsBoard. As a management platform ThingsBoard offers sufficient
configuration options to be able to cover a wide range of use cases and is
therefore suitable for the use cases presented in this work (measurement of Wi-

Fi 6E connections).

59

Test and Evaluation

6.2 Evaluation regarding Wi-Fi 6E

Since it can still be assumed that the channels in the 6 GHz band are not being
used by other subscribers at the time the measurements are carried out, there is
the advantage that throughput measurements are hardly or not at all influenced
by other radio transmissions. This means that the actual performance of the

hardware used (AX210 & Aruba AP-635) can be viewed with greater certainty.

On the one hand, the selected hardware parameters are particularly decisive
here, such as the channel bandwidth, where 160 MHz can be used in the 6 GHz
band for the first time. This will be less relevant for 10T applications, since the
maximum 2402 Mbit/s possible with OFDM modulation and two spatial streams
will exceed the requirements of most 0T use cases. It is nevertheless interesting
to look at what data throughput is possible at the transport layer (TCP/UDP) over
a Wi-Fi 6E connection also in comparison to previously used Wi-Fi 6 (802.11ax)
and Wi-Fi 5 (802.11ac) connections.

On the other hand, special attention was to be paid to the newly usable OFDMA
modulation method (which is also used in LTE, for example). However, it was
determined that OFDMA cannot currently be used with the available hardware

(see chapter 6.2.8).

6.2.1 Hardware

The driver of the AX210 does not yet offer all configuration options that are usually
available and can be manipulated by tools like iw. In particular, the modulation
could not be forced explicitly (e.g. OFDMA could not be forced) and no fixed
transmission bit rate could be specified. An error message was always generated

according to the following specification:
SET failed on device wlan® ; Operation not permitted.

This is a feedback from the Netlink interface that the driver or firmware has refused

to change the parameter.

In addition, an error was found in the firmware's data feedback to the operating
system: For the NIC, wrong limits regarding the transmit power within the selected
regulatory domain are forwarded (22 dBm for all channels in the 2.4 GHz, 5 GHz
and 6 GHz bands) [14]. However, the transmit power of the card could be reduced

manually so that the limits could be met.

60

Test and Evaluation

a) Influence of the channel bandwidth

In the 6 GHz band all possible channel bandwidths (20, 40, 80 and 160 MHz)
could be successfully configured and data could be transmitted. All three available
160 MHz channels could be used in the tests, SSIDs on these channels were
found during scanning of the AX210 and association was possible without any
problems. However, the additional channels added with the 6 GHz frequency
band increase the scanning interval to about 7 seconds in order to be able to scan
all available channels in the three frequency bands.

b) Influence of the modulation parameters

The MCS indices 10 and 11 with 1024-QAM, which are newly possible with the
802.11ax standard, result in a further increase in the theoretical throughput on the
radio interface. In the following measurement series it becomes clear that these
MCS are also frequently selected under good conditions (high reception quality),
but less so with 6 GHz. Likewise, the use of two spatial streams is also frequently
added in TX, so that the gross data throughput negotiated by the card often

corresponds to the maximum possible data throughput in transmit.

Another limitation of the card was found here: Depending on the NIC used
(besides the AX210, the AX201 is also affected) only one spatial stream is
possible in the RX. The NIC does not use the possible two spatial streams despite
good channel parameters. In the lab measurements during this work, the behavior
was primarily found when using the card in the 6 GHz frequency band (as a result,
the transmit data throughput (upload) is often about twice as large as the receive
data throughput (download)). However, other users report in the corresponding
kernel bug report that this problem can also occur when using 802.11ax in the 5
GHz band [58]. This could not be observed in the laboratory measurements within
the scope of this work. A bugfix proposed in the bug report does not bring any
change.

However, these statements only refer to modulation with OFDM. OFDMA could

not be tested.

61

Test and Evaluation

6.2.2 Quality of Service and Performance

For 6 GHz and 5 GHz, the results are basically similar as long as the transmission
parameters are the same. For example, if the channel bandwidth at 6 GHz is
restricted to the 80 MHz possible at 5 GHz and care is taken to observe the
limitation of the spatial streams. The diagrams shown in the following can be found

enlarged again in the appendix.

a) Throughput in Wi-Fi 6E and Wi-Fi 6 (802.11ax)

In throughput measurement, one recurring phenomenon is particularly worth
mentioning: In TCP throughput measurements with iperf3 single zero data points
can be observed in some cases, which drop out of the usually expected
measurement series. This behavior does not follow a recognizable pattern and is
probably due to a limitation in the granularity of the measurement (acquisition of
data points happens every second): When merging the data series from iperf3,
these null values then occur. In a packet capture that was performed during such
a measurement these zero transmissions are not included, but a continuous data

flow is present.

Figure 25: Measurement over 6 GHz with 80 MHz channel width, TCP: Some data points in the
upload are zero.

62

Test and Evaluation

In general, however, fluctuations of varying intensity can be observed in the data
series. Fluctuations in net data throughput are to be expected with radio
transmissions, especially in the 5 GHz band, which may also be occupied by other

participants.

b) Latency

For latency detection, the round-trip time (RTT) to the iperf3 server was also
measured continuously during the throughput measurement. An interesting

picture emerges, especially for the download to the client via TCP:

While stable RTTs are measured in the upload in comparison (the slight existing
jitter is to be expected for a WLAN connection) an edge-like regular increase of
the RTT (like a sawtooth curve) results in the download. This is an indication that
the interface is much more heavily loaded in the upload, so that packets may
collect in a buffer here before they are sent. However, this sawtooth-like curve is
only observed in the RTTs of the latency measurement and does not seem to

have a significant effect on the data throughput measurement:

Figure 26: Measurement over 6 GHz with 160 MHz channel width, TCP. Download with one spatial
stream, upload with two spatial streams. Throughput reaches over 1 Gbit/s in this case.

63

Test and Evaluation

Figure 27: Corresponding RTT measurement. The sawtooth-like behavior of while downloading
with high jitter can be clearly differentiated from the low jitter behavior while uploading from the
client.

These specific fluctuations do not show up in the measurement with UDP. With
UDP considerably longer RTTs occur (when comparing with the more stable
transmit-part of TCP) but these are arranged in an edge-like manner:

Figure 28: RTTs measured via ICMP Ping for a UDP measurement, the first half for download, the
second half for upload from client.

c) Stability/Availablity (Longterm Measurement)

Individual measurements were performed for more than 12 hours in both the 5
GHz band (Wi-Fi 6) and the 6 GHz band to identify possible long-term problems
with high continuous data throughputs. In both cases no problems were identified.
Both the client-side transmit retries are in the negligible range (below 0.02% TX
retries on all attempted frame transmissions) and the dropped frames in the
receive, which are zero or close to zero in almost all measurements. Regularly,
beacon frames, which were kept in a separate drop category, were dropped. This

is probably due to remote access points whose beacons could not be completely

64

Test and Evaluation

decoded correctly during scanning. The connection between the clients around
the APs can be considered stable as long as the reception quality is good. In the
distance measurements the reception quality naturally decreases as the distance
increases, thus also the stability, which first manifests itself there in the reduction
of the MCS and spatial streams and then in errors and dropouts in the data

transmission.

65

Test and Evaluation

6.2.3 Measurement scenario: Client-to-Client in one WLAN cell

If a measurement is performed within a cell (Single BSS) between two clients (or
STAs), the data must still be transmitted via the access point with which both
clients are associated. This means that in the next scenario (Chapter 6.2.4) we

expect about twice the throughput compared to the values measured here.

Reduced throughputs can be expected here due to the channel being occupied
by one of the clients in each case and when the frame is forwarded by AP to the
other client, the maximum of which is primarily determined by two parameters:
The respective negotiated MCS of the two clients. Even if one of the clients
negotiates the maximum (e.g., at 80 MHz and two spatial streams with the short
guard interval (0.8 ps) a maximum of 1201 Mbit/s gross data throughput) the MCS
of the other client, which may have been chosen lower, can limit the throughput
here. In such a scenario special care must be taken to ensure that both clients
have the best possible connection to the AP, or at least a connection of
approximately the same quality. Otherwise, one of the clients will inevitably restrict
the throughput.

Figure 29: Measurement over 6 GHz with 80 MHz channel width, TCP. With two spatial streams
in the TX, theoretical throughput is 1.2 Gbit/s, due to limits by the RX spatial stream (only one),
real throughput is much lower (only about 230 Mbit/s)

66

Test and Evaluation

In this measurement scenario this problem can be strongly seen in the fact that,
as already described above, only one receive spatial stream is used for the clients
at 6 GHz due to software limitations. Therefore, it is then irrelevant that the clients
in the transmit can offer two spatial streams: The data throughput is reduced to
about half of the theoretically possible maximum (defined by the MCS) in the

receive, and even only about a quarter of the maximum in the transmit.

Since the use of two spatial streams in both directions is possible at 5 GHz correct
communication via two spatial streams in both directions can be observed here.
The comparison shows that the data throughput is approximately doubled, but
there are also stronger fluctuations in the data throughput, presumably due to the

higher channel occupancy:

Figure 30: Measurement over 5 GHz with 80 MHz channel width, TCP. Throughput is nearly
doubled with about 400 Mbit/s. The MCS flapped between 10 and 11, corresponding to 1080
Mbit/s and 1201 Mbit/s for both RX and TX.

67

Test and Evaluation

6.2.4 Measurement scenario: Client-to-external-Server outside of the
cell

When using the external server (connected to the AP via a cable connection)
relatively interference-free communication between the AP and a client can now
be considered guaranteed in the 6 GHz band. The practical maximum throughput
that can be achieved can therefore be tested here at 160 MHz channel bandwidth.
The following should be noted here: The maximum gross data rate is only

achieved if:

The shortest guard interval is used (0.8 ps),
One of the widest channels is used (160 MHz),

The maximum MCS is negotiated between AP and STA,

o o T p

Both possible spatial streams are used.

Not all the conditions mentioned here are always given for the following
measurement series. Only one spatial stream was available in the download (RX)
of the measurement client. If only one of the two spatial streams is used the
throughput maximum for one spatial stream is tested. Additionally, the maximum
MCS could rarely be negotiated with the AX210. Most of the time only an MCS
index of 8 or 9 is possible. This also seems to be a limitation due to the Linux
system or the driver used, since the maximum MCS is possible under Windows
under the same conditions (only the measurement software could not be used
there).

TCP has generally a lower data throughput than UDP due to mechanisms like

congestion control, out-of-order delivery/retry etc.

68

Test and Evaluation

Figure 31: Measurement over 6 GHz with 160 MHz channel width, TCP. Transmit via two spatial
streams reaches about 1 Gbit/s. Gross bitrates are wrongly reported here by netlink, RX MCS 11
corresponds to 1201 Mbit/s instead of 1500 Mbit/s and TX MCS 8 corresponds to 1729 Mbit/s

Figure 32: Measurement over 6 GHz with 160 MHz channel width, UDP. Transmit throughput
reaches over 1.5 Gbit/s. Gross bitrates are wrongly reported here by netlink, RX MCS 11
corresponds to 1201 Mbit/s instead of 1580 Mbit/s and TX MCS 8 corresponds to 1729 Mbit/s

69

Test and Evaluation

The diagrams also show an error of the driver: In some cases it calculates the
wrong gross data rate from the used MCS when returning it to the measuring
program. In the cases shown a data rate of about 1500 Mbit/s, for example is
calculated by the driver, which, however, does not exist as a possible data rate,

especially not with the negotiated MCS.

If the gross bit rate reported by the driver is disregarded and the achieved
throughput is compared with the actual gross bit rate that can be calculated from
the MCS, it can be seen that about 83% net throughput is achieved with UDP in
RX, for example, and even more than 86% in TX. In comparison, TCP achieves
only about 70% (RX) and only about 58% in TX (1000 Mbit/s vs. 1729 Mbit/s). In
comparative measurements in the 5 GHz band at least 80% of the gross data rate
was also achieved with UPD and about 70% with TCP. By extrapolation, the
maximum MCS 11 with two spatial streams can be expected to achieve about 1.9
Ghbit/s throughput for UDP under good conditions and about 1.7 Gbit/s for TCP.
Under very good conditions, more than 2 Gbit/s may also be possible for UDP. If
hardware that reliably supports this MCS is available in the future, this assumption

can be verified.

70

Test and Evaluation

6.2.5 Measurement scenario: Client-to-AP-to-AP-to-Client

Another measurement scenario considered is communication between two clients
connected to different APs of the same Extended Service Set: Here, the
communication runs over two different channels so that there is no mutual
interference in the data transmission (e.g., by selecting channels 15 and 47 in the
6 GHz band, each 160 MHz wide). The APs communicate via the wired

connection.

Similar, slightly reduced data throughputs can be expected here at 6 GHz as in
the receive in chapter 6.2.4, both in RX and TX direction, since one of the two
clients is limited by the missing second spatial stream. In addition, a somewhat
stronger scatter of the measurement data is to be expected due to the
participation of two air interfaces. Only the last assumption is confirmed in the
measurement data: The throughput at 6 GHz falls significantly short of the

expected 70%-80% of the negotiated gross bit rate:

Figure 33: Measurement over 6 GHz with 160 MHz channel width, TCP, between two Clients in
two different BSS of an ESS. There are obvious fluctuations in the device transmit bitrates. RX
and TX throughput are very low with about 300-400 Mbit/s compared to the expected 1 Gbit/s.

This behavior could be reproduced several times at 6 GHz. A cause for this is not
apparent. The picture is different at 5 GHz: The expected throughputs are

71

Test and Evaluation

achieved here, only the slight reduction of the throughput and stronger scattering

compared to a measurement against an external client occurs:

Figure 34: Measurement over 5 GHz with 80 MHz channel width, UDP, between two Clients in
two different BSS of an ESS. Throughput reaches 850 Mbit/s which is reduced compared to the
900-1000 Mbit/s reached with an external measurement server.

72

Test and Evaluation

6.2.6 Measurement scenario: AP-Handover/Roaming

In advance of this measurement the transmission power of the two access points
used was reduced so that the roaming range in the 6 GHz band was
approximately in the middle of the corridor between the two rooms used.

Figure 35: The signal strength of the APs was measured and an ideal roaming area was defined
in the hallway between the two rooms. AP transmit power was reduced to fit this area.

Clients usually have a threshold at which the signal strength of the previous
associated access point is so low that they switch to the other access point.
Typically, a client switches either immediately or shortly after the signal strength
in the other cell is greater than in the current cell [59]. Depending on the
manufacturer the hardware behaves differently (different limits) and parameters
such as roaming aggressiveness or support for Neighbor Reports with 802.11k
also change the roaming behavior. In addition, some clients are not able to use

roaming at all.

For the AX210, the tests show the following picture in this respect: Under
Windows 11 with driver 22.130.0.5 the NIC is able to perform roaming between
the two APs. The roaming process interrupts the data transmission for about one
second. Under Windows the roaming aggressiveness can be configured as a
parameter in the driver settings. We tested with the value set to "medium". This
parameter controls the reception power at which the NIC automatically scans for

other access point candidates in the environment [60].

Test and Evaluation

However, if the AX210 is used under Linux 5.17 with driver iwlwifi-ty-a0-gf-a0-69
the NIC behaves like a sticky client: Roaming in 6 GHz does not work then. Even
if the transmission power of the APs is reduced to 10 dBm (resulting in between
-80 dBm and -85 dBm to the remote AP on the client side) roaming to the other
access point is not possible. Only when the client completely loses the connection
(i.e. moves out of the reception range of the old AP), a scan is performed and then
the client associates with the nearest AP. Roaming could not be configured via
the driver interface. It is not clear here whether roaming is perhaps disabled on
the driver side or possibly also not possible with Linux drivers so far. A bug report
opened for this did not bring an answer from Intel yet [61]. It should be noted that
this NIC can also be used explicitly in mobile devices like laptops due to its M.2
form factor. M.2 is the de-facto standard for integrating WLAN and Bluetooth in

these mobile devices. In such cases the lack of roaming properties is a problem.

74

Test and Evaluation

6.2.7 Measurement scenario: Distance Measurements

The distance measurements were performed with the minimum channel
bandwidth, since the primary limitation here is the distance to an access point.
Measurements were first performed directly under the access point (about 2
meters away from the AP) and then with increasing distance (2-meter increments)
to the AP. Upload and download were measured for 30 seconds each. Only TCP
was tested, since a sufficient connection to the AP can be assumed if a connection
is established with TCP (handshake) and data is then successfully transferred.
Both the 6 GHz band and the 5 GHz band were tested to enable a comparison.
The same transmission power (abbreviated as TP in the following) was selected
for the AP in the 5 GHz as in the 6 GHz: 23 dBm. Due to the spatial conditions,
there is a sharp drop in the signal strength of the AP between the 8-meter
measurement and the 10-meter measurement. This is due to the double doors
located there (see figure below). The concrete columns in the corridor also cause

fluctuations in the signal strength.

Figure 36: Distance measurement section where the clients was moved along from the AP further
into the hallway to the entrance doors.

The total measurement distance is 26 meters. This is not sufficient to determine

the maximum reception distance, since sufficiently stable reception is still possible

75

Test and Evaluation

at 26 meters: For example, an MCS index of 7 was still possible at 26 meters in
the 6 GHz band, i.e. a gross bit rate of 86 Mbps. The power of the access point
then had to be reduced further in order to measure the distance again. The
distance limit was then reached at (extrapolated) 40 meters for both 5 GHz and 6
GHz. After this distance, i.e. 42 meters, a successful TCP connection was no
longer possible in either case.

Also to be observed were the fluctuations in the achieved data throughput, which
occur more frequently with increasing distance; short-term drops in the bit rate as

well as dropouts in the data transmission also increasingly occur here.

The following are the measurements with 6 GHz band, first with 23 dBm transmit
power of the AP, then with reduced transmit power. The measurements with
reduced transmit power were taken from the point where the reception quality is
comparable to the end point of the last series of measurements: With transmit
power reduced to 9 dBm, the 10-meter measurement point is approximately
comparable to the 26-meter measurement point of the 23 dBm measurement. A
perfect comparability is not given, since some parameters cannot be influenced,
e.g. software logic for the selection of MCS and spatial streams. Just like the
transmission power of the AP the client-side transmission power was also reduced
to 9 dBm in order to create as much comparability as possible in the upload. The
only notable difference between 5 GHz and 6 GHz is the different selection of
spatial streams and the associated MCS indices described above. It should be
noted, however, that at 5 GHz a higher transmission power of the AP (> 23dBm)
can be selected in practice, since up to 1 Watt can be transmitted there for some
channels. This means that in practice a higher range can be achieved than at 6

GHz, where the limitation of the transmitting power by the BNetzA has an effect.

76

Test and Evaluation

Figure 37: 6 GHz 20 MHz client Figure 38: 6 GHz 20 MHz client Figure 39: 6 GHz 20 MHz client
at2m, 23dBm TP at4 m,23dBm TP at6m, 23 dBm TP

Figure 40: 6 GHz 20 MHz client Figure 41: 6 GHz 20 MHz client Figure 42: 6 GHz 20 MHz client
at8m, 23dBm TP at 10 m, 23dBm TP at12 m,23dBm TP

77

Test and Evaluation

Figure 43: 6 GHz 20 MHz client Figure 44: 6 GHz 20 MHz client Figure 45: 6 GHz 20 MHz client
at 14 m, 23dBm TP at 16 m, 23 dBm TP at 18 m, 23 dBm TP

Figure 46: 6 GHz 20 MHz client Figure 47: 6 GHz 20 MHz client Figure 48: 6 GHz 20 MHz client
at20 m, 23dBm TP at22 m,23dBm TP at24 m,23dBm TP

78

Test and Evaluation

Figure 49: 6 GHz 20 MHz client
at 26 m, 23 dBm TP

79

Test and Evaluation

Figure 50: 6 GHz 20 MHz client Figure 51: 6 GHz 20 MHz client Figure 52: 6 GHz 20 MHz client
at 10 [26] m, 9 dBm TP at 12 [28] m, 9 dBm TP at 14 [30] m, 9 dBm TP

Figure 53: 6 GHz 20 MHz client Figure 54: 6 GHz 20 MHz client Figure 55: 6 GHz 20 MHz client
at 16 [32] m, 9 dBm TP at 18 [34] m, 9 dBm TP at 20 [36] m, 9 dBm TP

80

Test and Evaluation

Figure 56: 6 GHz 20 MHz client Figure 57: 6 GHz 20 MHz client
at 22 [38] m, 9 dBm TP at 24 [40l m, 9 dBm TP

81

Test and Evaluation

6.2.8 Regarding OFDMA

Originally, each of the tests carried out above was also to be tested with OFDM
in addition to OFDMA, i.e. modulation, as part of this work. However, OFDMA is
not used directly by all subscribers in a network who support it, but is negotiated
between individual (or all) subscribers and the access point. It can also be
activated individually for the uplink or downlink [62]. It allows simultaneous
transmission of different subscribers within one OFDM symbol by dividing the
subcarriers among the participants [63]. This allocation of resource units (RUS) is
done via trigger frames of which there are several types: Basic trigger frames,
multi-user request-to-send (MU-RTS) frames, buffer status report frames,
bandwidth query report poll (BQRP) and several more. The access point informs
the participating STAs that they can use OFDMA with a certain amount of RUs.

Figure 58: Trigger Buffer Status Report Poll (BSRP) Frame (a Trigger frame), sent from the Aruba
AP to an Intel NIC telling it to use 484 tones of the 80 MHz channel, which is half of it.
Regardless of whether UL-OFDMA or DL-OFDMA is to be used the access point
must allocate the RUs to the STAs. In practice, the Aruba APs used also sent the
necessary trigger frames. Wireshark captures for this are linked in the appendix
for download. If OFDMA is used in the download an STA must respond with a
clear-to-send after it has received an MU-RTS frame as a trigger, thereby
confirming that the STA will use OFDMA in the future. The AP then sends multi-
user DL PPDUs to the STAs and requests acknowledgement of receipt with a
block ACK request (BAR). The STAs then each respond with their own Block
ACK.

82

Test and Evaluation

OFDMA was tested with the AX210 in the 6 GHz band as well as in the 5 GHz
band (802.11ax). An Intel AX201 (under Windows as well as MacOS) and an
Apple iPhone with 802.11ax support were then also tested in the 5 GHz band.
The AX210 was tested under Linux as well as Windows. No transmission with
OFDMA could be reliably determined for any of the cards mentioned. The STAs
partially responded to the trigger frames, e.g., an AX210 could be observed
sending a block ACK, but only to a trigger frame that allocates the entire width
(i.e. all subcarriers/tones) to the client, which corresponds to operation with
OFDM:

Figure 59: Intel NIC acknowledging a BSRP Trigger frame which allocated all channel subcarriers
to the NIC, not a subset.

In principle, after OFDMA has been successfully negotiated between the AP and
one or more STAS, data frames should be transmitted via the respective allocated
resource units. For the measuring station that listens to OFDM-modulated frames
on the channel (with which the captures were made) this means that OFDMA-
modulated data frames are not recorded in the capture: Data frames that use, for
example, a 484-tone RU at 80 MHz channel bandwidth are not captured.
However, data frames from clients that have not actually been allocated the entire
channel bandwidth are still captured in the captures: So, despite being told to use
certain RUs, these clients continue to use the entire channel. In addition, when
observing the channel occupancy (spectrum analysis), we were always able to
detect utilization on the entire channel bandwidth. This both indicates that none
of the clients in use is currently using OFDMA successfully. However, OFDMA-
modulated communication could possibly be observed in another case with a
Samsung S10e and another access point Cisco (Catalyst) 9115 AP. But there is
no certainty here either: In particular, OFDMA could not be reliably and
reproducibly negotiated here either, but only in one test case [64]. Further, more
in-depth analysis is therefore necessary here. Of particular interest here would be
the possibility of recording OFDMA-modulated frames in Wireshark as well as a
more detailed analysis of the frequency spectrum (i.e. recording of the subcarriers

and their utilization).

83

Test and Evaluation

Our observation at least shows the correct coordination of the allocation of RUs
by the trigger frames of the AP. Only the other participating STAs do not yet react
to this in such a way that OFDMA is used. However, the Wi-Fi Alliance has
certified the NICs used for Wi-Fi 6 and Wi-Fi 6E [65] [66]. The certification also
clearly states the support of OFDMA as well as the support of trigger frames. Upon
request to the Wi-Fi Alliance, it has not yet been possible to determine how the
Wi-Fi Alliance could successfully test OFDMA [67].

84

Test and Evaluation

6.3 Reference values in the 5 GHz Frequency Band

In order to be able to make a better comparison between the measurements in
the 6 GHz band and the previously possible 5 GHz band, measurements were
also made with 80 MHz channel bandwidth in both bands. 160 MHz was not
possible in the 5 GHz band, so no comparison can be made for the maximum

possible channel bandwidth in the 6 GHz band.

Figure 60: Measurement over 6 GHz with 80 MHz channel width, UDP. Due to only one spatial
stream in the download direction download throughput is not directly comparable to download
throughput with 5 GHz, which uses two spatial streams.

In terms of throughput, the measurements with 802.11ax in the 5 GHz band and
6 GHz band are almost identical if you disregard the fact that a spatial stream is
missing in the download at 6 GHz. The maximum MCS index 11 is even selected
here at 80 MHz in both cases. At 6 GHz, however, only for receive (i.e. only with
a spatial stream) and at 5 GHz the high bit rate cannot be maintained as soon as
a data transmission occurs: Here the MCS index is reduced to 9. Also worth
mentioning here is the slight drop in the data transmission rate in transmit at 6
GHz via UDP. This behavior also occurs at 160 MHz channel bandwidth (see
above), but is not found at 5 GHz. An explanation for the phenomenon could not

be found. TCP does not show this behavior.

85

Test and Evaluation

Figure 61: Measurement over 5 GHz with 80 MHz channel width and 802.11ax enabled, UDP.
Throughput is like 6 GHz upload in both directions, due to using two spatial streams. Note the
change in the selected MCS/bitrate when actually transmitting or receiving and it changing when
the direction is not in use.

As an addition, the same measurement with 802.11ac is shown here. Note that
the OFDM uses a different subcarrier spacing and OFDM symbol duration for the

same MCS index, so the gross data rate is different:

Figure 62: Measurement over 5 GHz with 80 MHz channel width and 802.11ac. Bitrate is lower
despite same MCS as in the figure above due to different OFDM characteristics.

86

Test and Evaluation

6.4 NetworkManager Problems on Debian

The measurements were performed under Debian Sid with kernel 5.17. However,
some measurements were not usable because they showed the following

phenomenon:

Figure 63: Debian NetworkManager causes low throughput while scanning on the interface for
seven second intervals.

About every fourteen seconds the data throughput drops by about 60% for seven
seconds and then recovers. This regular pattern could be observed at both 5 GHz

and 6 GHz.

Figure 64: Debian NetworkManager scans for a network and while doing so, reduces throughput
on the interface.

The cause is the NetworkManager component of Debian: When the GUI interface

of the NetworkManager is open (via this you see a list with the available WLAN

87

Test and Evaluation

networks) an active scan for available networks is performed every seven
seconds to update this list. Exactly during this scan interval, which lasts seven
seconds, the drop in data throughput occurs. These scans should actually be
executed in the background and not affect the throughput. The behavior could be
circumvented in the further tests by closing the GUI component before each test.
This meant that the problem did not occur any longer.

88

Summary and Future Prospects

7 Summary and Future Prospects

The automated management of Wi-Fi 6E networks and IoT devices in these
networks can be well mapped with ThingsBoard. New devices can be integrated
into the management platform via a provisioning process and also configured
centrally. Communication between the devices and the platform can be
authenticated and confidential. The devices can be controlled and (measurement)
data can be received and sent. Central monitoring is possible as well as diagnostic
collection of audit logs of the platform or device logs. Updates can also be
managed centrally and applied to the devices. The flexible rule chains allow
granular logic with which, for example, data can be processed, or the control of
the devices can be carried out. Thinger.io takes a slightly different approach with
the primary target group of microcontrollers, not the Linux systems used here in
this thesis. In addition, some points, such as the control of the devices or the
collection of data, are not as individually configurable or offer a smaller range of

functions.

In the future we should take a closer look at the behavior of ThingsBoard in a
large-scale deployment: Only a few devices with Wi-Fi 6E support were available
here so further questions arise when ThingsBoard works with many
simultaneously managed devices: How do rule chains behave in such cases, does
this affect performance in terms of telemetry data processing or provisioning? Are
there bandwidth issues when rolling out firmware updates? Such a setup could
perhaps also be realized more closely by a large number of simulated or

virtualized devices to be managed.

The focus of Thinger.io on microcontrollers urges a renewed evaluation of the
software with, for example, Arduino devices, in order to be able to take a closer
look at the differences to the use with the not yet fully developed HTTP API.
802.11ax-compatible microcontroller boards could then be used, for instance, to
evaluate Wi-Fi 6 or Wi-Fi 6E.

Regarding the Quality of Service in the 6 GHz band (Wi-Fi 6E), it can be seen that
the net data throughput lags behind the gross bit rate: Only between 58%-86% of
the gross bit rate is actually achieved as UDP or TCP data throughput, with TCP
expectedly slightly lower. In the tests the maximum MCS with two spatial streams

could never be achieved for the optimal configuration (6 GHz channel with 160

89

Summary and Future Prospects

MHz channel bandwidth). This was only possible with 80 MHz. Throughputs
above 1 Gbit/s were nevertheless measured with both TCP and UDP. If the values
measured here are taken as a basis, up to 2 Gbit/s can be expected for the
maximum MCS index 11 with two spatial streams for UDP and about 1.7 Gbit/s
for TCP. This could not be verified within the scope of this work but should be
achievable in the future (perhaps through newly available drivers or other
hardware). New drivers are also necessary for this reason alone, in order to
address the existing errors: Currently, two spatial streams are not possible in the
download in the 6 GHz band, nor could the maximum MCS be negotiated under
Linux, despite good channel characteristics. Hardware with support for four spatial
streams can also be expected in the foreseeable future. The use of such NICs is
rather unlikely in the 10T environment but offers maximum throughput for other

use cases.

Some parameters of the Intel AX210 cannot yet be configured or accessed via
the currently used driver, e.g. the modulation cannot yet be actively influenced, to
for example prefer OFDMA on the client side. In general, OFDMA is correctly
supported by the access points used and the APs send out trigger frames to
allocate the resource units to the subscribers, but none of the devices tested
currently supports OFDMA sufficiently to use this allocation. Data transfer via
OFDMA cannot be observed. We can also hope for newer client hardware or
drivers, especially from other manufacturers, to be able to analyze differences in
the use of OFDMA.

Under Linux the AX210s were also unable to perform correct roaming between
two APs; this was only possible under Windows 11. In the future an evaluation of
the test cases carried out under Windows could be considered, provided that the
measurement software can be ported - here, the control of the NIC via the driver
is particularly decisive: Under Windows some settings can be changed in the
driver options, which are not possible under Linux (e.g., the roaming

aggressiveness).

Due to the limited amount of hardware so far and the fact that Wi-Fi 6E has not
yet reached an advanced stage of deployment. Tt is not yet possible to make any
statements on other points either: How will the restrictions on transmission power
imposed by the Bundesnetzagentur affect deployments in Germany in reality? Will

there be differences in the rollout between different states because of this?

90

Summary and Future Prospects

A mesh topology in the 6 GHz band was also not considered in detail, although it
could also be useful in the 10T environment. Here, however, it is to be hoped for
better availability of Wi-Fi 6E-capable hardware that will enable the
implementation of a mesh network and other future testing of more complex
environment settings. Likewise, the 802.11ax standard results in further points
such as BSS coloring and beamforming, which were not considered in this work,

but could also have an influence with regard to data throughput.

91

References 92

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

9]

S. Forshee, "Central Regulatory Domain Agent," 23 03 2015. [Online]. Available:
https://wireless.wiki.kernel.org/en/developers/regulatory/crda. [Accessed 12 09 2019].

IEEE Standards Association, LAN/MAN Standards Committee, "IEEE Standard 802
Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications,” The Institute of Electrical and Electronics Engineers, New York, 2020.

Wi-Fi Alliance, "Member Companies," 2022. [Online]. Available: https://www.wi-
fi.org/membership/member-companies. [Accessed 18 03 2022].

Wi-Fi Alliance, "Wi-FI Alliance Generational Naming," 2022. [Online]. Available:
https://ww.wi-
fi.org/sites/default/files/public/images/Generational_naming_20210602.png. [Accessed
18 03 2022].

IEEE Standards Association, LAN/MAN Standards Committee, "4.3.15a High-efficency
(HE) STA," in IEEE Standard 802 Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications - Amendmend 1: Enhancements for
High-Efficency WLAN, New York, The Institute of Electrical and Electronics Engineers,
2021, p. 47.

European Telecommunications Standards Institute, "System Reference document
(SRdoc); Wireless access systems including radio local area networks (WAS/RLANS)
in the band 5 925 MHz to 6 725 MHz," ETSI, Sophia Antipolis Cedex, FRANCE, 2018.

Bundesnetzagentur, "Vfg. 55/2021," 30 06 2021. [Online]. Available:
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekom
munikation/Unternehmen_Institutionen/Frequenzen/Allgemeinzuteilungen/MobilfunkDe
ctWlanCBFunk/vfg552021WLAN6GHz.pdf?__blob=publicationFile&v=3. [Accessed 04
04 2022].

Bundesnetzagentur, "Vfg. 151/2018," 2018. [Online]. Available:
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Allgemeines/Presse/P
ressemitteilungen/AmtsblattVfgld334pdf.pdf?__ blob=publicationFile&v=3. [Accessed
04 04 2022].

Oracle, "What is 10T?," 2022. [Online]. Available: https://www.oracle.com/internet-of-
things/what-is-iot/. [Accessed 13 06 2022].

[10] Realtek Semiconductor Corp., "RTL8156B(S)-CG - REALTEK," 2019. [Online].

Available: https://www.realtek.com/en/products/communications-network-
ics/item/rtlB8156b-s-cg. [Accessed 18 04 2022].

References

[11] magellan netzwerke GmbH, "magellan — Ihr Full Service Security Spezialist | magellan
netzwerke GmbH," 04 2022. [Online]. Available: https://www.magellan-net.de/de/.
[Accessed 18 04 2022].

[12] Intel Corporation, "Intel® Active Management Technology (Intel® AMT) | Intel,” 10 01
2021. [Online]. Available: https://www.intel.com/content/www/us/en/architecture-and-
technology/intel-active-management-technology.html. [Accessed 28 04 2022].

[13] Intel Corporation, "Intel WiFi 6E AX210 Gig Produktspezifikationen,” 2020. [Online].
Available: https://ark.intel.com/content/www/de/de/ark/products/204836/intel-wifi-6e-
ax210-gig.html. [Accessed 18 04 2022].

[14] P. Kalytta and G. Ben Ami, "215043 — iwlwifi: AX210: Allow 6 GHz Wi-Fi 6E operation
in Germany," Kernel.org Bugzilla, 24 02 2022. [Online]. Available:
https://bugzilla.kernel.org/show_bug.cgi?id=215043. [Accessed 18 04 2022].

[15] S. Forshee, A. Mohr and X. Vasquez Perez, "en.developers:regulatory:wireless-regdb
[Linux Wireless]," Linux Kernel Wiki, 21 07 2021. [Online]. Available:
https://wireless.wiki.kernel.org/en/developers/regulatory/wireless-regdb. [Accessed 12
05 2022].

[16] L. Coelho, "205695 — [iwlwifi] 9260AC crashes with lar_disable=1," 16 12 2019.
[Online]. Available: https://bugzilla.kernel.org/show_bug.cgi?id=205695#c6. [Accessed
13 06 2022].

[17] Hewlett Packard Enterprise Development LP, "630 Series Wi-Fi 6E Indoor Access
Points | Aruba," 04 2022. [Online]. Available:
https://www.arubanetworks.com/products/wireless/access-points/indoor-access-
points/630-series/. [Accessed 23 04 2022].

[18] Aruba, "Aruba 630 Series Campus Access Points - Datasheet,” 08 04 2022. [Online].
Available: https://www.arubanetworks.com/resource/aruba-630-series-access-points-
data-sheet/. [Accessed 23 04 2022].

[19] OpenRemote Inc., "OpenRemote | The 100% Open Source loT Device Management
Platform,” 2022. [Online]. Available: https://openremote.io. [Accessed 13 04 2022].

[20] INTERNET OF THINGER S.L., "Thinger.io — Open Source loT Platform," 2020.
[Online]. Available: https://thinger.io. [Accessed 13 04 2022].

[21] The Thingsboard Authors, "ThingsBoard - Open-source 10T Platform," 2022. [Online].
Available: https://thingsboard.io. [Accessed 13 04 2022].

[22] Mainflux Labs, " Mainflux Open Source 10T Platform,” 2020. [Online]. Available:
https://mainflux.com. [Accessed 13 04 2022].

[23] The Thingsboard Authors, "GitHub - thingsboard/thingsboard: Open-source 10T
Platform - Device management, data collection, processing and visualization.," GitHub,

References 94

Inc., 15 04 2022. [Online]. Available: https://github.com/thingsboard/thingsboard.
[Accessed 15 04 2022].

[24] The ThingsBoard Authors, "ThingsBoard Documentation | ThingsBoard Community
Edition,” 2022. [Online]. Available: https://thingsboard.io/docs/. [Accessed 15 04 2022].

[25] INTERNET OF THINGER S.L., "DATA BUCKETS - Thinger.io Documentation," 04
2021. [Online]. Available: https://docs.thinger.io/features/buckets. [Accessed 15 04
2022].

[26] Hewlett Packard Enterprise, "VisioCafe free visio stencils download site," VSD Grafx
Inc., 04 04 2022. [Online]. Available: http://www.visiocafe.com/hpe.htm. [Accessed 19
04 2022].

[27] The Thingsboard Authors, "Entities and relations | ThingsBoard Community Edition,"
2022. [Online]. Available: https://thingsboard.io/docs/user-guide/entities-and-relations/.
[Accessed 12 05 2022].

[28] INTERNET OF THINGER SL, "OVERVIEW - Thinger.io Documentation," 09 2021.
[Online]. Available: https://docs.thinger.io/#thinger.io-main-features. [Accessed 23 04
2022].

[29] INTERNET OF THINGER SL, "HTTP Plugin Documentation,” 2021. [Online].
Available: https://docs.thinger.io/plugins/http. [Accessed 23 04 2022].

[30] D. Coleman, "Subcarriers - TIP," in Wi-Fi 6 & 6E for dummies, Hoboken, New Jersey,
John Wiley & Sons, Inc., 2022, p. 20.

[31] The iperf Authors, ESnet, "GitHub - esnet/iperf: iperf3: A TCP, UDP, and SCTP
network bandwidth measurement tool," 18 04 2022. [Online]. Available:
https://github.com/esnet/iperf. [Accessed 28 04 2022].

[32] K. Yan, "ping3 - PyPl," 19 04 2022. [Online]. Available: https://pypi.org/project/ping3/.
[Accessed 28 04 2022].

[33] The ThingsBoard Authors, "Python REST Client | ThingsBoard Community Edition,"
10 2021. [Online]. Available: https://thingsboard.io/docs/reference/python-rest-client/.
[Accessed 28 04 2022].

[34] INTERNET OF THINGER SL, "LINUX / RASPBERRY PI - Thinger.io Documentation,"
2020. [Online]. Available: https://docs.thinger.io/linux. [Accessed 13 05 2022].

[35] The Thingsboard Authors, "Provision Device APIs," 2022. [Online]. Available:
https://thingsboard.io/docs/pe/user-guide/device-provisioning/#provision-device-apis.
[Accessed 13 05 2022].

[36] A. L. Bustamante, "Register a Device in the Console," 01 08 2015. [Online]. Available:
https://community.thinger.io/t/register-a-device-in-the-console/23. [Accessed 13 05
2022].

References 95

[37] The Thingsboard Authors, "Server-side attributes,” 2022. [Online]. Available:
https://thingsboard.io/docs/pe/user-guide/attributes/#server-side-attributes. [Accessed
13 05 2022].

[38] INTERNET OF TIHNGER SL, "Add User Device," 2021. [Online]. Available:
https://docs.thinger.io/server/api#add-user-device. [Accessed 13 05 2022].

[39] Open Group CAE Specification C309, DCE: Remote Procedure Call, Reading, United
Kingdom: X/Open Company Ltd., U.K., 1994.

[40] INTERNET OF THINGER S.L., "Building the HTTP request," 2021. [Online]. Available:
https://docs.thinger.io/http-devices#building-the-http-request. [Accessed 13 05 2022].

[41] The Thingsboard Authors, "REST API | ThingsBoard Community Edition,” 2022.
[Online]. Available: https://thingsboard.io/docs/reference/rest-api/. [Accessed 13 05
2022].

[42] The Thingsboard Authors, "HTTP Access Token based authentication | ThingsBoard
Professional Edition," 2022. [Online]. Available: https://thingsboard.io/docs/pe/user-
guide/ssl/http-access-token/. [Accessed 13 05 2022].

[43] The Thinsgboard Authors, "Telemetry upload API," 2022. [Online]. Available:
https://thingsboard.io/docs/pe/reference/http-api/#publish-attribute-update-to-the-
server. [Accessed 20 05 2022].

[44] INTERNET OF TINGER S.L., "Device Properties," 2021. [Online]. Available:
https://docs.thinger.io/features/devices-administration#device-properties. [Accessed
20 05 2022].

[45] INTERNET OF THINGER S.L., "Device API," 2021. [Online]. Available:
https://docs.thinger.io/features/devices-administration#device-api. [Accessed 20 05
2022].

[46] INTERNET OF TIHNGER S.L., "From device Write Call," 2021, [Online]. Available:
https://docs.thinger.io/features/buckets#from-device-write-call. [Accessed 20 05 2022].

[47] The Thingsboard Authors, "Action Nodes | ThingsBoard Community Edition," 2022.
[Online]. Available: https://thingsboard.io/docs/user-guide/rule-engine-2-0/action-
nodes/. [Accessed 20 05 2022].

[48] INTERNET OF THINGER S.L., "USER ACCOUNTS - Thinger.io Documentation,"
2021. [Online]. Available: https://docs.thinger.io/users-management. [Accessed 23 05
2022].

[49] INTERNET OF THINGER S.L., "PROJECTS MANAGER - Thinger.io Documentation,”
2021. [Online]. Available: https://docs.thinger.io/projects. [Accessed 23 05 2022].

[50] The ThingsBoard Authors, "HTTP over SSL | ThingsBoard Community Edition," 2022.
[Online]. Available: https://thingsboard.io/docs/user-guide/ssl/http-over-ssl/. [Accessed
23 05 2022].

References 96

[51] The Thingsboard Authors, "Advanced Role-Based Access Control (RBAC) for 0T
devices and applications | ThingsBoard Professional Edition," 2022. [Online].
Available: https://thingsboard.io/docs/pe/user-guide/rbac/. [Accessed 23 05 2022].

[52] The Thingsboard Authors, "HTTP Device API Reference | ThingsBoard Professional
Edition,” 2022. [Online]. Available: https://thingsboard.io/docs/pe/reference/http-
api/#publish-attribute-update-to-the-server. [Accessed 23 05 2022].

[53] INTERNET OF TIHNGER S.L., "OTA PROGRAMMING - Thinger.io Documentation,"
11 2021. [Online]. Available: https://docs.thinger.io/extended-features/ota#firmware-
upload-via-ota. [Accessed 23 05 2022].

[54] INTERNET OF THINGER S.L., "DEVICES - Thinger.io Documentation,” 10 2021.
[Online]. Available: https://docs.thinger.io/arduino. [Accessed 23 05 2022].

[55] The Thingsboard Authors, "Device Connectivity Protocols | ThingsBoard Community
Edition," 2022. [Online]. Available: https://thingsboard.io/docs/reference/protocols/.
[Accessed 23 05 2022].

[56] The Thingsboard Authors, "Queue processing pace," 2022. [Online]. Available:
https://thingsboard.io/docs/user-guide/ota-updates/#queue-processing-pace.
[Accessed 24 05 2022].

[57] The Thingsboard Authors, "White-labeling | ThingsBoard Professional Edition," 2022.
[Online]. Available: https://thingsboard.io/docs/pe/user-guide/white-labeling/.
[Accessed 24 05 2022].

[58] B. Nielsen, M. Banducci, J. A. Klode and P. Kalytta, "215465 — AX201 not using 2
receive streams,"” 28 04 2022. [Online]. Available:
https://bugzilla.kernel.org/show_bug.cgi?id=215465. [Accessed 26 05 2022].

[59] T. Carpenter and 7signal, "MYSTERIES OF Wi-Fi ROAMING REVEALED -
WHITEPAPER," 18 10 2017. [Online]. Available:
https://cdn2.hubspot.net/hubfs/353374/Knowledge%20Base/MY STERIES%200f%20W
i-Fi%20Roaming%20Revealed%20-%207SIGNAL%20Whitepaper.pdf. [Accessed 30
05 2022].

[60] Intel Corporation, "Wlan-Roaming-Aggressiveness-Einstellung,” 28 10 2021. [Online].
Available:
https://lwww.intel.de/content/www/de/de/support/articles/000005546/wireless/legacy-
intel-wireless-products.html. [Accessed 30 05 2022].

[61] P. Kalytta, "215869 — iwlwifi: AX210: Device not roaming between APs," 22 04 2022.
[Online]. Available: https://bugzilla.kernel.org/show_bug.cgi?id=215869. [Accessed 30
05 2022].

[62] IEEE Standards Association, LAN/MAN Standards Committee, "27.3.1.1 MU
transmission," in Part 11: Wireless LAN Medium Access Control (MAC) and Physical

References 97

Layer (PHY) Specifications - Amendment 1: Enhancements for High-Efficiency WLAN,
New York, The Institute of Electrical and Electronics Engineers, Inc., 2021, p. 497.

[63] D. Coleman, "Trigger Frames," in Wi-Fi 6 & 6E for dummies, Hoboken, New Jersey,
John Wiley & Sons, Inc., 2022, p. 24.

[64] Wifi Ninjas, "WN Blog 003 — WiFi 6 Deep Dive & Real World Testing," 03 07 2019.
[Online]. Available: https://wifininjas.net/2019/07/03/wn-blog-003-wifi-6-deep-dive-real-
world-testing/. [Accessed 01 06 2022].

[65] Wi-Fi Alliance, "Wi-Fi CERTIFIED™ Certificate - Certification ID: WFA101064," 08 10
2021. [Online]. Available: https://api.cert.wi-
fi.org/api/certificate/download/public?variantld=104581. [Accessed 01 06 2022].

[66] Wi-Fi Alliance, "Wi-Fi CERTIFIED™ Certificate - Certification ID: WFA83471," 30 10
2020. [Online]. Available: https://api.cert.wi-
fi.org/api/certificate/download/public?variantld=37184. [Accessed 01 06 2022].

[67] P. Lavoie and Wi-Fi Alliance, "Case 00163600," 2022.

[68] P. Kil, "Home - openremote/openremote Wiki - GitHub," 15 12 2021. [Online].
Available: https://github.com/openremote/openremote/wiki. [Accessed 13 05 2022].

[69] The Mainflux Contributors, "Overview - Mainflux," 07 03 2022. [Online]. Available:
https://mainflux.readthedocs.io/en/latest/. [Accessed 13 05 2022].

[70] IEEE, "16.2.2 PPDU format," in IEEE 802.11 Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, New York, IEEE, 2016, p. 2249f.

[71] IEEE, "Supplement To IEEE Standard For Information Technology-
Telecommunications And Information Exchange - IEEE Std 802.11b-1999," 20 01
2000. [Online]. Available: https://ieeexplore.ieee.org/servlet/opac?punumber=6642.
[Accessed 29 07 2019].

[72] J. M. Berg, "Radiotap - Defined Fields," 27 06 2019. [Online]. Available:
http://www.radiotap.org/fields/defined. [Accessed 14 09 2019].

[73] P. Deutsch, "RFC 1952 - GZIP file format specification version 4.3," Aladdin
Enterprises, 05 1996. [Online]. Available: https://tools.ietf.org/html/rfc1952. [Accessed
03 10 2019].

[74] konikofi, "Chasing Trigger Frames," 21 03 2021. [Online]. Available:
https://konikofi.wordpress.com/2021/03/21/chasing-trigger-frames/. [Accessed 28 04
2022].

[75] P. Kalytta, "Einfluss von Beacon-Frames auf den Datendurchsatz in Wi-Fi-Netzen,"
Kdln, 2019.

List of tables

List of tables

Table 1: BNetzA regulatory limitations for LPI Devices
Table 2: BNetzA reguatory limitations for VLP Devices

Table 3: Parameter set of the iperf.py program............

98

List of figures

List of figures

Figure 1: Generational naming scheme of the Wi-Fi Alliance and corresponding IEEE
S ez gLo Fo T (o V=T = To] o OO PP PP PP 3

Figure 2: Spectrum and channel allocations for 6 GHz in Germanycccccoveivieeeeeiiinnnee. 5

Figure 3: Access to an Intel Wireless NIC via the Netlink interface of the 802.11 driver
stack (here with IWIWIfi AFIVEI)eeeveiiiiic e 11

Figure 4: Network plan/setup of the network for the test environment in the laboratory. The
HP PC either takes the role of the server (via cable or wireless) or is used as a
second client. The images of the Aruba access points are designs of the VSD Grafx
T 122G PSSR 18

Figure 5: ThingsBoard device details show for example client attributes that can contain
information like firmware version or operating system information.............................. 20

Figure 6: ThingsBoard web overview: The different entity types are visible as well as the
more specific points as over-the-air updates and the dashboard management........... 21

Figure 7: Thinger.io device configuration allows only one data bucket to write to. Also, only
one device property can be sent to the client. ... 22

Figure 8: ThingsBoard Over-the-Air dashboard allows for upload or URL reference to a
firmware or software file (package type) that can be pushed to devices or device
groups (profiles) automatiCally. ... 30

Figure 9: ThingsBoard Root Rule Chain: Allows for granular actions on API events: Here
"Post telemetry” also calls another rule chain in a chained call.cccccevvvvieiinnnenn. 33

Figure 10: ThingsBoard showing the current state of a registered device "wifi-client". The
device reports back when it successfully registered and the server will report
connectivity information via the server-side attributes.c.ccoocoiiiniii . 41

Figure 11: Thinger.io allows for a string without spaces as device ID. No two devices can
USE The SAME ID. ...ttt e e e et e e e e e et e e e e e e e nebeeeans 42

Figure 12: ThingsBoard shows device attributes either via a dashboard widget or the user
can navigate to the device information page shown here................cccoecccciiiiiiiieeeeennn. 44

Figure 13: Devices can be configured to have input and output resources. On input
resources the data can be manually sent to the device (Run button) and the outputs
will be computed. Image taken from [45]. ... 45

Figure 14: Thinger.io dashboard can show device properties and data from data buckets
Via different WIQETS. ...t e e e a e 46

Figure 15: ThingsBoard dashboards can get data from device attributes, the internal rule
chain or from the telemetry data. Also, Remote-Procedure-Calls can be directly
triggered from a dashbDOArd. ... e 47

99

List of figures
Figure 16: The Thinger.io web interface allows for access control for devices via tokens:

i.e. a token can be specifically created to only allow write access to one data bucket. 48
Figure 17: ThingsBoard shows user and device generated events in a "Audit Logs" tab on

the WEDINTEITACE. ..o e e e 49
Figure 18: ThingsBoard enables the tenants to centrally manage software and firmware

updates for single devices or for bulk updates to a device group. This is useful to

update a lot Of deVICES @t ONCE.ueiiiiiiiiieii e 51
Figure 19: The start page for Thinger.io shows the number of connected devices,

dashboards, data buckets and other endpoints over a world map, that shows

currently connected devices that send their coordinates. Below that, the data

transmissions for the last thirty days are ShOwn.cccccciiiiiiiieiee e, 54
Figure 20: Under the menu point "Devices” Thinger.io will show a list of all configured

devices and allows for creation of new device configuration.cccccveeeeiiiieeeneenn. 55
Figure 21: Web GUI for the ThingsBoard system administrator after login. It is similar in

design to a tenant web GUI but shows different options in the menu on the left.......... 55
Figure 22: The ThingsBoard dashboard start page shows large tiles that allow navigation

to the specific configuration options, dashboards and other parts...........ccccccvvvirrrnnnen. 56
Figure 23: The menu point "Devices" will show all configured devices on the right part of

the browser window. Clicking on a device will open a slide-in window with the devices

Lodo] 0110 81 c= 110] g 1o 01T o1 SRS 57
Figure 24: ThingsBoard Rule Chains can filter incoming data, transform outgoing data and

react to it, i.e. by logging it, sending an RPC or generate an alert.c.cc.occvveeeeenne 58
Figure 25: Measurement over 6 GHz with 80 MHz channel width, TCP: Some data points

IN the UPIOAA AIE ZEIO. ..uvveeiiiiiiiieee e e e e e r e e e e e aaaeeeeas 62
Figure 26: Measurement over 6 GHz with 160 MHz channel width, TCP. Download with

one spatial stream, upload with two spatial streams. Throughput reaches over 1

GDIt/S TN TNIS CASE. ..ottt e e e e e e e neaes 63
Figure 27: Corresponding RTT measurement. The sawtooth-like behavior of while

downloading with high jitter can be clearly differentiated from the low jitter behavior

while uploading from the CHENT............uiiii e 64
Figure 28: RTTs measured via ICMP Ping for a UDP measurement, the first half for

download, the second half for upload from client.............ccocooiiiiiii e, 64

Figure 29: Measurement over 6 GHz with 80 MHz channel width, TCP. With two spatial
streams in the TX, theoretical throughput is 1.2 Gbit/s, due to limits by the RX spatial
stream (only one), real throughput is much lower (only about 230 Mbit/s) 66

Figure 30: Measurement over 5 GHz with 80 MHz channel width, TCP. Throughput is
nearly doubled with about 400 Mbit/s. The MCS flapped between 10 and 11,
corresponding to 1080 Mbit/s and 1201 Mbit/s for both RX and TX.ccccvvvevviennnnnn. 67

100

List of figures 101

Figure 31: Measurement over 6 GHz with 160 MHz channel width, TCP. Transmit via two
spatial streams reaches about 1 Gbit/s. Gross bitrates are wrongly reported here by
netlink, RX MCS 11 corresponds to 1201 Mbit/s instead of 1500 Mbit/s and TX MCS
8 corresponds t0 1729 MDIt/S.......uuiiiiiiiiii e 69

Figure 32: Measurement over 6 GHz with 160 MHz channel width, UDP. Transmit
throughput reaches over 1.5 Gbit/s. Gross bitrates are wrongly reported here by
netlink, RX MCS 11 corresponds to 1201 Mbit/s instead of 1580 Mbit/s and TX MCS
8 corresponds t0 1729 MDIL/S.......uuiiiiiiiiie e 69

Figure 33: Measurement over 6 GHz with 160 MHz channel width, TCP, between two
Clients in two different BSS of an ESS. There are obvious fluctuations in the device
transmit bitrates. RX and TX throughput are very low with about 300-400 Mbit/s
compared to the expected 1 GDIt/S.cooiiiiiiiiiiiiice e 71

Figure 34: Measurement over 5 GHz with 80 MHz channel width, UDP, between two
Clients in two different BSS of an ESS. Throughput reaches 850 Mbit/s which is
reduced compared to the 900-1000 Mbit/s reached with an external measurement
ST CT LY PSP PT T PPR 72

Figure 35: The signal strength of the APs was measured and an ideal roaming area was
defined in the hallway between the two rooms. AP transmit power was reduced to fit
TS BIBAL .t 73

Figure 36: Distance measurement section where the clients was moved along from the AP

further into the hallway to the entrance doOorS. ...ttt 75
Figure 37: 6 GHz 20 MHz clientat 2 m, 23 dBM TP......ccuviiiiiiiieeiei e 77
Figure 38: 6 GHz 20 MHz clientat 4 m, 23 dBM TP......ccciiiiiiiiiieiiiei e 77
Figure 39: 6 GHz 20 MHz client at 6 m, 23 dBM TP......ccvviiiiiiieeeic e 77
Figure 40: 6 GHz 20 MHz clientat 8 m, 23 dBM TP......cccvviiiiiiiieiiiii e 77
Figure 41: 6 GHz 20 MHz client at 10 M, 23 dBM TP.....ccovviiiiieeeiieei e 77
Figure 42: 6 GHz 20 MHz clientat 12 m, 23 dBM TP......ccovviiiiieeiiiei e 77
Figure 43: 6 GHz 20 MHz client at 14 m, 23 dBM TP......coovviiiiieeiiiei e 78
Figure 44: 6 GHz 20 MHz clientat 16 m, 23 dBM TP........ccvviiiiiiiiiii e 78
Figure 45: 6 GHz 20 MHz client at 18 m, 23 dBM TP.......ccoiiiiiiiiiiciccee e 78
Figure 46: 6 GHz 20 MHz client at 20 m, 23 dBM TP......ccovvviiieeeiiiec e 78
Figure 47: 6 GHz 20 MHz clientat 22 m, 23 dBM TP........cooviiiiiiiiiiii e 78
Figure 48: 6 GHz 20 MHz client at 24 m, 23 dBM TP......ccovviiiieeeiiiei e 78
Figure 49: 6 GHz 20 MHz client at 26 m, 23 dBM TP........ccooiiiiiiiiiiii e, 79
Figure 50: 6 GHz 20 MHz client at 10 [26] M, 9 dBM TP......cccoveiiiieiiiiiiiieeeeeee e 80
Figure 51: 6 GHz 20 MHz client at 12 [28] M, 9 dBM TP........ooiiiiiiiiiiieeeriieeeee e 80

Figure 52: 6 GHz 20 MHz client at 14 [30] M, 9 dBM TP......ccooeeiiiieiiiiieeeeeee e 80

List of figures

Figure 53: 6 GHz 20 MHz client at 16 [32] M, 9 dBM TP........oovviiiiiiiiiieeeiieee e 80
Figure 54: 6 GHz 20 MHz client at 18 [34] M, 9 dBM TP......cccoeeiiiiiiiiiireeeeer e 80
Figure 55: 6 GHz 20 MHz client at 20 [36] M, 9 dBM TP........cciiiiiiiiiiiiee e 80
Figure 56: 6 GHz 20 MHz client at 22 [38] M, 9 dBM TP......ccccoeeiiiiiiiiiieeeeer e 81
Figure 57: 6 GHz 20 MHz client at 24 [40] M, 9 dBM TP........iiiiiiiiiiiiee e 81

Figure 58: Trigger Buffer Status Report Poll (BSRP) Frame (a Trigger frame), sent from
the Aruba AP to an Intel NIC telling it to use 484 tones of the 80 MHz channel, which
IS NAIT OF T, e e e 82

Figure 59: Intel NIC acknowledging a BSRP Trigger frame which allocated all channel
subcarriers to the NIC, NOt & SUDSEL.ooooiiiiii e 83

Figure 60: Measurement over 6 GHz with 80 MHz channel width, UDP. Due to only one
spatial stream in the download direction download throughput is not directly
comparable to download throughput with 5 GHz, which uses two spatial streams.85

Figure 61: Measurement over 5 GHz with 80 MHz channel width and 802.11ax enabled,
UDP. Throughput is like 6 GHz upload in both directions, due to using two spatial
streams. Note the change in the selected MCS/bitrate when actually transmitting or
receiving and it changing when the direction iS N0t iN USE............uuvvieieiiiiiiiieeneeiiiiinns 86

Figure 62: Measurement over 5 GHz with 80 MHz channel width and 802.11ac. Bitrate is
lower despite same MCS as in the figure above due to different OFDM
(o8 g Fo Tz Tod (=] 1] o TP UPRTT 86

Figure 63: Debian NetworkManager causes low throughput while scanning on the
interface for seven Second INEIVAIS.uuiiiiiiiiiiii e 87

Figure 64: Debian NetworkManager scans for a network and while doing so, reduces
throughput 0N the INLEMACE.eeiiiiie e 87

102

List of source code 103

List of source code

Code 1: register_device() function that allows a device to self-register it with the remote
ThingsBoard server and obtain an API token for further communication 28

Code 2: Example RPC payload from ThingsBoard when the client receives an RPC
command, in this case: doPerfMeasurement, which starts a 13 second iperf3
measurement 0N the CIENT............oooi i e e e e 31

Code 3: client.conf configuration file allows for basic configuration of the client program,
i.e. setting the remote server address for ThingsBoard.............cccccvvviiiieeiiiiieeeeieee, 32

Code 4: Starting the iperf3 download measurement in a subprocess on the operating
system: -c denotes this process as the client, -R denotes that his is a download test
(without it, it would be upload), -Z will make iperf3 use Zerocopy, which reduces CPU
load, -O lets iperf3 omit the first 3 seconds of data (which are usually not used), -C
tries to set the linux TCP congestion algorithm. add_option switches between
UDP/TCP. length_option_a and length_option_b are for sending differently sized
Lo Fo Y= To = L g 1T AST=T 0 [=] £SO 36

Code 5: Starting the iperf3 upload measurement in a subprocess on the operating system37

Code 6: JSON object containing the data of the first second of stream nine of an iperf3
UDP measurement and information about the transmitted data. With UDP most of the
transmitted data is lost (Target bandwidth was chosen much higher than actual
throughput 0N the NIC). ... e e e e e e e e e e e 37

Appendix 104
Appendix

Appendix A: Comparison chart loT-Management-Software

Maximum achievable points are defined by the requirement to reflect the
importance: 10 points for MUST (required) requirements, 5 points for SHOULD
(recommended) requirements, 3 points for MAY (optional) requirements and 1
point for nice-to-have (NITH) requirements. If a requirement is only partially
achieved/supported, then only partial points are awarded. The online
documentation of the individual solutions was used as a reference for this
overview [68] [28] [24] [69]:
Maximum Open Thinger. Things

Category)) Mainflux
Points Remote io Board

Provisioning

SHOULD Initial setup
can be automated via 5 0 5 0 0

image

MUST Initial setup can

be automated via script

SHOULD Pre-
configuration possible
directly from the software
(setting and rolling out
configuration parameters

of the device)

MUST Preconfigure
network connection for
initial registration from

remote site

Appendix

Maximum Open Thinger. Things _
Category)) Mainflux
Points Remote io Board
MAY Display and
capture of the roll-out
3 3 3 0
status or general state of
a device
MAY Deployment can be
_ . 1,5 0 3 0
triggered via frontend
Authentication
MUST Device ldentity
10 10 10 10
Management
MUST Secure
authentication at 10 10 10 10 10
registration
SHOULD Authorization
of the devices during 5 5 5 5 5
operation/actions
MAY Authentication via
o _ _ 3 0 0 3
device identity possible
SHOULD Authentication
parameters can be
5 2,5 5 5 0

configured in the

frontend

Configuration (Over-the-air programming)

105

Appendix 106

Maximum Open Thinger. Things _
Category)) Mainflux
Points Remote io Board

MUST Identification of

devices possible

(parameters such as 10 10 10 10 10
location, network, device

configuration)

SHOULD Automatic

change of network

connection after initial 5 2,5 5 5 0
login (Automatic Device

Configuration)

MUST Customization of
functionality (network
parameters such as
_ 10 5 10 10 0
changing the
channel/radio

parameters in operation).

MAY Bulk-Configuration 3 1,5 3 3 3

SHOULD Device
grouping or configuration 5 2,5 3,75 2,5 5

rules for rollouts

SHOULD Full

configuration of the

devices can be viewed 5 2,5 5 5 0
and changed via

frontend

Control

Appendix 107

Maximum Open Thinger. Things _
Category)) Mainflux
Points Remote io Board

SHOULD Remote
control (SHELL or
similar) or triggering of 5 2,5 5 5 0
commands on the

device.

MAY Change of the

device state (Switched

On/Switched 3 1,5 3 3 0
Off/Connected/Disconne
cted)
SHOULD
Trigger/automate
5 2,5 5 5 0

reboots and updates

(rolling upgrade)

MUST Start performance

5 10 10 0
tests
Monitoring
SHOULD Capture
system metrics centrally
(metadata such as
5 5 5 5

location, OS and device
version, update status,

etc.)

Appendix

c Maximum Open
ategory)
Points Remote

Thinger.

io

Things
Board

Mainflux

MUST Centrally capture

performance metrics

(network health such as

throughput, congestion, 10 5
CTS/RTS status, packet

loss, utilization (CPU

etc.))

10

10

10

MUST Prepared
presentation of metrics in 10 5
the frontend (GUI)

10

10

SHOULD Reporting by

2,5
the devices (Automated)

MAY Notification of
errors or security 3 0

breaches

SHOULD Automatic
analyses/data
visualization in

dashboards

Security

SHOULD mTLS or
HTTPs, DTLS or similar
possible for general

communication

2,5

108

Appendix 109

Maximum Open Thinger. Things _
Category)) Mainflux
Points Remote io Board

MUST Access tokens or
certificate-based 10 10 10 10 10
authentication

SHOULD RBAC or

o 5 2,5 0 5 0

similar for users
NITH Multi-tenant

- 1 1 0 1 0
capability
Diagnostics
MUST Device condition

. 10 10 5 10 0
detection
NITH Remote
troubleshooting possible 1 0 0 0 0
(Self-healing Network?)
MAY Audit-Logs 3 0 0 3 3
MAY Central logging 3 0 3 0 0
Up-to-dateness
SHOULD System update 5 2,4 5 5 0
MAY Rollbacks 3 0 1,5 3 0
MUST Config backups 10 0 5 10 0

Total points 224 136,5 189,75 2045 945

Appendix

Appendix B: Data References

Description

110

Link

Measurement Data (InfluxDB):

https://www.kalytta.net/th-

assets/master/.wifi-influx-data.tar.qz

Wireshark packet captures -created
while testing for OFDMA functionality,
containing OFDMA Trigger Frames

https://www.kalytta.net/th-

assets/master/pcaps/

Further graphs with measurements for
throughput in 6 GHz and 5 GHz
802.11ax and 802.11ac

https://www.kalytta.net/th-

assets/master/graphs/

Appendix 111

Appendix C: Figures

Figure 25: Measurement over 6 GHz with 80 MHz channel width, TCP: Some data points in the
upload are zero.

Appendix 112

Figure 26: Measurement over 6 GHz with 160 MHz channel width, TCP. Download with one spatial
stream, upload with two spatial streams. Throughput reaches over 1 Gbit/s in this case.

Appendix 113

Figure 27: Corresponding RTT measurement. The sawtooth-like behavior of while downloading
with high jitter can be clearly differentiated from the low jitter behavior while uploading from the
client.

Appendix 114

Figure 28: RTTs measured via ICMP Ping for a UDP measurement, the first half for download, the
second half for upload from client.

Appendix 115

Figure 29: Measurement over 6 GHz with 80 MHz channel width, TCP. With two spatial streams
in the TX theoretical throughput is 1.2 Gbit/s, due to limits by the RX spatial stream (only one),
real throughput is much lower (only about 230 Mbit/s)

Appendix 116

Figure 30: Measurement over 5 GHz with 80 MHz channel width, TCP. Throughput is nearly
doubled with about 400 Mbit/s. The MCS flapped between 10 and 11 corresponding to 1080 Mbit/s
and 1201 Mbit/s for both RX and TX.

Appendix 117

Figure 31: Measurement over 6 GHz with 160 MHz channel width, TCP. Transmit via two spatial
streams reaches about 1 Gbit/s. Gross bitrates are wrongly reported here by netlink, RX MCS 11
corresponds to 1201 Mbit/s instead of 1500 Mbit/s and TX MCS 8 corresponds to 1729 Mbit/s

Appendix 118

Figure 32: Measurement over 6 GHz with 160 MHz channel width, UDP. Transmit throughput
reaches over 1.5 Gbit/s. Gross bitrates are wrongly reported here by netlink, RX MCS 11
corresponds to 1201 Mbit/s instead of 1580 Mbit/s and TX MCS 8 corresponds to 1729 Mbit/s

Appendix 119

Figure 33: Measurement over 6 GHz with 160 MHz channel width, TCP, between two Clients in
two different BSS of an ESS. There are obvious fluctuations in the device transmit bitrates. RX
and TX throughput are very low with about 300-400 Mbit/s compared to the expected 1 Gbit/s.

Appendix 120

Figure 34: Measurement over 5 GHz with 80 MHz channel width, UDP, between two Clients in
two different BSS of an ESS. Throughput reaches 850 Mbit/s which is reduced compared to the
900-1000 Mbit/s reached with an external measurement server.

Appendix 121

Figure 60: Measurement over 6 GHz with 80 MHz channel width, UDP. Due to only one spatial
stream in the download direction, download throughput is not directly comparable to download
throughput with 5 GHz, which uses two spatial streams

Appendix 122

Figure 61: Measurement over 5 GHz with 80 MHz channel width and 802.11ax enabled, UDP.
Throughput is like 6 GHz upload in both directions, due to using two spatial streams. Note the
change in the selected MCS/bitrate when actually transmitting or receiving and it changing when
the direction is not in use.

Appendix 123

Figure 62: Measurement over 5 GHz with 80 MHz channel width and 802.11ac. Bitrate is lower
despite same MCS as in the figure above due to different OFDM characteristics.

Appendix 124

Figure 63: NetworkManager causes low throughput while scanning on the interface for seven
second intervals.

Eidesstattliche Erklarung 125

Eidesstattliche Erklarung

Ich versichere hiermit, die vorgelegte Arbeit in dem gemeldeten Zeitraum ohne
fremde Hilfe verfasst und mich keiner anderen als der angegebenen Hilfsmittel
und Quellen bedient zu haben.

Ko6In, den 16. Juni 2022

Unterschrift

Philipp Kalytta

