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Central Regulatory Domain 

Agent (CRDA) 

The CRDA mediates between the kernel and 

user space through the Netlink interface, 

ensuring that the regulatory framework in which 

a WLAN-enabled device operates is met [1]. This 

process is implemented using the Regulatory 

Database, which is used by CRDA to comply with 

the regulatory framework for individual states or 

territories. 

Carrier Sense Multiple 

Access/Collision Avoidance 

(CSMA/CA) 

A method of avoiding collisions of data 

transmissions on a carrier medium that is used 

by several subscribers. The transmission 

channel is actively monitored by the participants 

(carrier sense) and if the medium is busy, 

transmission does not take place. The system 

always checks whether the medium is free before 

transmitting. 

Equivalent Isotropically 

Radiated Power (EIRP) 

The equivalent isotropic radiated power is the 

product of the power delivered to the antenna 

and the antenna gain in a given direction in 

relation to an isotropic antenna. 
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Hidden-Node-Problem The Hidden-Node-Problem describes a problem 

in wireless networks where a station (node) can 

communicate with the access point, but not 

directly with other stations. Thus, the data 

transmission of the other station cannot be 

detected, which allows the station to 

communicate with the access point at the same 

time as the other stations. The interference this 

creates ensures that the access point does not 

understand either transmission. The RTS/CTS 

algorithm in WLAN networks solves this problem 

by allowing clients to request send authorization 

before sending. 

Media Access Control (MAC) MAC describes part of the data link layer 

described in the OSI model (layer 2), which is 

divided by the IEEE into two sublayers: Media 

Access Control and, above it, Logical Link 

Control. The MAC layer controls the physical 

transmission on a shared transmission medium. 

Modulation and Coding 

Scheme (MCS) 

The MCS indexes the data rate used in WLANs. 

The MCS index can be used together with other 

parameters (such as the number of spatial 

streams) to determine the data rate for a WLAN 

connection. 
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Term Explanation 

Monitor Mode Monitor mode is an operating mode for WLAN 

adapters in which all received network frames are 

forwarded to the kernel or applications and not 

only those originally intended for the adapter 

(destination fields are ignored). Depending on the 

manufacturer this also applies to corrupted 

frames, but not every manufacturer forwards 

these. 

Multiple Input Multiple Output 

(MIMO) 

MIMO refers to a method in which multiple 

transmitting and receiving antennas are used 

between the participants in a wireless 

communication. This can significantly increase 

the data rate if both the transmitter and receiver 

are capable of MIMO. 

Multiple User MIMO (MU-

MIMO) 

With MU-MIMO a station can transmit to multiple 

stations simultaneously using multiple antennas, 

this means the airtime can be used to 

communicate with multiple participants at the 

same time. 

Orthogonal Frequency 

Division Multiplexing (OFDM) 

Orthogonal frequency division multiplexing 

(OFDM) is a modulation method that uses 

multiple orthogonal carriers (zero crossing of 

neighboring carriers is at the maximum of the 

carrier). This reduces signal crosstalk compared 

to non-orthogonal frequency division 

multiplexing. WLAN uses 48 carriers (+4 pilot 

carriers) and a carrier signal is usually pre-

modulated separately using quadrature 

amplitude modulation (QAM) (or BPSK/QPSK). 
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Orthogonal Frequency 

Division Multiple Access 

(OFDMA) 

With OFDMA, the OFDM carriers (see OFDM) 

are split over more than one user channel. The 

prerequisite is that bidirectional communication is 

used and that the channel is measured. Passive 

measurement means that the transmitter knows 

the reception quality of the orthogonal carriers to 

the individual users and the spectral efficiency 

can be optimized. 

Promiscuous Mode In promiscuous mode a network controller 

forwards all data to the CPU that is received on 

the interface, i.e. not only data that is actually 

intended for its own system. This mode lays the 

foundation for recording network traffic. For 

WLAN adapters this mode is not to be confused 

with Monitor Mode. 

Quadrature Amplitude 

Modulation (QAM) 

Quadrature amplitude modulation is a 

modulation method that combines phase 

modulation and amplitude modulation. In this 

process, two carriers with a phase shift are 

multiplied and added in such a way that the 

transmit signal is created from them. In WLAN 

QAM is used in conjunction with OFDM to 

modulate the individual carriers of OFDM 

modulation within themselves. 
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Introduction 

In July 2021, the German Federal Network Agency made it possible for everyone 

to use WLAN1 devices and applications in the 6 GHz frequency band with a new 

general allocation. The new 480 MHz spectrum will again expand the WLAN  

frequency range that can be used by businesses and consumers in order to meet 

the ever-increasing requirements. The previous frequency bands are already  

often heavily utilized in densely populated areas. It is to be expected that the other 

European countries will also make it possible for the general public to use the 6 

GHz frequency band in the near future on the basis of the technical guidelines 

published by ETSI. 

The German Federal Network Agency has designated the frequency range 

approved in Germany in particular for low-power indoor devices (LPI) and very 

low-power devices (VLP). These are devices with a maximum isotropic radiated 

power of 200 mW (LPI) or 25 mW (VLP). Especially outdoors, but also indoors, 

for VLP, an application for the Internet of Things (IoT) is to be expected, since the 

devices used there are usually optimized for low power consumption. 

In the context of the research work by the Computer Networks Research Group 

at the University of Applied Sciences of Cologne, the new radio network standard 

802.11ax of the IEEE (in the following Wi-Fi 6), in particular the part of the 

standard which refers to the operation in the 6 GHz frequency band (Wi-Fi 6E), is 

to be considered. Measurement sensors are used (Linux-based), which are to 

communicate with each other and with a central server over the 6 GHz frequency 

band via wireless LAN. The management software for this server will also be 

evaluated as part of this master thesis: 

The focus is on the evaluation of two different software solutions for the 

management of IoT devices in 6 GHz networks as well as on the possibilities for 

analyzing the quality of service (QoS) and performance and their assessment for 

these devices.

 

1 The terms WLAN (Wireless Local Area Network) and Wi-Fi are not the same. WLAN refers to the wireless technology described 

by the IEEE 802.11 standard. Wi-Fi is the marketing term used by the Wi-Fi Alliance for devices and networks that use WLAN 

and are tested for compliance with the standard. They are nevertheless often used synonymously. 
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1 Problems and Objectives 

The problems informing this work can be divided into two groups for which 

independent objectives apply: The considerations concerning the technical 

properties of the new Wi-Fi 6E standard can be summarized as one group. The 

other group comprises the problems concerning the management of devices in 

networks operating in the 6 GHz band. The problems can therefore be divided as 

follows: 

1. Which software is suitable for managing Wi-Fi 6E-enabled network 

devices in the IoT environment? 

2. How can these devices be automatically provisioned, configured and 

operated through central management? 

3. What can be said about the performance of the currently available 

hardware for Wi-Fi 6E in this environment? 

4. Is Wi-Fi 6E with current hardware suitable for the operation of networked 

IoT devices with centralized, automatic management? 

Special attention is paid to the technical framework of the current Wi-Fi 6E-

capable hardware: The associated limitations and possibilities (e.g., channel 

bandwidths, modulation) are to be tested and evaluated in various measurement 

scenarios, with the focus on the areas of quality of service (QoS) and 

performance. The basis for this is the construction of a hardware platform that 

must be capable of communicating over the 6 GHz Wi-Fi band. This hardware 

platform will also be used to implement central configuration and operation with 

the aid of central management software. Two different management software 

solutions are being evaluated for this purpose. This also requires the design of an 

additional software architecture to allow the Wi-Fi 6E-enabled devices to 

communicate with the management software. This will be implemented in a 

laboratory environment with the available hardware.   
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2 Basis 

This chapter describes the basics of wireless networks based on the IEEE 802.11 

standard (also referred to as WLAN, wireless LAN or the marketing term Wi-Fi in 

the following). The 802.11 standard describes the lowest two layers in the ISO 

standard Open Systems Interconnection (OSI) Model for the exchange of 

information in wireless systems: The physical layer (PHY) and the medium access 

control layer (MAC) [2]. Also described is the general functionality of IoT device 

management software. 

2.1 IEEE 802.11 Wireless LAN 

The 802.11 standard specifies the transmission of data via a radio link for local 

area networks. Usually, the data is exchanged in the next higher OSI layer (layer 

3) between two (or more) devices using the Internet Protocol (IP). In wired 

networks Ethernet is generally used which specifies the two lowest layers of the 

OSI model. For data transmission in wireless networks the IEEE adopted the first 

of several standards in 1997, which has been extended several times since. In 

2018 the Wi-Fi Alliance, a consortium of organizations including network hardware 

manufacturers, Internet companies, and mobile network operators [3], introduced 

marketing terms for the various versions of the standard under the designation 

Wi-Fi N, where N denotes an ascending version number (e.g. Wi-Fi 5) [4]. The 

term Wi-Fi refers to certified products of the Wi-Fi Alliance that are 802.11 

standard-compliant for the respective standard version. The 802.11 standard has 

been extended several times, in particular to meet the increased data rate 

requirements. The original standard specifies for transmission in the 2.4 GHz 

frequency band with a maximum data rate of 2 Mbit/s gross. As early as 1999, the 

standard was extended: 802.11a (first extension) allows data rates of up to 54 

Mbit/s gross in the 5 GHz band. To achieve this, the modulation method was 

changed from Direct Sequence Spread Spectrum (DSSS) to Orthogonal 

Frequency Division Multiplexing (ODFM). Further enhancements have been 

adopted for networks in the 2.4 GHz frequency band as well as in the 5 GHz band 

and most recently also in the 6 GHz band (which increases the data rate and 

transmission quality/efficiency in part with the aid of multi-antenna systems or 

channel bundling as well as other mechanisms). 
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Figure 1: Generational naming scheme of the Wi-Fi Alliance and corresponding IEEE standard 

version 

2.1.1 Functionality 

Wireless LANs are networks in which the participants must share the transmission 

channel, a so-called shared medium. This means that only one station (STA) can 

transmit at a time if a collision of radio transmissions is to be avoided. A 

corresponding control mechanism is therefore required. 

The IEEE 802.11 standard provides three fundamentally different architectures 

for transmission: The common case is the connection of several stations (STA) to 

a so-called access point (AP). This, known as infrastructure mode, enables the 

stations to be connected to other networks through the access point (the access 

point is usually equipped with several Ethernet-capable wired ports). If there is 

only one access point in such a wireless network it is called a Basic Service Set 

(BSS). An architecture that bundles several APs is called an Extended Service 

Set (ESS); this consists of several BSSs and a station can switch between the 

BSSs. A station connected to an ESS perceives the BSSs of an ESS as an 

overarching service set. In addition to the Infrastructure Mode the Ad-hoc Mode 

has been specified: This allows two stations to establish a radio link without an 

AP and thus exchange data directly (Independent Basic Service Set). The third 

mode is the mesh mode, which, similar to the ad hoc mode, does not require an 

AP, but can connect more than two stations to each other in a mesh BSS (MBSS). 

In order for a station to associate with a BSS it must know on which radio 

frequency communication with the AP can take place. This is made possible by 

the station iterating through the radio frequencies specified by the standard (the 

radio channels) and listening for special data frames, the beacon frames, prior to 
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association (scanning process). These data frames contain information that 

enables the station to establish a connection with the AP. Alternatively, a station 

can also actively ask for a BSS by means of probe requests. 

2.1.2 Standard Extension 802.11ax (Wi-Fi 6, High-Efficiency Wi-Fi) 

The 802.11ax standard is the successor to the 802.11ac standard (also Wi-Fi 5). 

The general conditions have not changed (same channel bandwidths and MIMO), 

only the 2.4 GHz band is now also addressed again. What is new, however, is 

modulation with OFDMA, for which the support by 802.11ax-compatbile stations 

must be given [5]. In theory, this allows higher network efficiency at high radio 

density (many subscribers on one channel). The standard also allows the use of 

the frequency range at 6 GHz. In addition, the target wake time (TWT) mechanism 

makes it possible to reduce power consumption for stations, since it is possible to 

coordinate centrally how often a device should wake up for data transfer. The 

utilization of the channel can thus be further optimized since stations do not use 

the channel unnecessarily. Furthermore, non-AP stations can now also use MU-

MIMO (i.e. in the upload to the AP (UL)). This was previously only possible in the 

download. Now bidirectional MU-MIMO is possible. Target wake time should 

reduce the energy consumption of STAs and reduce the efficiency of the network 

through lower airtime. Also, Stations that support High-Efficiency (HE) have to 

support 802.11ac in 5 GHz or 802.11n in 2.4 GHz networks, too if they want to 

operate in that band [5]. 

2.2 6 GHz Wi-Fi Networks (Wi-Fi 6E) 

The 802.11ax standard also specifies the use of the frequency band from above 

around 6 GHz. The use of this range is also called Wi-Fi 6E in the Wi-Fi Alliance 

generation scheme. The frequency range specified for this in the USA is 1200 

MHz (5925-7125 MHz), a significant increase over the width previously permitted 

in the 5 GHz band. This therefore makes it possible for the first time to make 

sensible use of 160 MHz channels, which are usually out of the question at 5 GHz 

due to heavy utilization and regulatory restrictions. The spectrum is also not 

occupied by sources of interference such as weather radar, so there is no need 

to resort to DFS. During the realization of this work (February to May 2022), the 

spectrum band is also not expected to be used by other participants, so little or 
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no interference can be assumed. Of course, the other advantages and changes 

of the 802.11ax standard can also be used in the 6 GHz band: OFDMA, MU-

MIMO, TWT and 1024-QAM as well as transmit beamforming are also possible 

here. 

6 GHz Channel 
Allocations 
Germany

Note

US Radio Band

Center Freq in 
MHz

20 MHz

40 MHz

80 MHz

160 MHz

1

5955 5975

5

5995

9

6015 6035 6055 6075 6095 6115 6135

13 17 21 25 29 33 37

3 11 19 27 35

7 23 39

15 47

U-NII-5

Note

US Radio Band

Center Freq in 
MHz

20 MHz

40 MHz

80 MHz

160 MHz

41

6155 6175

45

6195

49

6215 6235 6255 6275 6295 6315 6335

53 57 61 65 69 73 77

43 51 59 67 75

U-NII-5

39 55 71

47 79

Note

US Radio Band

Center Freq in 
MHz

20 MHz

40 MHz

80 MHz

160 MHz

81

6355 6375

85

6395

89

6415 6435 6455 6475 6595 6515 6535

93 97 101 105 109 113 117

83 91 99 107 115

U-NII-5 U-NII-7U-NII-6

87 103 119

79 111

Allowed Channel in Germany Not Allowed in Germany

Usage only for LPI and VLP Devices in DE

Usage only for LPI and VLP Devices in DE

Usage only for LPI and VLP Devices in DE

 

Figure 2: Spectrum and channel allocations for 6 GHz in Germany 

2.2.1 Regulatory Context 

The regulatory authority responsible for the EU, the ETSI, regulates the use of the 

6 GHz frequency range for wireless access systems (WAS) in TR 103 524 [6]: 

According to this the frequency range between 5925 MHz and 6725 MHz is to be 

used for wireless access systems or radio local area networks (RLANs). There is 

no mention of a restriction on transmitting power compared with operation at 

5GHz. 

The Federal Network Agency has imposed further restrictions for Germany 

compared with the limits and frequencies previously permitted in the USA and 

compared with the ETSI recommendation: The general allocation from Order 
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55/2021 [7] specifies that use is permitted only from 5945 MHz to 6425 MHz. This 

extends the guard band at the lower end (towards the 5 GHz band) by a further 

20 MHz compared with the ETSI recommendation. At the upper end even 300 

MHz less are allocated. This allows the use of only three 160 MHz channels, since 

the other 160 MHz channels usable in the other U-NII bands in the USA are not 

available. In addition, only the use of Low Power Indoor (LPI) devices and Very 

Low Power (VLP) devices is permitted according to the following conditions: 

Table 1: BNetzA regulatory limitations for LPI Devices 

Low Power Indoor Devices  

Usable frequency range  5945 – 6425 MHz 

Maximum EIRP for in-band broadcasts 0,2 W or 200 mW (23 dBm) 

Maximum EIRP-density for in-band 

broadcasts 

0,01 W/MHz or 10 mW/MHz 

Maximum EIRP density for out-of-band 

emissions below 5935 MHz 

6,3 x 10-6 W/MHz 

Permissible operation Limited indoor use, also in trains and 

aircraft. No outdoor use. 

 

Table 2: BNetzA reguatory limitations for VLP Devices 

Very Low Power Devices  

Usable frequency range  5945 – 6425 MHz 

Maximum EIRP for in-band broadcasts 0,025 W or 25 mW (14 dBm) 

Maximum EIRP-density for in-band 

broadcasts 

0,00125 W/MHz or 1,25 mW/MHz 
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Very Low Power Devices  

Maximum EIRP density for out-of-band 

emissions below 5935 MHz 

3,16 x 10-8 Watt/MHz 

Permissible operation Indoors and outdoors. Not for use on 

unmanned aerial vehicles (UAS). 

Device category The VLP device is a portable device. 

 

This is a strategic disadvantage compared with the power of up to one Watt 

permitted in the 5 GHz band (5470-5725 MHz) [8], because the range of radio 

transmission for example at 6 GHz is much shorter with this limit, even indoors. 

For outdoor areas the reduction of the emission maximum to 25 mW (6 GHz) (in 

comparison: 1 Watt at 5 GHz) is extreme. Here, only close-range use is to be 

expected. 

2.3 IoT and Device Management 

The "Internet of Things" or IoT is seen as a collective term for the networking of 

objects or devices through communication technologies. In particular wireless 

communication comes into consideration here. The embedded computers thereby 

simplify or improve people's lives by increasing comfort or by adding new 

interaction possibilities or data. These physical devices, mostly sensors and/or 

actuators or combinations of these types to more complex structures (e.g., heat 

pumps or environmental sensors, smart appliances in the kitchen or industrial 

machines), are usually managed by a virtual representation on the Internet or an 

Internet-like structure [9].  

The functions implemented on the Internet of Things allow interaction or 

management of the networked devices by humans or by automation. In detail, 

network devices such as access points or wireless clients (STAs) that provide or 

use wireless communication can also be seen and implemented as part of the 

Internet of Things. In the context of this work, therefore, the management of these 
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WLAN devices in the 6 GHz band is considered. Device management in the IoT 

environment includes the following points in particular: 

1. Provisioning and deployment: Devices should be able to connect to the 

management software solution on their own and retrieve their own 

configuration from there. 

2. Authentication: Devices must be centrally managed (device identity 

management) and have a secure channel for authentication. 

3. Configuration: Devices and their internal parameters must be adjustable 

and automatically configurable from the management software solution. 

4. Control: Commands or actions should be centrally triggerable on the 

active devices and the state of the device should be changeable (in the 

context of this work, e.g., start a throughput measurement on a Wi-Fi 

client). 

5. Monitoring: System metrics should be centrally recordable and can be 

presented in an appealing way for the user. 

6. Security: Devices mainly use a secure communication channel (e.g. 

HTTPs, mTLS or similar) for communication and actions in the software 

by the user are covered by a security concept (e.g. role-based access 

control). 

7. Diagnostics: The device status is recorded and is visible to the user; 

Logging data and metadata can be accessed. 

8. Up-to-dateness: The installed device software can be updated centrally 

as well as managed; The up-to-dateness of the device configurations 

can also be managed and viewed. 
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3 Technical Framework 

For this work, primarily freely available open-source software was used where 

possible. This means that the measurement systems (server and client) are based 

on Debian GNU/Linux in the unstable "Sid" version. Debian stable at this time was 

Debian 11 "Bullseye". A few packages, such as the regulatory database (wireless-

regdb), are only up-to-date enough in Sid to enable 6 GHz. A self-compiled kernel 

in version 5.17 also had to be used, as no official kernel build was available at the 

time that could correctly use 6 GHz with the provided hardware (Intel AX210). 

Two slightly different systems were used for the hardware: A Dell Optiplex 9020 

with Intel Cire i5-4570, 8GB RAM and 256 GB SSD was used as the first wireless 

client. Here, the Intel Wireless NIC is connected via an mPCIe adapter via PCIe. 

The server system (where the measuring station/server runs) uses an HP 

EliteDesk 800 G2 Mini with an Intel Core i5-6500, 8 GB RAM and a 256 GB SATA 

SSD. The system has a USB 3.1 Type-C interface, via which a 2.5 Gbit/s-capable 

Ethernet interface (chipset: RTL8156B [10]) is connected (for throughput 

measurements against an external server). The Intel Wireless NIC is connected 

here directly via the available M.2 slot. 

The Intel AX210 Wireless NICs are not suitable for working as APs in a radio cell, 

so access points from the manufacturer Aruba are used. Magellan netzwerke 

GmbH [11] kindly provided two Aruba 630 series access points for use in this 

project.  

The APs and server were connected via a Netgear GS110EMX multi-gigabit 

switch to enable wired communication. 
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3.1 Wi-Fi 6E 

Establishing communication via Wi-Fi 6E is essential for the implementation of the 

project: Hardware is therefore needed that can use the 6 GHz band and that is 

available on the market2. For client NICs, only the following NICs from the 

manufacturer Intel were available:  

a. Intel Wi-Fi 6E AX210 Gig+ M.2 Module 

b. Intel Wi-Fi 6E AX211 Gig+ M.2 Module 

c. Intel Wi-Fi 6E AX1675 Gig+ M.2 Module 

In the following text option (a) will be abbreviated as AX210. Option (b) is identical 

in construction to the AX210 NIC, but with an Intel-proprietary interface 

communication via M.2, so it can only be used in hardware systems intended by 

Intel for this purpose and is therefore ruled out for this project. Option (c) is also 

identical in construction to the AX210 but does not have all the management 

options (no Intel vPro [12]) and was also recently about twice as expensive. 

Aruba AP-635s are used for the access points. APs from Extreme Networks (AP 

4000 series) were also requested, but these could not be provided by the 

manufacturer in time. 

3.1.1 Intel Wireless NICs 

Intel's AX210 enables tri-band 2x2 communication via WLAN as well as the use 

of Bluetooth 5.2. The NIC used is available as an M.2 2230 plug-in card. It 

supports gross data rates of up to 2.4 Gbit/s at 6 GHz and 160 MHz channel 

bandwidth, as well as MU-MIMO and OFDMA. [13]. 

a) Driver, Firmware and EEPROM 

Due to the new general allocation of the Federal Network Agency for 6 GHz in 

Germany, a client cannot use this band without further ado as the network card 

itself may not yet be cleared for the frequency band. This is the case with the 

AX210: According to Intel, the card itself manages a list of permitted channels per 

location. If, for example, the current kernel 5.16 with the latest Intel driver and the 

latest Intel firmware is used for the card, it is still not possible to use the 6 GHz 

 

2 During the implementation period of this work, supply problems and bottlenecks occurred in the context of the Corona pandemic, 

which also affected chips and electronic products in particular. 
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band in Germany [14]. This is related to the internal determination of the 

regulatory domain in the Intel firmware: 

1) Determination of the regulatory domain 

Intel Wireless NICs use the Netlink interface under Linux to offer their hardware: 
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Figure 3: Access to an Intel Wireless NIC via the Netlink interface of the 802.11 driver stack (here 

with iwlwifi driver) 

The operating system maintains a so-called regulatory database (for Linux in the 

package wireless-regdb), which contains the regulatory restrictions for each 

country, e.g. maximum transmission power, usable channels, DFS etc. [15]. This 

list can be accessed via the CRDA module, the Central Regulatory Domain Agent, 

in order to retrieve the restrictions on use for the hardware [1]. 

A wireless NIC registers with the Netlink interface via the cfg80211 MAC driver. 

In doing so, the NIC must provide an API that Netlink can use to specify the 

regulatory rules that apply to the device. The device therefore specifies during 

registration which frequency bands and which channels are supported therein. 

During registration, the cfg80211 driver checks against the regulatory database 

which rules apply to the current location and forms the intersection of the sets (i.e. 

only those operation modes remain that are both supported by the device and 

allowed by the regulations).  

In addition, the firmware of the Intel NIC itself can now further tighten the rules. 

With Intel, this is done by the "Location Aware Regulatory" (LAR). The exact mode 

of operation is not published by Intel, but it can be assumed that the card itself 
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performs a scan and determines, on the basis of the received management 

frames, in which state/regulatory domain it is located. Then the card uses a list 

stored in the EEPROM and managed via the firmware, similar to the Regulatory 

Database, to restrict the usable frequencies and transmitting powers etc. This 

means that even if, for example, US is set as the regulatory domain via the CRDA, 

as long as the card is located in Germany (DE) and receives at least one 

management packet with a different country code, the card will continue to restrict 

itself. Therefore, although the 6 GHz band can be used in the USA, the card 

cannot use this band.  

In the test phase of Intel's LAR it was possible to switch off this functionality via a 

driver option (lar_disable). This is no longer possible [16]. 

2) Solving the regulatory domain problem 

However, since 6 GHz can actually also be used in Germany since 2021, but this 

was not possible at first, Intel was informed accordingly [14]. The solution is to 

use the Linux 5.17 kernel, which presently was not yet available as a compiled 

package for Debian during this work, and to use a specific firmware version from 

Intel. With this firmware version, the Intel AX210 selects the correct list of 

frequencies and allows operation as a station in the 6 GHz band. Only the display 

and retrieval of some parameters (e.g. transmission power), as well as operation 

as an Access Point, do not yet seem to function completely correctly [14]. 

3.1.2 Aruba Access Points 

The access points were provided to us by Magellan Netzwerke GmbH, Cologne. 

They are AP-635 (model with internal antennas for indoor use) from the Aruba 

630 Wi-Fi 6E AP series. [17]. Aruba is a Hewlett Packard (HP) company. The 

Aruba 630 series allows simultaneous use of all three bands (2.4 GHz, 5 GHz and 

6 GHz) and has two 2.5 Gbps Ethernet ports that can be used as uplinks. The 

access point supports 2x2 MIMO on all three bands [18]. This means that at 6 

GHz and a channel bandwidth of 160 MHz, up to 2.4 Gbit/s is theoretically 

possible as a gross bit rate.  

According to the manufacturer OFDMA, TWT, transmit (TX) beamforming and 

BSS coloring are also supported. In the 5 GHz band, allocating up to 8 OFDMA 

Resource Units (RU) are supported, in the 6 GHz band even up to 37 RUs. The 
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maximum transmit power is 21 dBm [18] (without antenna gain). The AP-635 is 

designed for ceiling mounting. The AP can be powered via PoE+ (802.3at) directly 

through a connected Ethernet cable. 
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3.2 IoT Management Software 

In the course of initial research the following (open-source) candidates for the 

software-side management of IoT devices were elaborated:  

1. OpenRemote [19] 

2. Thinger.io [20] 

3. ThingsBoard [21] 

4. Mainflux [22] 

For these four software options, the points listed in chapter 2.3 were then used to 

work out the extent to which the software solutions basically meet the 

requirements. For this purpose, the documentation of the respective software 

solutions was used. A points-based evaluation scheme was worked out, the 

complete table for which can be found in the appendix. The two solutions that 

achieved the highest and second highest scores were selected for further 

comparison of function and evaluation with regard to Wi-Fi: ThingsBoard and 

Thinger.io. 

The other software solutions were discarded for further consideration, as they did 

not meet some requirements: OpenRemote, for example, does not allow the 

configuration of the device to be backed up (MUST requirement), Mainflux does 

not inherently allow any control options for the managed devices, and also does 

not provide a front-end through which a user with further in-depth technical 

experience can operate the IoT devices. 

3.2.1 ThingsBoard 

ThingsBoard is an open-source [23] IoT platform for device management, data-

collection as well as data processing, which also prepares the data graphically in 

a frontend. Industry standards such as MQTT and HTTPS are used to connect to 

the devices. Both local installations and installations in the cloud are possible. 

ThingsBoard offers server-side APIs for the overall management of the devices 

through which the IoT platform itself and the devices can be managed, controlled, 

and monitored. The platform allows multiple customers/tenants to be managed in 

their own separate environment and devices/assets can be assigned to customers 

respectively. Telemetry data can also be collected centrally via the API and can 

be prepared in dashboards. The dashboards can then also be used directly by the 
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customers. For the telemetry data, so-called rule chains can be used for data 

processing. This allows the data to be processed and transformed. Alarms can be 

triggered by rule chains, attributes of the devices can be updated and actions can 

be initiated. 

ThingsBoard offers online documentation [24] and was released in 2016 in the 

first major version 1.0. The most recently released version is 3.3.4. The software 

can be used free of charge in the Community Edition. A paid Professional Edition 

is also distributed, which offers additional support options and customization of 

the software to a corporate design. 

3.2.2 Thinger.io 

Thinger.io describes itself as an "Open Source Platform for the Internet of Things" 

[20]. The focus is on connecting and managing IoT products. The software 

integrates with the devices via its own client software or via a REST API. The 

software can also be installed on-premise as a container stack, or, alternatively, 

Thinger.io's own cloud solution can be used. Both options incur costs, 

ThingsBoard is only free with up to a maximum of two managed devices. 

Especially the Arduino Ecosystem is in focus: These devices (such as ESP8266 

or Arduino MKR 1010) are directly supported by the Thinger.io library. However, 

MQTT- and HTTP-based devices can also be connected. The software supports 

the management of devices from the frontend, collection of data in so-called "data 

buckets" [25] and the visualization of data in dashboards. The software has been 

under development since 2015. In the context of this work, version 3.4.6 was 

evaluated in a local deployment in the "Medium" license plan, which was made 

available by the manufacturer upon request. 
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4 System Design 

The required functionality, i.e. the management of the Wi-Fi devices (like IoT 

devices) as well as the measurements are mapped by a client-server architecture. 

At least necessary is a client-side measurement program, which is executed on 

one of the client PCs described above and the server, which takes over the 

management (on which the ThingsBoard software or Thinger.io software is 

executed). In addition, it is useful to set up an independent server that can collect 

the measurement data and metrics independently from the management 

software, so that in case the desired result cannot be achieved with the software, 

at least Wi-Fi 6E can be evaluated without any problems caused by shortcomings 

from the management software. In addition, one of the (measurement) clients 

should also be able to act as a measurement counterpart, i.e. in this sense as a 

measurement server for the performance measurement. The client program itself 

should be able to communicate with the management software in encrypted form, 

using at least the standard HTTPS protocol; in the event that the measurement 

data is written to an independent system, this should also be done via HTTPS for 

the sake of clarity. 

At the physical hardware level it is important to ensure that the measurement path, 

i.e. all components between the measurement client and the measurement server 

(e.g. Ethernet interfaces and switches), also support at least the theoretical 

maximum data rate of the wireless connection. Otherwise, it cannot be ensured 

that a restriction of the measurable performance does not occur there, which is 

not due to the actual wireless connection but created by the limiting wired link. 

4.1 Architectural Design 

The setup contains the following components: 

1. ThingsBoard-Server 

2. Thinger.io-Server 

3. Netgear-Switch 

4. 2 × Aruba-Access-Points 

5. HP-Client (Used partially as a measurement server) 

6. Dell-Client 
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The majority of the components can be clearly differentiated from each other: 

ThingsBoard and Thinger.io servers each serve to centrally manage the clients 

used: They are to provision, control and configure the devices. Likewise, they are 

to receive data such as telemetry, measurement data, etc. from the clients. The 

Netgear switch is capable of connecting the components at 2.5 Gbit/s via 

Ethernet, but it does not support PoE+, which the Aruba APs need in order to 

operate. A PoE injector, which is also 2.5 Gbit/s-capable, is provided for this 

purpose. 

The Aruba access points were placed in the lab with the help of a spatial survey 

so that testing the roaming ability of clients can be carried out at an easily 

accessible point in the central corridor. The transmission power of the APs was 

also reduced accordingly for the time being in order to be able to define the 

roaming point well (This was later adjusted for maximum throughput). This should 

simplify the measurement of the roaming behavior of the clients. 

The HP client is equipped with a 2.5 Gbit/s Ethernet adapter via USB 3.1 Type-C 

in order to be able to be used not only as a Wi-Fi-based test station (e.g., for tests 

between clients in the same cell) but also as a wired test station behind an access 

point via the switch. This enables the measurement of a single client in a cell. The 

Dell client is intended as a measurement client and is to run either the client 

program for ThingsBoard/Thinger.io or the independent measurement program. 



System Design 

 

18

4.1.1 Network Plan 
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Figure 4: Network plan/setup of the network for the test environment in the laboratory. The HP PC 

either takes the role of the server (via cable or wireless) or is used as a second client. The images 

of the Aruba access points are designs of the VSD Grafx Inc [26]. 

The access points are connected to the switch via multi-gigabit-capable ports, so 

that the total theoretically possible data rate is not restricted by the Ethernet 

connection during cross-cell communication. The Dell PC, since it is operated 

exclusively as a client, does not require a wired connection, but only has a radio 

connection. For this wireless connection the data is collected and it is over this 

connection that the QoS and performance measurements are made. For the 

scenario of communicating with a second wireless device, the HP PC can do 

without its wired connection, since it is also equipped with an AX210 interface and 

therefore also supports Wi-Fi 6E.  

Not drawn in the diagram above are the PoE+ injectors used between the switch 

and the APs. They are not relevant for the logical structure since they only ensure 

the power supply of the APs. 
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Internally two private IPv4 networks are used to separate the management and 

client networks. The 192.168.1.0/24 network can be used to manage the router, 

the switch, and the APs via a virtual controller running under the IP 192.168.1.10 

(not shown in the figure above, as it can move between the two APs). The two 

clients talk over a network logically separated by a VLAN: 192.168.2.0/24. The 

servers for the ThingsBoard and Thinger.io applications are hosted externally and 

are accessible via a router, which simultaneously enables DHCP in the respective 

network as well as NAT for the APs and the clients.  

4.1.2 Software Design: ThingsBoard 

ThingsBoard manages so-called entities. These can be, for example, a tenant, a 

customer, a user, a dashboard or a device [27]. Devices can send telemetry data 

to ThingsBoard and respond to RPC commands. These can be sensors or 

actuators, to name some examples. In this instance a device is a Wi-Fi 6E-

enabled Linux computer that can also collect telemetry data (e.g., channel quality 

of the connection) and should respond to commands (e.g., start a performance 

measurement). 

A device not only collects telemetry data, but also has self-defining properties. 

ThingsBoard names these as attributes. These are key-value pairs that belong to 

the device. This is used in the context of this work, for example, to store and 

change the configuration of the device centrally or to log the firmware version of 

the Intel firmware.  
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Figure 5: ThingsBoard device details show for example client attributes that can contain 

information like firmware version or operating system information 

Devices can additionally send time series data to ThingsBoard: Either directly as 

telemetry (this is stored in a central database as a JSON object) or as a response 

to an RPC call (also JSON-based). This can then be used in dashboards to 

prepare, for instance, the measurement data sent in this way. This data can also 

be processed in a rules engine or react to unusual data points (alarms).  
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Figure 6: ThingsBoard web overview: The different entity types are visible as well as the more 

specific points as over-the-air updates and the dashboard management 

ThingsBoard offers various possibilities to connect client devices: In addition to 

an MQTT API, CoAP, LWM2M, HTTP and SNMP are available. The Linux client, 

as a powerful computer, can easily make complex API calls and therefore also 

use a stateful protocol like HTTP. HTTP is also supported by Thinger.io, so it was 

chosen as the protocol for communication between the platform and the device in 

both cases. This makes it possible to potentially reuse some of the communication 

logic. 

4.1.3 Software Design: Thinger.io 

According to the manufacturer, Thinger.io allows bidirectional communication of 

the server with any client devices, regardless of the hardware platform. The 

devices can be assigned to a client.  

Devices can be connected via MQTT, Sigfox or via LoRaWAN. Alternatively, an 

HTTP (RESTful) API can be used to interact with Thinger.io. Through the 

endpoints a device can receive and send JSON data. Communication is possible 

over encrypted HTTPS and the client must authenticate via an Authorization 

header. Sent JSON objects are stored in so-called data buckets. Each device has 

properties that are comparable to the attributes in ThingsBoard. These are JSON 

objects that are uniquely assigned to a device and can, for example, contain the 

configuration. 
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Here, however, a limitation of Thinger.io already becomes apparent: Since the Wi-

Fi 6E clients are much more complex than a simple IoT sensor or actuator, not 

only data of one type must be stored, but different types (configuration, telemetry, 

measurement data, system state, etc.). However, a Data Bucket can only contain 

one type of data at a time. If a client now writes configuration data to its assigned 

bucket, the client will only be able to write configuration data to the bucket and 

read it from there. If it writes other data to it, the bucket can no longer be used on 

a dashboard to display data, because it is not clear which of the various data sets 

should now be displayed. Also, only one property can be sent to the device in 

response to a request from the device. This is problematic since a device may 

send either telemetry data or properties. I.e. a device that sends measurement 

data cannot update its own configuration (e.g., when it switches between two 

WLAN service sets) and a device that should be able to change its configuration 

cannot send measurement data. This makes the Thinger.io approach unsuitable 

for use with complex devices that combine multiple tasks in one endpoint.  

 

Figure 7: Thinger.io device configuration allows only one data bucket to write to. Also, only one 

device property can be sent to the client. 
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Additionally, it should be mentioned that the connection of HTTP devices is 

directly presented as a feature in Thinger.io by the vendor [28], but is actually 

implemented via a plugin that is not further documented: The documentation of 

the plugin was removed during the writing of this paper, but was originally 

available during the evaluation phase [29]. Automatic provisioning of devices can 

also be performed via this plugin. 

Since Thinger.io already does not fulfill basic requirements that are relevant for 

the objective of the work, a direct comparison of the software with ThingsBoard 

regarding the performance in the management of Wi-Fi 6E devices cannot be 

carried out. Therefore, only a functional comparison of the two software solutions 

will be carried out in the further course of this work. Only the features of 

ThingsBoard are then considered in more detail with regard to the management 

of Wi-Fi 6E devices and a client program is implemented that allows the 

management by ThingsBoard.  

4.2 Wi-Fi 6E Measurement Environment and Scenarios 

In order to be able to perform an assessment of the current status of 6 GHz Wi-Fi 

networks, the parameters that are relevant from the user's perspective in 

particular must be considered, i.e. also the parameters that represent the 

innovations from a technical perspective, which can then be evaluated in more 

detail in test measurements. From the user's point of view, the following 

parameters were considered relevant, with a particular focus here on the first four 

parameters, which are usually used as metrics determining the quality of service 

(QoS): 

a. The data throughput for applications (TCP/UDP) 

b. The latency between client and server (round-trip time) 

c. The jitter of the latency 

d. The availability of the data connection for longer lasting transmissions 

e. Roaming Behavior of Client Devices in an Extended Service Set 

f. Behavior of the clients with increasing distance to the next access point 

(distance limits) 
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Other scenarios that can occur in a multi-client environment can also be 

considered (such as hidden nodes) but these are not considered further in this 

paper. 

From a technical point of view, it is also interesting to consider the newly defined 

MCS for High Efficiency WLAN (indices 10 and 11) and the possibility of 

communicating with OFDMA as a modulation in comparison with the OFDM 

modulation that has been common up to now.  

4.2.1 Quality-of-Service 

A subscriber in a WLAN network expects a reliable connection to the desired 

destination. The quantitative recording of the above-mentioned parameters is 

interesting here: Latency, jitter, throughput and availability. It is therefore 

necessary for the measurement system to be able to record the latency, jitter and 

throughput of the wireless data connection at regular intervals. Longer-term 

measurements of throughput should also be possible, so that fluctuations in 

availability or lost data packets can be recorded. If these measurements are 

performed for a 5 GHz 802.11ac-based network and a 6 GHz 802.11ax-based 

network, for example, the parameters can be compared on this basis and 

statements can be made about differences or similarities. In order to optimize the 

throughput the measurements are performed with the maximum possible channel 

bandwidth of 160 MHz (6 GHz band) and 80 MHz (5 GHz band). 

4.2.2 Roaming 

The Federal Network Agency has explicitly earmarked the 6 GHz band for mobile 

devices as well [7], e.g., smartphones, tablets, mobile IoT devices, robots or 

comparable mobile hardware. In extended service sets (more than one AP), it is 

therefore inevitable to expect devices to be roaming. This is also an integral part 

for users to achieve good quality of service. If a client moves too far away from 

the associated AP, standalone (802.11k), or AP-supported (802.11v) roaming 

should be enabled if other APs are available. Of particular interest here are 

threshold values (received power, link quality) at which the clients switch, and how 

high the stickiness (delay in switching between two APs or clients that do not 

switch at all, although the connection is getting worse) is. Here, the selection of 

parameters such as the transmission power of the adjacent access points 
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between which the handover is to take place, which are decisive for roaming, is 

then also interesting. 

4.2.3 Distance Measurements 

IoT devices in particular can be distributed over the entire site or building and 

therefore also have large distances to the next access point. For this reason, the 

measurement of the performance for increasing distances is also important with 

regard to the low maximum transmission power in the 6 GHz band. In addition, 

the increased frequency also means that there is possibly already a measurable 

difference in the RF reception parameters compared with 5 GHz networks. The 

measurement of the QoS metrics listed above is therefore also performed with 

increasing distance to the AP. Since the lowest possible complexity is required in 

this scenario, 20 MHz is set as the channel bandwidth. 

4.2.4 MCS and Spatial Streams 

It is also interesting to look at the newly defined MCS indices 10 and 11 for HE, 

which offer 1024-QAM and a coding rate of 3/4 and 5/6 respectively. This in 

combination with the lowest guard interval (0.8 µs) allows the transmission of 

more than one Gigabit (MCS-HE 10: 1080.9 Mbit/s, MCS-HE 11: 1201 Mbit/s) 

with one Spatial Stream (SS) at 160 MHz channel bandwidth. With 2 spatial 

streams even 2402 Mbit/s gross are theoretically possible. The measurements 

are to determine whether these MCSs can be reliably selected by the clients and 

what data throughputs can thus be achieved at the transport layer. 

The MCS as well as the number of spatial streams is selected by the client and 

can also be retrieved there. The measurements are recorded in a background 

process so that these parameters, which are significant for the connection, are 

also recorded during a series of measurements. In the case of a distance 

measurement, for example, the distance or signal reception strength at which the 

client switches to a lower MCS can be recorded. 
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4.2.5 OFDM(A) 

For the first time the 802.11ax standard allows the distribution of the individual 

carrier frequencies to several simultaneous participants within an OFDM symbol 

in both directions. This makes it possible to achieve true simultaneity of radio 

transmissions in upload and download. The standard only allows data frames to 

be transmitted via OFDMA; management and control frames continue to be 

transmitted via OFDM [30]. An access point must also use trigger frames to assign 

subcarriers to the clients that it is to use for OFDMA. The client must confirm this 

(via clear-to-send/CTS response). This behavior, if it occurs, as well as the actual 

OFDMA-based data transmission is to be observed and evaluated in the 

measurement series. 
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5 Implementation 

The functionality to perform throughput measurements via WLAN was 

implemented on the program iperf3 [31], a throughput measurement tool that 

offers a wide range of configuration options. The program works with a client-

server architecture. With iperf3, for example, the throughput on an interface can 

be recorded simultaneously over several parallel streams for a certain period of 

time by the client measuring the throughput to the server (or vice versa). The data 

can then be programmatically processed as JSON. Around this program as a 

basis, a Python 3 wrapper program has been created as part of this thesis, which 

has been extended with additional functions and wrapping program parts. These 

functions/program parts include (not exclusively): 

 The use of iw as a program for controlling and configuring wireless 

interfaces (e.g. the Intel NICs used) as well as retrieving the interface 

parameters (MCS, channel bandwidth, spatial streams, etc.). 

 Direct InfluxDB integration (via Python package) for storing captured time 

series data. 

 Integration of the ping3-Python package [32] for ICMP ping to capture 

latency. 

 The Python multiprocessing package for mapping the concurrent program 

parts (e.g. acquisition of channel parameters during a measurement series). 

 The Python-ConfigParser package for reading and creating configuration 

files. 

 The ThingsBoard REST Client for Python [33], for partial connection to 

ThingsBoard. 

Python was chosen as the programming language because programs are easily 

portable and can be run on most client systems without problems. Integration with 

the IoT management software can be easily done via Python's HTTP package 

(such as urllib) and operating system modules or calls can be integrated directly. 
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5.1 Program Structure: ThingsBoard 

For ThingsBoard the entire test functionality was implemented within one Python 

file. This makes a function update very easy by replacing the file with a new 

version. For storing the persistent configuration options an INI file for the 

configuration, client.conf, and a file for storing secrets is used. 

The client software takes care of reading the local configuration, registering with 

the management platform, and all communication during program execution. 

5.1.1 client.py 

The client program contains various functions and routines that can be triggered 

by different mechanisms on the client or by the remote management software: 

a) main()-Function: 

This is the entry point when starting the client: first the configuration and secrets 

are read from the configuration files and a new instance of MeasurementClient is 

created, a Python class that contains the further functionality. Then the global 

logging instance is created, which can be used to keep a debug log. After that, 

the network connection desired in the configuration is established via WLAN. 

def register_device(self): 

    url = "https://" + REMOTESERVER + \ 

        ":" + REMOTEPORT + "/api/v1/provision" 

    body = { 

        "deviceName": DEVICENAME, 

        "provisionDeviceKey": DEVICEKEY, 

        "provisionDeviceSecret": DEVICESECRET 

    } 

    json_body = json.dumps(body) 

    ca_path = self.config["CONNECTION"]["TrustedCADirectory"] 

    response = requests.post(url, json_body, verify=ca_path) 

    decoded_response = response.json() 

    received_token = decoded_response.get("credentialsValue") 

    if (received_token is not None): 

        self.secrets["SERVER"]["Token"] = received_token 

        with open(".secrets", "w") as secretsfile: 

            self.secrets.write(secretsfile) 

Code 1: register_device() function that allows a device to self-register it with the remote 

ThingsBoard server and obtain an API token for further communication 
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If there is already a registration with a ThingsBoard server in the Secrets file, then 

the main loop of the MeasurementClient is started, if not, then the client is 

registered by the register_device() function. 

b) Main-Loop run_loop(): 

The main loop executes an endless loop over which the following functions are 

mapped and executed accordingly when the prerequisites are met: 

1. Collect device parameters (attributes) and send them to the server 

(operating system version, client software version, firmware version for 

the Intel WLAN NIC). 

2. check if new firmware versions are available on the server. If so, then 

install the latest version. 

3. Wait for remote procedure calls (RPC) from the server. 

4. If there is an RPC for a throughput measurement by the server, then the 

throughput measurement is performed via 

do_throughput_measurement() and the obtained measurement data is 

sent back to the server as telemetry data. 

5. If there is an RPC for a latency measurement by the server, then the 

latency measurement is performed via do_rtt_measurement() and the 

obtained measurement data is sent back to the server as telemetry data. 

6. Finally, additional system metrics are collected before the next loop pass 

and sent as telemetry (send_telemetry()): CPU usage, RAM usage, 

hard disk usage and data about the used WLAN interface (e.g. transmit 

power, ESSID, MAC address of the access point). 

Sending telemetry data is basically possible via a dedicated API endpoint of the 

ThingsBoard server, which can be used with the authentication token obtained by 

registering the device: /api/v1/<token>/attributes allows the sending of 

device attributes as telemetry. However, it is not possible to set shared attributes 

(e.g., the client configuration) via token only. For this purpose conventional access 

data (user name/password) must be used. 
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c) update_firmware(): 

This function contains the exemplary handling of a firmware update where the 

updates are distributed centrally by ThingsBoard. 

 

Figure 8: ThingsBoard Over-the-Air dashboard allows for upload or URL reference to a firmware 

or software file (package type) that can be pushed to devices or device groups (profiles) 

automatically. 

After the client has verified that a newer firmware version is available the client 

retrieves the URL of the download file from the server and then performs the 

download. Firmwares are a tar archive compressed with gzip, which is then 

unpacked over the previously installed firmware. Afterwards the downloaded 

archive can be removed again. Now the local configuration file is updated (writing 

the new firmware version into the configuration file), so that the new firmware is 

not retrieved again. 

d) wait_rpc(): 

The response of the client to remote procedure calls is mapped via the 

wait_rpc()  function: Here, the client retrieves the first available RPC from the 

server via GET request and unpacks its payload. The payload contains an ID to 

identify the RPC (This could also be used by a client to send back asynchronous 

responses to an RPC) as well as the "method" field, which is filled with 

"rpcCommand" (Indicates that it is an RPC command). Furthermore, it can contain 

several parameters in the "params" field, which may contain, for example, various 

commands or their parameters: 
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In the case of a throughput measurement, this is carried out when the 

corresponding command is coded in the payload. Afterwards the client sends the 

measurement results as telemetry to ThingsBoard. Further commands are 

possible, e.g., doRttMeasurement, which calls the corresponding function for the 

latency measurement (see below). 

e) send_telemetry(): 

The client uses this to regularly record system metrics such as CPU and memory 

usage as well as swap and local hard disk utilization. Information about the WLAN 

interface is also collected. These data are sent as telemetry data to ThingsBoard. 

f) do_throughput_measurement(): 

The client performs a throughput measurement with iperf3 after disabling all other 

unused network interfaces. This ensures that, for clients which may still have an 

Ethernet interface or a second Wi-Fi interface, it is not preferred for the 

measurement due to routing. The exact execution of the measurement and the 

parameters used with iperf3 is described in chapter 5.2.1.  

g) do_rtt_measurement(): 

This function enables the latency measurement to the Iperf3 server. Three ICMP 

echo messages are sent and the ping delay is returned in each case. 

5.1.2 client.conf 

The configuration of the client is stored in a file and contains the defaults for the 

initialization of the program as well as some changeable options: Generally, over 

a timestamp in the configuration file the last conditions are compared with the 

version of the client configuration held on the server. Thus, updates can be played 

out from server side to the client as well as the client can synchronize 

{ 

    "id": 162, 

    "method" : "rpcCommand", 

    "params": { 

        "command": "doPerfMeasurement" 

    } 

} 

Code 2: Example RPC payload from ThingsBoard when the client receives an RPC command, 

in this case: doPerfMeasurement, which starts a 13 second iperf3 measurement on the client 
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configuration changes to the server. The newest timestamp is seen as source-of-

truth. 

One can also configure settings for connection to the ThingsBoard server and 

iperf3 server, as well as logging and a few parameters for the Wi-Fi interface 

(Used interface, country, transmit power and WPA configuration): 

5.1.3 .secrets-File 

Part of the configuration should be readable and writable only for the client 

program - this part is outsourced to a second configuration file (.secrets), which is 

also not synchronized centrally with the server. At the beginning on a new client, 

it contains the key and the secret for the registration as well as Wi-Fi access data 

for the provisioning with the server. The client token needed for API access is then 

added later. Once the file is updated accordingly it can be easily reused by the 

client program even after updates or reboots. 

[GENERAL] 

timestamp = 2022‐03‐11T13:39:34.899415 

firmwareversion = 2022‐01‐11 

[CONNECTION] 

remoteserver = thingsboard.home.kalytta.net 

#remoteport = 8080 

remoteport = 443 

devicename = wifi‐client 

trustedcadirectory = certs 

[IPERF] 

iperfserver = 192.168.2.144 

iperfport = 5201 

[LOGGING] 

logfile = ./client.log 

loglevel = DEBUG 

[WIFI] 

wlaninterface = wlp1s0 

country = DE 

txpower = 20 

wpa_configfile = /etc/wpa_supplicant.conf 

wpa_configfile_local = wpa_supplicant.conf 

Code 3: client.conf configuration file allows for basic configuration of the client program, i.e. setting the 

remote server address for ThingsBoard 
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5.1.4 Server-side Processing 

The server can respond to incoming telemetry through rule chains instead of just 

storing it (which is the default behavior). It can also respond to attribute changes 

or RPC commands from the client. Arbitrarily complex sequences of rules in a 

kind of tree structure are possible. In the case of an API call the root rule chain is 

always triggered. Depending on the message type this can then trigger various 

other rule chains or actions: e.g. messages can be filtered, data can be 

subsequently enriched or transformed (adding metadata, changing the data 

content based on a script) or alarms can be triggered: 

 

Figure 9: ThingsBoard Root Rule Chain: Allows for granular actions on API events: Here "Post 

telemetry" also calls another rule chain in a chained call. 

The client can therefore also actively trigger alarms by, for example, packaging 

information in an RPC and a rule chain extracts and evaluates this information 

(e.g. via threshold values). Alternatively, it can also react to unusual changes in 

the configuration of a client (client suddenly changes the country).  

5.2 Program Structure: Independent Measurement Client 

The independent measurement client allows the measurement of throughput and 

channel parameters independent of a management software like ThingsBoard. 

The data generated by iperf3 is not sent here as telemetry or RPC response but 

stored locally as JSON object. In addition, this data is written to an Influx database 

as time series data to enable subsequent evaluation. 



Implementation 

 

34

The independent measurement client is divided into two parts: The first part 

(iperf.py) serves as program entry point and performs the actual measurement as 

foreground process. In addition, this part is responsible for sending the 

measurement data to Influx. The second part takes care of measuring the channel 

parameters in the background of the actual throughput measurement and runs as 

a second process separate from the main part. This allows independent detection 

of variations in environmental variables (such as the strength of the received 

signal from the access point) during the measurement. 

5.2.1 iperf.py 

The iperf.py program controls the actual measurement process and makes the 

preparations for the measurement as well as performs the post-processing after 

the measurement. This file can be called directly as a command line program. The 

following parameters are supported: 

Table 3: Parameter set of the iperf.py program 

Parameter Description 

--protocol, -p Switch for changing between TCP and 

UDP for the throughput measurement. 

Default is udp. 

--interface, -i Sets the interface that will be used for 

the measurement (This prevents the 

program from disabling it while 

measuring). 



Implementation 

 

35

Parameter Description 

--duration, -d Sets the measurement duration in 

seconds. Note that the actual 

measurement time will be double this 

time as upload and download are both 

measured this same amount of time. 

The first three seconds of data for each 

direction are omitted by iperf3 but are 

contained when using JSON output. 

Default is 60 seconds. 

--bandwidth, -b Target bandwidth for UDP 

Measurements. The sender will 

generate this amount of packets (i.e. 

setting this to 1G, the client will 

generate 1 Gbit/s of continuous UDP 

data). Default is 5 Gbit/s. 

--streams, -s Number of transmission streams for 

TCP and UDP. Default is 10 streams. 

--windowsize, -w Sets the initial TCP window size. 

Default is 512 Megabytes. 

 

When called, the program first creates a background process to capture the 

round-trip times (via ICMP echo) between server and client and starts another 

process to monitor the interface and channel parameters (call interface.py). Then 

the throughput measurement is performed with the specified parameters. Here, it 

is to be noted that on the target server, which is to be defined in the program 

configuration, an instance of the iperf3 server must be started on port 5201.  
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First the client measures the download (i.e. the RX channel of the client is tested), 

directly after that the upload (TX channel of the client): 

Since iperf3 was called here with the -J option, a granular report in JSON format, 

split by seconds and streams, is generated after the completion of the 

measurement, which can be further processed by the program. This report 

explicitly refers to the data processed by the iperf3 process on the client. This 

means that for upload measurements that are performed with UDP, the data of 

the server must be used, since the client will most likely send more datagrams 

than the server will receive. On the client side, one would otherwise see all 

packages, whose transmission was tried, and not only those, which were received 

successfully. This is realized via the ‐‐get‐server‐output option, which allows 

the client to retrieve the iperf3 server statistics via the control connection after the 

measurement from the server is complete: 

print("Start Measuring Download to Client") 

try: 

    result = subprocess.run( 

['/usr/bin/iperf3', '‐c', str(IPERF_SERVER), "‐p",  

str(IPERF_PORT), "‐R", "‐b", str(bandwidth), "‐P", str( 

num_streams), "‐w", str(window_size_bytes), "‐Z", "‐O", 

"3", "‐C", "reno", "‐t", str(duration), "‐J", add_option, 

length_option_a, length_option_b], 

        stdout=subprocess.PIPE, 

        check=True, 

        text=True, 

    ) 

    result_down = json.loads(result.stdout) 

except subprocess.CalledProcessError as cpe: 

    print(cpe) 

    result_down = None 

Code 4: Starting the iperf3 download measurement in a subprocess on the operating system: -c 

denotes this process as the client, -R denotes that his is a download test (without it, it would be 

upload), -Z will make iperf3 use Zerocopy, which reduces CPU load, -O lets iperf3 omit the first 

3 seconds of data (which are usually not used), -C tries to set the linux TCP congestion 

algorithm. add_option switches between UDP/TCP. length_option_a and length_option_b are 

for sending differently sized datagrams/segments. 
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After the two measurements have been performed a JSON object is now 

available, which contains the throughput recorded by iperf3 broken down by 

second, as well as some statistics about lost packets, whereby one evaluation per 

stream is possible, since the JSON contains an array with all used streams. For 

example, one second in a stream is encoded like this: 

print("Start Measuring Upload from Client") 

# Get the json from the server (via ‐‐get‐server‐output), as the json 

from the client will not represent the correctly transferred data 

try: 

    result = subprocess.run( 

['/usr/bin/iperf3', '‐c', str(IPERF_SERVER), "‐p", 

str(IPERF_PORT), "‐b", str(bandwidth), "‐P", str( 

num_streams), "‐w", str(window_size_bytes), "‐Z", "‐O", 

"3", "‐C", "reno", "‐t", str(duration), "‐J", "‐‐get‐

server‐output", add_option, length_option_a,  

length_option_b], 

        stdout=subprocess.PIPE, 

        check=True, 

        text=True, 

    ) 

    result_up = json.loads(result.stdout) 

except subprocess.CalledProcessError as cpe: 

    print(cpe) 

    result_up = None 

Code 6: JSON object containing the data of the first second of stream nine of an iperf3 UDP 

measurement and information about the transmitted data. With UDP most of the transmitted 

data is lost (Target bandwidth was chosen much higher than actual throughput on the NIC). 

{ 

    "socket": 9, 

    "start": 0, 

    "end": 1.000072, 

    "seconds": 1.0000720024108887, 

    "bytes": 8992080, 

    "bits_per_second": 71931460.76140644, 

    "jitter_ms": 0.1281063357932468, 

    "lost_packets": 50922, 

    "packets": 57132, 

    "lost_percent": 89.1304347826087, 

    "omitted": true, 

    "sender": false 

} 

Code 5: Starting the iperf3 upload measurement in a subprocess on the operating system 
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As soon as the measurements are completed the two background processes for 

the latency measurement and the channel parameters are now also terminated. 

The second-by-second data of these background processes (see chapter 5.2.2) 

are now first stored locally as files together with the throughput data. This ensures 

that the measurement data is not lost even if it is not possible to upload the data 

to the Influx database. Then the data will be sent to Influx, if this is possible. If no 

connection can be established, e.g., because there is no connection to the 

Internet, no upload will take place and the program will end prematurely.  

5.2.2 interface.py 

The interface.py is the subroutine that monitors the channel, transmission and 

interface parameters in a background process. The following data is collected 

every second, provided that the interface provides this data (not all parameters 

can be retrieved with every configuration of the interface): 

 MAC address of the associated AP 

 Number of lost beacons of the AP 

 Number of received beacons of the AP 

 Bytes received by the AP and sent to the AP 

 Number of frames dropped for various reasons 

 Total number of transmit retries 

 Negotiated bitrate in transmit and receive channel 

 Channel ID 

 Channel width 

 Extended Service Set ID (ESSID) 

 Frequency of the channel 

 Link Quality (Intel-specific value (no further manufacturer 

specifications), between 70/70 (maximum) and 0/70 (minimum) 

 Interface Mode (e.g., "managed" for Associated) 

 Power management status 

 Total bytes transmitted and received 

 Guard Interval Type 

 MCS index for transmit and receive channel 

 MCS type (HT, VHT or HE, defined by the standard version) 

 Number of Spatial Streams 
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 Receive signal strength of the AP signal 

 Configured transmission power of the client 

Originally, additional parameters such as transmission times and timing, and the 

negotiated modulation (OFDM/OFDMA) were to be retrieved, but this could not 

be realized via the Intel driver and this data could therefore not be retrieved with 

the interface used.  
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6 Test and Evaluation 

The research questions can be divided into two parts: Evaluation of the software 

solutions for the management of IoT devices and the evaluations regarding Wi-Fi 

6E and the technical capabilities of the available hardware. In this chapter, a 

functional comparison of the management software solutions is performed first. 

Since a client was only created for ThingsBoard (the prerequisites are not given 

for Thinger.io, as described previously), only ThingsBoard will then be discussed 

with regard to performance and operation with Wi-Fi 6E-capable devices. 

In the following section, the performance of the Wi-Fi 6E hardware is examined in 

more detail and evaluated in terms of quality of service. Various measurement 

scenarios are described and analyzed for this purpose. 

6.1 Comparison of the Management Software 

ThingsBoard and Thinger.io differ in the characteristics and implementation of the 

basic functions of IoT management software. In the following, a direct comparison 

between ThingsBoard and Thinger.io is therefore presented for each of the basic 

functions. 

6.1.1 Features and Functionalities 

The features of IoT management software regarding device management can be 

summarized in subgroups like presented in chapter 2.3: Provisioning, 

authentication, configuration, control, monitoring, security, diagnostics and up-to-

dateness. A comparison table was also created in advance, which assigns the 

individual subgroups to a point system in order to select the software to be 

considered in this work. This table can be found in Appendix A. 

a) Provisioning 

As part of provisioning, a device should be able to set itself up independently: It 

should be able to register itself independently with the platform and retrieve 

configuration data that it requires for further operation (e.g., access data). This 

can be done either via a predefined image for the device, or via a script that 

performs the necessary steps at system startup (automatic registration and 

preconfiguration). Only Thinger.io offers direct integration of the platform as a C 
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client library [34], for ThingsBoard this is only provided via defined HTTP API 

interfaces (which can then be called in a script) [35]. Automatic registration of 

devices is also possible on Thinger.io via an API, but this is provided by a plugin 

and is not usually part of a Thinger.io instance [29]. Without this plugin, 

provisioning must be triggered via the frontend by manually creating the device 

and so-called "device credentials". With ThingsBoard automatic provisioning is 

possible directly via a data pair: The device provision key and the device provision 

secret - including automatic assignment to a device group. A basic configuration 

can then also be directly retrieved by the device, including the latest firmware and 

software versions, should an update be directly available. Both software solutions 

show the (registration) status of the devices in the web interface [36] [37]. 

 

Figure 10: ThingsBoard showing the current state of a registered device "wifi-client". The device 

reports back when it successfully registered and the server will report connectivity information via 

the server-side attributes. 

What is problematic in both cases is finding the management server: If the WLAN 

preconfigured on the devices is not available, the client cannot retrieve a 

configuration from the server (which cannot be reached), which may contain a 

different SSID-PSK combination for connecting to the server. However, this is only 

a limitation for WLANs that perform authentication via pre-shared key. This can 
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be circumvented, for example, by the clients basically using a certificate as part 

of EAP-TLS-based authentication. However, this is a restriction that does not 

result from the software. 

Overall, registration to a ThingsBoard server is technically possible without user 

intervention once a device group has been created. With Thinger.io this can only 

be integrated via plugin, and this plugin is currently no longer available. So 

ThingsBoard is clearly preferable here. 

b) Authentication 

For authentication, it is important that the devices can uniquely identify 

themselves to the server. Thinger.io regulates this via the so-called Device ID, a 

string that globally uniquely identifies the device. This can be defined by the user 

himself [38]. In ThingsBoard there is also a device name, by which the device can 

be identified, but in addition each device is also assigned a device ID, which here, 

in contrast to Thinger.io, is a UUID (this is structured according to the Distributed 

Computing Environment (DCE) specification [39]). Other entities in ThingsBoard, 

such as Customer, are also identifiable via a UUID and can also be managed via 

the API. So here the implementation is consistent. 

 

Figure 11: Thinger.io allows for a string without spaces as device ID. No two devices can use the 

same ID. 
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Both ThingsBoard and Thinger.io rely on JWT with Authorization Bearer Token 

for API authentication [40] [41]. This means that a user must first authenticate 

himself to the API with his access data before further API endpoints can be 

accessed via a bearer token. ThingsBoard allows sending telemetry data without 

JWT, but with a device token (or alternatively via X.509 certificate), which is static 

and does not need to be renewed [42]. However, since, for example, the device 

itself can only change device attributes with JWT, the device must still have 

classic access data (e-mail address and password) with which the device can 

authenticate itself to the API. This contradicts the basic idea behind the device 

tokens. Both softwares do not allow the device to authenticate itself directly via its 

device identity. The authentication parameters can be viewed in the frontend and 

can also be changed there (changing the token and the user credentials is 

possible). 

c) Configuration (Over-the-air programming): 

Over-the-air programming refers to methods of distributing software updates, 

configuration settings and sometimes key material to the target devices via a 

wireless interface (Like WLAN). Here it is also important that the devices can also 

communicate their current configuration and state to the management platform. 

This allows the identification of the devices and their configuration state.  

ThingsBoard allows devices to update their attributes directly from the platform 

while also supporting updates by devices towards the platform [43]. Thinger.io 

also allows setting and retrieving the configuration (called "Device Properties" 

there), but this is only possible if user data (such as throughput measurement data 

in the context of this work) is not to be written to a bucket alternatively. Only one 

of the two options can be used exclusively via the API callback [44]. This is a 

strong restriction by the API and limits the usage options here. If we disregard this 

restriction there is another one: The API also only allows writing to and reading 

from a single "device property". Thus, in the given case, at most all configuration 

options of a device can be stored as one JSON object (or array), and no granular 

partitioning is possible, which is possible with ThingsBoard.  

With ThingsBoard it is even possible to passively maintain configuration changes 

(persistent polling with timeout via HTTP GET). This is especially useful for 

changes that have to take effect immediately in case of doubt and cannot wait for 
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a polling interval: e.g. in case of necessary changes to the radio parameters of 

the Wi-Fi interface (in order not to lose the connection to the device) these 

parameters could be permanently requested by the device.  

 

Figure 12: ThingsBoard shows device attributes either via a dashboard widget or the user can 

navigate to the device information page shown here. 

Additionally possible with ThingsBoard, but limited to the "Device Properties" (i.e. 

the configuration) with Thinger.io, is the possibility to roll out software and 

firmware updates centrally for several devices in addition to the configuration. See 

section h) “Up-to-dateness” for more details. Device grouping is possible with both 

solutions and the current configuration of the devices can be viewed in each case. 

The clear advantage here lies with ThingsBoard, especially since no other data 

can be transferred from the devices to the management platform when using the 

configuration feature in Thinger.io. 

d) Control 

Thinger.io and ThingsBoard follow different approaches here: While Thinger.io 

lets the device itself determine which control options are available, ThingsBoard 

relies on remote procedure calls (RPC), which are then evaluated and executed 

by the device accordingly.  
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Figure 13: Devices can be configured to have input and output resources. On input resources the 

data can be manually sent to the device (Run button) and the outputs will be computed. Image 

taken from [45]. 

Thinger.io enables the device to define internal controllable input and output 

options via the so-called Device API, which are then discoverable in the web 

interface and can be addressed there [45]: Commands can be sent to the device 

and results can be returned. It can also be used to map more complex 

functionality, such as changing the device status (e.g., restarting or disconnecting 

the network connection) or starting measurement series. 

ThingsBoards RPCs are also very flexible: It is possible for the client to make 

requests to the platform via RPC and for the management platform to respond 

with data (e.g., to retrieve information about whether the measuring station is 

currently occupied by another device) as well as sending calls by the platform to 

the device. For information on the use of this feature, please refer to the chapter 

5.1.1. 
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Overall, both approaches can be used to map sufficiently granular control to 

trigger commands such as device state changes, updates or moving an actuator. 

e) Monitoring 

Devices, especially devices equipped with sensors, generate data for which 

monitoring is useful. Thinger.io offers the two known possibilities to store data in 

the system, either as "Device Property" or in the Data Buckets, which record time 

series data similar to a database table [44] [25]. Devices can regularly send data 

to the platform for this purpose [46]. Both options can be used to record system 

metrics such as CPU utilization or local hard disk usage, for instance. For regular 

measurement data, however, as in the case of this work, only a data bucket for 

large amounts of data comes into question. This data can also be presented to 

the user in dashboards. It is not possible to notify or alert the user in the event of 

unusual values or limit values being exceeded. 

 

Figure 14: Thinger.io dashboard can show device properties and data from data buckets via 

different widgets. 

ThingsBoard, on the other hand, enables such alerting by using the rule engine 

as mentioned in the previous chapter [47]. There, for incoming data, a client can 

individually define at which limit values or according to which logic alarms are to 

be triggered.  
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Clients can send their system metrics and other telemetry and measurement data 

to the telemetry upload API. For this the client only needs the appropriate access 

token [43]. Overall, the ThingsBoard approach is more robust because custom 

rules can be defined for monitoring in the rule engine and a central collection point 

for incoming data is available with the telemetry API.  

 

Figure 15: ThingsBoard dashboards can get data from device attributes, the internal rule chain or 

from the telemetry data. Also, Remote-Procedure-Calls can be directly triggered from a 

dashboard. 

f) Security 

To be able to guarantee the security of communication the transmission channel 

for information must be secured and there must be authentication for the devices. 

Regarding the operation of the user interface the rights and options of the users 

should be limited by role-based or attribute-based access control.  

Thinger.io does not specify in the documentation whether the http connections 

are encrypted. In the test environment, however, it could be determined that the 

environment is generally run with HTTPs support enabled by default. This allows 

encrypted transmission of configuration and measurement data, which is 

particularly necessary for wireless communication. The devices must also 

authenticate themselves to the platform when accessing the API. Authentication 

via JWT Authorization Bearer Token is offered for this purpose: 
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Figure 16: The Thinger.io web interface allows for access control for devices via tokens: i.e. a 

token can be specifically created to only allow write access to one data bucket. 

What is not possible in the tested version of the software is securing through role-

based access control (RBAC) - this is only possible in the Professional or 

Enterprise Edition of Thinger.io [48]. In the tested version only one user account 

was possible. Additionally, no multi-tenant capability is given. According to the 

documentation, this is possible by separating into projects in the Professional or 

Enterprise Edition of Thinger.io [49]. 

ThingsBoard takes a similar approach to Thinger.io regarding securing 

connections to connected devices: After creating a ThingsBoard server as 

described in the documentation, encrypted communication is not yet possible at 

first, but HTTPs can be enabled via the ThingsBoard configuration file, both for 

the web interface and the API [50]. ThingsBoard also relies on token-based 

authentication for endpoints (but not with JWT) but its own token concept that 

integrates directly with the API URL, so that a token co-defines the API endpoint 

[42] [43]. Likewise, a granular role-based access concept for users is only possible 
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in the Professional Edition [51]. In the tested free Community Edition, a distinction 

can only be made between System Administrators (can create and delete 

tenants), Tenant Administrators (can manage devices, dashboards, customers 

and other entities) and Customers (can read dashboards and control devices). In 

contrast to Thinger.io, however, any number of users can be assigned to these 

roles. It also results from this that already in the free version of ThingsBoard a 

multi-tenant capability of the software is given. Here ThingsBoard is clearly better 

suited for larger deployments. 

g) Diagnostics 

Thinger.io records the general connectivity of a connected device, i.e. when 

communication was last established and whether the device is currently sending 

data. It is also possible to access the server logs in which all accesses are 

recorded centrally. However, this is not possible from the web interface, but only 

directly on the server for an administrator. No audit logs are created for the user 

interface. 

 

Figure 17: ThingsBoard shows user and device generated events in a "Audit Logs" tab on the 

webinterface. 
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ThingsBoard also enables device status recording, but in two different ways: On 

the one hand, it records when telemetry data was last sent - this can be viewed 

per device for diagnostic purposes. On the other hand, the API also offers the 

option of setting attributes for the device's status (e.g., CPU utilization or firmware 

version), which can then be evaluated centrally [52]. ThingsBoard does not 

provide central logging for all data in the basic configuration, but rule chains can 

be used to perform granular logging through the "log" module for data in a rule 

execution. This data is then written to a central server log that, like Thinger.io, is 

not accessible in the web interface. Additionally, ThingsBoard provides audit logs 

in the web interface. These logs record events such as user logins, device 

registrations and changes to attributes, dashboards and entities. 

h) Up-to-dateness 

ThingsBoard, in addition to updating attributes on the server side (which the client 

can retrieve) and the ability to deliver information and updates to devices via RPC, 

also provides a third way to ensure actuality, especially of installed software: 

Over-the-Air (OTA) update packages:  

Both software and firmware updates can be stored in the administration interface 

and assigned to a device profile. Devices in this profile can then compare the 

assigned version with the installed version and download the newer version if 

there is a mismatch. The administrator can either specify an external download 

link (good for e.g. content delivery networks), or the update can be downloaded 

directly from the ThingsBoard server. The process is also then protected from 

integrity problems by a checksum. System updates can therefore be managed 

well centrally, rollbacks are also possible by simply assigning another version of 

the firmware or software for a device profile. 
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Figure 18: ThingsBoard enables the tenants to centrally manage software and firmware updates 

for single devices or for bulk updates to a device group. This is useful to update a lot of devices at 

once. 

Configuration backups are not possible via this functionality, however. In this 

case, ThingsBoard must fall back on RPC or Device Attributes, which can be used 

to store several versions of a configuration on the server side for example. 

However, the import of an older configuration version is not automated in this 

case. 

Thinger.io only supports firmware update for various microcontrollers, not for 

generic devices connected via HTTP API [53]. The functionality is implemented in 

the case of microcontrollers via a plugin in Visual Studio Code, a management of 

multiple versions must be performed as here in Visual Studio Code and not in the 

web platform of Thinger.io by the user. Performing configuration backups for 

devices and rollbacks via Thinger.io is not currently possible.  

 

Overall, the question of which of the two softwares is better used to manage Wi-

Fi 6E-enabled devices can be answered clearly: Thinger.io does not provide some 

of the necessary features provided by ThingsBoard: 

The automatic provisioning of the devices including the provision of configuration 

data as well as the latest firmware and software versions is much easier to realize 

via ThingsBoard. Especially for software updates, Thinger.io would have to rely 

on external sources, since provisioning by Thinger.io is not only possible for 

microcontrollers. In ThingsBoard, the configuration of the devices can be mapped 

by attributes, from which, for example, measurement data can be separated by 

supplying them to the platform as telemetry data. This is another clear advantage 
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over Thinger.io, where this separation also exists, but only one of the two data 

types can be sent to or retrieved from the server due to the API limitation. 

ThingsBoard is therefore preferable because of the available features and 

functions, since a connection of generic Linux Wi-Fi devices can be implemented 

here more completely and clearly. 

6.1.2 Structural Differences 

Particularly noticeable is Thinger.io's clear reference to microcontrollers: The well-

known microcontrollers from Espressif ESP32 and ESP8266 as well as the Wi-Fi, 

Ethernet and GSM-supporting controllers from Arduino are explicitly mentioned 

as supported [54]. There are also coding examples for these platforms in the 

documentation. This also differentiates Thinger.io from ThingsBoard in that 

ThingsBoard does not directly specify devices that are supported here but defines 

a number of protocols that any device can use to communicate with the platform: 

In the free community edition these are MQTT, CoAP, HTTP, SNMP and LWM2M 

[55]. Each device group can be connected via one of the protocols. An existing 

MQTT infrastructure can even be connected via external MQTT gateways.. 

The approach to multi-tenant capability is also clearly different. ThingsBoard is 

shipped with this feature and at least one tenant must be created, even if no other 

tenants are served on the system. There are also versions of Thinger.io (like the 

one used for this work) that do not have this feature enabled at all.   

Thinger.io uses JWT authentication for every data transfer between the platform 

API and the devices, while ThingsBoard differentiates between the tokens used 

for telemetry or provisioning, for example, and the username/password access 

data required for writing shared attributes, for instance. In the case of 

ThingsBoard, the uniform control of the devices via RPC should be emphasized, 

while in the case of Thinger.io, the API is not complete in this respect and offers 

the features and shortcomings described in chapter 4.1.3.  

6.1.3 Performance 

Sending data by connected devices to ThingsBoard never caused any problems 

in several tests. Even larger amounts of data generated by the throughput 

measurements over several minutes and then sent collectively to the platform 
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could be processed without problems. No statement can be made here regarding 

Thinger.io, since this functionality could not be tested due to the lack of a basis.  

ThingsBoard states in the documentation that firmware and software updates can 

be delivered to 100 connected devices simultaneously by default [56]. This can 

lead to problems in reality: Several hundred TCP sessions heavily loaded by 

downloads may be impossible to handle with weak hardware. However, the 

number of simultaneous downloads can be adapted to the hardware conditions in 

the configuration of ThingsBoard. Problematic in the current setup was the 

limitation of software and firmware packages stored on the ThingsBoard instance 

to a maximum of 2 gigabytes. Updating the complete firmware stack on the Linux 

clients was therefore not possible from the local instance, but only via direct 

download from the Linux kernel repositories.  

ThingsBoard's web interface scores 56 out of a possible 100 points in Google's 

Lighthouse Performance Test. Points are deducted for heavy JavaScript usage 

and the lack of text compression. Furthermore, the browser is not prompted to 

cache resources. Thinger.io scores much better with 78 out of 100 points in 

Lighthouse, where only the lack of HTTP/2.0 support and the missing cache policy 

(like ThingsBoard) are criticized. Both platforms react sufficiently fast to user 

inputs in the frontend or show a loading animation when loading for a longer time. 

  



Test and Evaluation 

 

54

6.1.4 Operation/Frontend 

Thinger.io offers after the login screen directly an overview page with the statistics 

of the currently connected devices and the transferred data: 

 

Figure 19: The start page for Thinger.io shows the number of connected devices, dashboards, 

data buckets and other endpoints over a world map, that shows currently connected devices that 

send their coordinates. Below that, the data transmissions for the last thirty days are shown. 

On the left side Thinger.io’s web interface offers a list of configuration options 

grouped in menus: Dashboards, Devices, Data Buckes, Endpoints, Access 

Tokens and File Storages are listed at the top and can be listed, edited and 

created from there. Further down in the menu is the plugin management, the 

configuration options for the installed plugins (here: The HTTP-Device Plugin) and 

the administration options. The admin options are not usable in large parts 

although they are displayed. This is due to the fact that the license used does not 

allow the creation of user accounts, but the option is still displayed.  

Individual sub-items in the menu, e.g. the Devices sub-item, then always offer 

further configuration options for this menu item in the right part of the window: 
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Figure 20: Under the menu point "Devices” Thinger.io will show a list of all configured devices and 

allows for creation of new device configuration. 

ThingsBoard offers two separate web interfaces depending on whether one is 

working as a system administrator or as a tenant. The system administrator can 

change system settings and manage tenants and tenant profiles from his 

interface: 

 

Figure 21: Web GUI for the ThingsBoard system administrator after login. It is similar in design to 

a tenant web GUI but shows different options in the menu on the left. 
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The menu structure is also integrated into the left part of the browser window in a 

column. The sub-items are not divided into groups (except for Edge management 

and System settings), which makes it difficult to keep track. Only on the start page 

(Home) a grouping of the individual sub-items as tiles in a grid can be found: 

 

Figure 22: The ThingsBoard dashboard start page shows large tiles that allow navigation to the 

specific configuration options, dashboards and other parts. 
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Similar to Thinger.io, further configuration for a topic can then also be realized via 

the individual sub-items. Devices can be created, configured and deleted via the 

"Devices" subitem: 

 

Figure 23: The menu point "Devices" will show all configured devices on the right part of the 

browser window. Clicking on a device will open a slide-in window with the devices configuration 

options. 

Thanks to the rule chains, ThingsBoard can perform any number of complicated 

dependencies and data transformations via the front end: Since JavaScript can 

be used as a scripting language, sent JSON data, for example, can be fully 

processed. There are also already predefined so-called "nodes" with which data 

can be enriched, filtered and transformed and actions can be triggered. 
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Figure 24: ThingsBoard Rule Chains can filter incoming data, transform outgoing data and react 

to it, i.e. by logging it, sending an RPC or generate an alert. 

The web interfaces of Thinger.io and ThingsBoard are very similar in structure 

and operation: Both offer a menu structure on the left side and display the 

corresponding content on the right side (e.g., configuration options, lists of 

devices, tokens or dashboards or, if a dashboard is selected, the content of this 

dashboard. By specifying meaningful names in the menu (e.g., item "Dashboards" 

shows the list of configured dashboards"). Operation is intuitive even for 

inexperienced users. Thinger.io additionally relies on color delimitations 

(individual menu items have different colors), while ThingsBoard uses a corporate 

design here that has uniform design elements (blue background, white icons and 

font). In the ThingsBoard Professional edition a customization of this design is 

possible [57].  

6.1.5 Managing Wi-Fi enabled Network Devices centrally 

When it comes to managing generic Wi-Fi enabled network devices, such as 

Linux-based access points, metering stations or routers, ThingsBoard is clearly 

preferable to Thinger.io. ThingsBoard's HTTP API can be used in a hardware-

agnostic way and provides a good basis for connecting arbitrarily complex devices 

to the management platform through auto-registration, the ability to send 

telemetry data to device-specific API endpoints and control via RPC. The data 
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can be further processed via the rule chains, e.g. can also be sent to the Amazon 

Cloud (AWS) or an external MQTT broker.  

Thinger.io offers some functions only for the C client software specifically intended 

for microcontrollers. Functions that are actually necessary, such as saving 

measurement data and configuration data for a device at the same time, cannot 

be performed via the HTTP API.  

The management of Wi-Fi 6E-capable Linux devices is thus only sensibly possible 

with ThingsBoard. As a management platform ThingsBoard offers sufficient 

configuration options to be able to cover a wide range of use cases and is 

therefore suitable for the use cases presented in this work (measurement of Wi-

Fi 6E connections). 

  



Test and Evaluation 

 

60

6.2 Evaluation regarding Wi-Fi 6E 

Since it can still be assumed that the channels in the 6 GHz band are not being 

used by other subscribers at the time the measurements are carried out, there is 

the advantage that throughput measurements are hardly or not at all influenced 

by other radio transmissions. This means that the actual performance of the 

hardware used (AX210 & Aruba AP-635) can be viewed with greater certainty. 

On the one hand, the selected hardware parameters are particularly decisive 

here, such as the channel bandwidth, where 160 MHz can be used in the 6 GHz 

band for the first time. This will be less relevant for IoT applications, since the 

maximum 2402 Mbit/s possible with OFDM modulation and two spatial streams 

will exceed the requirements of most IoT use cases. It is nevertheless interesting 

to look at what data throughput is possible at the transport layer (TCP/UDP) over 

a Wi-Fi 6E connection also in comparison to previously used Wi-Fi 6 (802.11ax) 

and Wi-Fi 5 (802.11ac) connections. 

On the other hand, special attention was to be paid to the newly usable OFDMA 

modulation method (which is also used in LTE, for example). However, it was 

determined that OFDMA cannot currently be used with the available hardware 

(see chapter 6.2.8). 

6.2.1 Hardware 

The driver of the AX210 does not yet offer all configuration options that are usually 

available and can be manipulated by tools like iw. In particular, the modulation 

could not be forced explicitly (e.g. OFDMA could not be forced) and no fixed 

transmission bit rate could be specified. An error message was always generated 

according to the following specification:  

SET failed on device wlan0 ; Operation not permitted. 

This is a feedback from the Netlink interface that the driver or firmware has refused 

to change the parameter.  

In addition, an error was found in the firmware's data feedback to the operating 

system: For the NIC, wrong limits regarding the transmit power within the selected 

regulatory domain are forwarded (22 dBm for all channels in the 2.4 GHz, 5 GHz 

and 6 GHz bands) [14]. However, the transmit power of the card could be reduced 

manually so that the limits could be met. 
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a) Influence of the channel bandwidth 

In the 6 GHz band all possible channel bandwidths (20, 40, 80 and 160 MHz) 

could be successfully configured and data could be transmitted. All three available 

160 MHz channels could be used in the tests, SSIDs on these channels were 

found during scanning of the AX210 and association was possible without any 

problems. However, the additional channels added with the 6 GHz frequency 

band increase the scanning interval to about 7 seconds in order to be able to scan 

all available channels in the three frequency bands. 

b) Influence of the modulation parameters 

The MCS indices 10 and 11 with 1024-QAM, which are newly possible with the 

802.11ax standard, result in a further increase in the theoretical throughput on the 

radio interface. In the following measurement series it becomes clear that these 

MCS are also frequently selected under good conditions (high reception quality), 

but less so with 6 GHz. Likewise, the use of two spatial streams is also frequently 

added in TX, so that the gross data throughput negotiated by the card often 

corresponds to the maximum possible data throughput in transmit.  

Another limitation of the card was found here: Depending on the NIC used 

(besides the AX210, the AX201 is also affected) only one spatial stream is 

possible in the RX. The NIC does not use the possible two spatial streams despite 

good channel parameters. In the lab measurements during this work, the behavior 

was primarily found when using the card in the 6 GHz frequency band (as a result, 

the transmit data throughput (upload) is often about twice as large as the receive 

data throughput (download)). However, other users report in the corresponding 

kernel bug report that this problem can also occur when using 802.11ax in the 5 

GHz band [58]. This could not be observed in the laboratory measurements within 

the scope of this work. A bugfix proposed in the bug report does not bring any 

change. 

However, these statements only refer to modulation with OFDM. OFDMA could 

not be tested. 
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6.2.2 Quality of Service and Performance 

For 6 GHz and 5 GHz, the results are basically similar as long as the transmission 

parameters are the same. For example, if the channel bandwidth at 6 GHz is 

restricted to the 80 MHz possible at 5 GHz and care is taken to observe the 

limitation of the spatial streams. The diagrams shown in the following can be found 

enlarged again in the appendix. 

a) Throughput in Wi-Fi 6E and Wi-Fi 6 (802.11ax) 

In throughput measurement, one recurring phenomenon is particularly worth 

mentioning: In TCP throughput measurements with iperf3 single zero data points 

can be observed in some cases, which drop out of the usually expected 

measurement series. This behavior does not follow a recognizable pattern and is 

probably due to a limitation in the granularity of the measurement (acquisition of 

data points happens every second): When merging the data series from iperf3, 

these null values then occur. In a packet capture that was performed during such 

a measurement these zero transmissions are not included, but a continuous data 

flow is present. 

 

Figure 25: Measurement over 6 GHz with 80 MHz channel width, TCP: Some data points in the 

upload are zero. 
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In general, however, fluctuations of varying intensity can be observed in the data 

series. Fluctuations in net data throughput are to be expected with radio 

transmissions, especially in the 5 GHz band, which may also be occupied by other 

participants. 

b) Latency 

For latency detection, the round-trip time (RTT) to the iperf3 server was also 

measured continuously during the throughput measurement. An interesting 

picture emerges, especially for the download to the client via TCP: 

While stable RTTs are measured in the upload in comparison (the slight existing 

jitter is to be expected for a WLAN connection) an edge-like regular increase of 

the RTT (like a sawtooth curve) results in the download. This is an indication that 

the interface is much more heavily loaded in the upload, so that packets may 

collect in a buffer here before they are sent. However, this sawtooth-like curve is 

only observed in the RTTs of the latency measurement and does not seem to 

have a significant effect on the data throughput measurement: 

 

Figure 26: Measurement over 6 GHz with 160 MHz channel width, TCP. Download with one spatial 

stream, upload with two spatial streams. Throughput reaches over 1 Gbit/s in this case. 
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Figure 27: Corresponding RTT measurement. The sawtooth-like behavior of while downloading 

with high jitter can be clearly differentiated from the low jitter behavior while uploading from the 

client. 

These specific fluctuations do not show up in the measurement with UDP. With 

UDP considerably longer RTTs occur (when comparing with the more stable 

transmit-part of TCP) but these are arranged in an edge-like manner: 

 

Figure 28: RTTs measured via ICMP Ping for a UDP measurement, the first half for download, the 

second half for upload from client. 

c) Stability/Availablity (Longterm Measurement) 

Individual measurements were performed for more than 12 hours in both the 5 

GHz band (Wi-Fi 6) and the 6 GHz band to identify possible long-term problems 

with high continuous data throughputs. In both cases no problems were identified. 

Both the client-side transmit retries are in the negligible range (below 0.02% TX 

retries on all attempted frame transmissions) and the dropped frames in the 

receive, which are zero or close to zero in almost all measurements. Regularly, 

beacon frames, which were kept in a separate drop category, were dropped. This 

is probably due to remote access points whose beacons could not be completely 
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decoded correctly during scanning. The connection between the clients around 

the APs can be considered stable as long as the reception quality is good. In the 

distance measurements the reception quality naturally decreases as the distance 

increases, thus also the stability, which first manifests itself there in the reduction 

of the MCS and spatial streams and then in errors and dropouts in the data 

transmission. 
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6.2.3 Measurement scenario: Client-to-Client in one WLAN cell 

If a measurement is performed within a cell (Single BSS) between two clients (or 

STAs), the data must still be transmitted via the access point with which both 

clients are associated. This means that in the next scenario (Chapter 6.2.4) we 

expect about twice the throughput compared to the values measured here. 

Reduced throughputs can be expected here due to the channel being occupied 

by one of the clients in each case and when the frame is forwarded by AP to the 

other client, the maximum of which is primarily determined by two parameters: 

The respective negotiated MCS of the two clients. Even if one of the clients 

negotiates the maximum (e.g., at 80 MHz and two spatial streams with the short 

guard interval (0.8 µs) a maximum of 1201 Mbit/s gross data throughput) the MCS 

of the other client, which may have been chosen lower, can limit the throughput 

here. In such a scenario special care must be taken to ensure that both clients 

have the best possible connection to the AP, or at least a connection of 

approximately the same quality. Otherwise, one of the clients will inevitably restrict 

the throughput.  

 

Figure 29: Measurement over 6 GHz with 80 MHz channel width, TCP. With two spatial streams 

in the TX, theoretical throughput is 1.2 Gbit/s, due to limits by the RX spatial stream (only one), 

real throughput is much lower (only about 230 Mbit/s) 
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In this measurement scenario this problem can be strongly seen in the fact that, 

as already described above, only one receive spatial stream is used for the clients 

at 6 GHz due to software limitations. Therefore, it is then irrelevant that the clients 

in the transmit can offer two spatial streams: The data throughput is reduced to 

about half of the theoretically possible maximum (defined by the MCS) in the 

receive, and even only about a quarter of the maximum in the transmit. 

Since the use of two spatial streams in both directions is possible at 5 GHz correct 

communication via two spatial streams in both directions can be observed here. 

The comparison shows that the data throughput is approximately doubled, but 

there are also stronger fluctuations in the data throughput, presumably due to the 

higher channel occupancy: 

 

Figure 30: Measurement over 5 GHz with 80 MHz channel width, TCP. Throughput is nearly 

doubled with about 400 Mbit/s. The MCS flapped between 10 and 11, corresponding to 1080 

Mbit/s and 1201 Mbit/s for both RX and TX. 
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6.2.4 Measurement scenario: Client-to-external-Server outside of the 
cell 

When using the external server (connected to the AP via a cable connection) 

relatively interference-free communication between the AP and a client can now 

be considered guaranteed in the 6 GHz band. The practical maximum throughput 

that can be achieved can therefore be tested here at 160 MHz channel bandwidth. 

The following should be noted here: The maximum gross data rate is only 

achieved if: 

a. The shortest guard interval is used (0.8 µs), 

b. One of the widest channels is used (160 MHz), 

c. The maximum MCS is negotiated between AP and STA, 

d. Both possible spatial streams are used. 

Not all the conditions mentioned here are always given for the following 

measurement series. Only one spatial stream was available in the download (RX) 

of the measurement client. If only one of the two spatial streams is used the 

throughput maximum for one spatial stream is tested. Additionally, the maximum 

MCS could rarely be negotiated with the AX210. Most of the time only an MCS 

index of 8 or 9 is possible. This also seems to be a limitation due to the Linux 

system or the driver used, since the maximum MCS is possible under Windows 

under the same conditions (only the measurement software could not be used 

there). 

TCP has generally a lower data throughput than UDP due to mechanisms like 

congestion control, out-of-order delivery/retry etc. 
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Figure 31: Measurement over 6 GHz with 160 MHz channel width, TCP. Transmit via two spatial 

streams reaches about 1 Gbit/s. Gross bitrates are wrongly reported here by netlink, RX MCS 11 

corresponds to 1201 Mbit/s instead of 1500 Mbit/s and TX MCS 8 corresponds to 1729 Mbit/s  

 

Figure 32: Measurement over 6 GHz with 160 MHz channel width, UDP. Transmit throughput 

reaches over 1.5 Gbit/s. Gross bitrates are wrongly reported here by netlink, RX MCS 11 

corresponds to 1201 Mbit/s instead of 1580 Mbit/s and TX MCS 8 corresponds to 1729 Mbit/s 
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The diagrams also show an error of the driver: In some cases it calculates the 

wrong gross data rate from the used MCS when returning it to the measuring 

program. In the cases shown a data rate of about 1500 Mbit/s, for example is 

calculated by the driver, which, however, does not exist as a possible data rate, 

especially not with the negotiated MCS.  

If the gross bit rate reported by the driver is disregarded and the achieved 

throughput is compared with the actual gross bit rate that can be calculated from 

the MCS, it can be seen that about 83% net throughput is achieved with UDP in 

RX, for example, and even more than 86% in TX. In comparison, TCP achieves 

only about 70% (RX) and only about 58% in TX (1000 Mbit/s vs. 1729 Mbit/s). In 

comparative measurements in the 5 GHz band at least 80% of the gross data rate 

was also achieved with UPD and about 70% with TCP. By extrapolation, the 

maximum MCS 11 with two spatial streams can be expected to achieve about 1.9 

Gbit/s throughput for UDP under good conditions and about 1.7 Gbit/s for TCP. 

Under very good conditions, more than 2 Gbit/s may also be possible for UDP. If 

hardware that reliably supports this MCS is available in the future, this assumption 

can be verified. 
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6.2.5 Measurement scenario: Client-to-AP-to-AP-to-Client 

Another measurement scenario considered is communication between two clients 

connected to different APs of the same Extended Service Set: Here, the 

communication runs over two different channels so that there is no mutual 

interference in the data transmission (e.g., by selecting channels 15 and 47 in the 

6 GHz band, each 160 MHz wide). The APs communicate via the wired 

connection. 

Similar, slightly reduced data throughputs can be expected here at 6 GHz as in 

the receive in chapter 6.2.4, both in RX and TX direction, since one of the two 

clients is limited by the missing second spatial stream. In addition, a somewhat 

stronger scatter of the measurement data is to be expected due to the 

participation of two air interfaces. Only the last assumption is confirmed in the 

measurement data: The throughput at 6 GHz falls significantly short of the 

expected 70%-80% of the negotiated gross bit rate: 

 

Figure 33: Measurement over 6 GHz with 160 MHz channel width, TCP, between two Clients in 

two different BSS of an ESS. There are obvious fluctuations in the device transmit bitrates. RX 

and TX throughput are very low with about 300-400 Mbit/s compared to the expected 1 Gbit/s. 

This behavior could be reproduced several times at 6 GHz. A cause for this is not 

apparent. The picture is different at 5 GHz: The expected throughputs are 
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achieved here, only the slight reduction of the throughput and stronger scattering 

compared to a measurement against an external client occurs: 

 

Figure 34: Measurement over 5 GHz with 80 MHz channel width, UDP, between two Clients in 

two different BSS of an ESS. Throughput reaches 850 Mbit/s which is reduced compared to the 

900-1000 Mbit/s reached with an external measurement server. 
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6.2.6 Measurement scenario: AP-Handover/Roaming 

In advance of this measurement the transmission power of the two access points 

used was reduced so that the roaming range in the 6 GHz band was 

approximately in the middle of the corridor between the two rooms used. 

 

Figure 35: The signal strength of the APs was measured and an ideal roaming area was defined 

in the hallway between the two rooms. AP transmit power was reduced to fit this area. 

Clients usually have a threshold at which the signal strength of the previous 

associated access point is so low that they switch to the other access point. 

Typically, a client switches either immediately or shortly after the signal strength 

in the other cell is greater than in the current cell [59]. Depending on the 

manufacturer the hardware behaves differently (different limits) and parameters 

such as roaming aggressiveness or support for Neighbor Reports with 802.11k 

also change the roaming behavior. In addition, some clients are not able to use 

roaming at all.  

For the AX210, the tests show the following picture in this respect: Under 

Windows 11 with driver 22.130.0.5 the NIC is able to perform roaming between 

the two APs. The roaming process interrupts the data transmission for about one 

second. Under Windows the roaming aggressiveness can be configured as a 

parameter in the driver settings. We tested with the value set to "medium". This 

parameter controls the reception power at which the NIC automatically scans for 

other access point candidates in the environment [60].  
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However, if the AX210 is used under Linux 5.17 with driver iwlwifi-ty-a0-gf-a0-69 

the NIC behaves like a sticky client: Roaming in 6 GHz does not work then. Even 

if the transmission power of the APs is reduced to 10 dBm (resulting in between  

-80 dBm and -85 dBm to the remote AP on the client side) roaming to the other 

access point is not possible. Only when the client completely loses the connection 

(i.e. moves out of the reception range of the old AP), a scan is performed and then 

the client associates with the nearest AP. Roaming could not be configured via 

the driver interface. It is not clear here whether roaming is perhaps disabled on 

the driver side or possibly also not possible with Linux drivers so far. A bug report 

opened for this did not bring an answer from Intel yet [61]. It should be noted that 

this NIC can also be used explicitly in mobile devices like laptops due to its M.2 

form factor. M.2 is the de-facto standard for integrating WLAN and Bluetooth in 

these mobile devices. In such cases the lack of roaming properties is a problem. 
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6.2.7 Measurement scenario: Distance Measurements 

The distance measurements were performed with the minimum channel 

bandwidth, since the primary limitation here is the distance to an access point. 

Measurements were first performed directly under the access point (about 2 

meters away from the AP) and then with increasing distance (2-meter increments) 

to the AP. Upload and download were measured for 30 seconds each. Only TCP 

was tested, since a sufficient connection to the AP can be assumed if a connection 

is established with TCP (handshake) and data is then successfully transferred. 

Both the 6 GHz band and the 5 GHz band were tested to enable a comparison. 

The same transmission power (abbreviated as TP in the following) was selected 

for the AP in the 5 GHz as in the 6 GHz: 23 dBm. Due to the spatial conditions, 

there is a sharp drop in the signal strength of the AP between the 8-meter 

measurement and the 10-meter measurement. This is due to the double doors 

located there (see figure below). The concrete columns in the corridor also cause 

fluctuations in the signal strength. 

 

Figure 36: Distance measurement section where the clients was moved along from the AP further 

into the hallway to the entrance doors. 

The total measurement distance is 26 meters. This is not sufficient to determine 

the maximum reception distance, since sufficiently stable reception is still possible 
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at 26 meters: For example, an MCS index of 7 was still possible at 26 meters in 

the 6 GHz band, i.e. a gross bit rate of 86 Mbps. The power of the access point 

then had to be reduced further in order to measure the distance again. The 

distance limit was then reached at (extrapolated) 40 meters for both 5 GHz and 6 

GHz. After this distance, i.e. 42 meters, a successful TCP connection was no 

longer possible in either case.  

Also to be observed were the fluctuations in the achieved data throughput, which 

occur more frequently with increasing distance; short-term drops in the bit rate as 

well as dropouts in the data transmission also increasingly occur here. 

The following are the measurements with 6 GHz band, first with 23 dBm transmit 

power of the AP, then with reduced transmit power. The measurements with 

reduced transmit power were taken from the point where the reception quality is 

comparable to the end point of the last series of measurements: With transmit 

power reduced to 9 dBm, the 10-meter measurement point is approximately 

comparable to the 26-meter measurement point of the 23 dBm measurement. A 

perfect comparability is not given, since some parameters cannot be influenced, 

e.g. software logic for the selection of MCS and spatial streams. Just like the 

transmission power of the AP the client-side transmission power was also reduced 

to 9 dBm in order to create as much comparability as possible in the upload. The 

only notable difference between 5 GHz and 6 GHz is the different selection of 

spatial streams and the associated MCS indices described above. It should be 

noted, however, that at 5 GHz a higher transmission power of the AP (> 23dBm) 

can be selected in practice, since up to 1 Watt can be transmitted there for some 

channels. This means that in practice a higher range can be achieved than at 6 

GHz, where the limitation of the transmitting power by the BNetzA has an effect. 
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Figure 37: 6 GHz 20 MHz client 

at 2 m, 23 dBm TP 

 

Figure 38: 6 GHz 20 MHz client 

at 4 m, 23 dBm TP 

Figure 39: 6 GHz 20 MHz client 

at 6 m, 23 dBm TP 

 

Figure 40: 6 GHz 20 MHz client 

at 8 m, 23 dBm TP 
Figure 41: 6 GHz 20 MHz client 

at 10 m, 23 dBm TP 

Figure 42: 6 GHz 20 MHz client 

at 12 m, 23 dBm TP 
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Figure 43: 6 GHz 20 MHz client 

at 14 m, 23 dBm TP 

 

Figure 44: 6 GHz 20 MHz client 

at 16 m, 23 dBm TP 

 

Figure 45: 6 GHz 20 MHz client 

at 18 m, 23 dBm TP 

 

Figure 46: 6 GHz 20 MHz client 

at 20 m, 23 dBm TP 

 

Figure 47: 6 GHz 20 MHz client 

at 22 m, 23 dBm TP 

 

Figure 48: 6 GHz 20 MHz client 

at 24 m, 23 dBm TP 
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Figure 49: 6 GHz 20 MHz client 

at 26 m, 23 dBm TP 
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Figure 50: 6 GHz 20 MHz client 

at 10 [26] m, 9 dBm TP 

 

Figure 51: 6 GHz 20 MHz client 

at 12 [28] m, 9 dBm TP 

 

Figure 52: 6 GHz 20 MHz client 

at 14 [30] m, 9 dBm TP 

 

Figure 53: 6 GHz 20 MHz client 

at 16 [32] m, 9 dBm TP 

 

Figure 54: 6 GHz 20 MHz client 

at 18 [34] m, 9 dBm TP 

 

Figure 55: 6 GHz 20 MHz client 

at 20 [36] m, 9 dBm TP 
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Figure 56: 6 GHz 20 MHz client 

at 22 [38] m, 9 dBm TP 

 

Figure 57: 6 GHz 20 MHz client 

at 24 [40] m, 9 dBm TP 

 

 

  



Test and Evaluation 

 

82

6.2.8 Regarding OFDMA 

Originally, each of the tests carried out above was also to be tested with OFDM 

in addition to OFDMA, i.e. modulation, as part of this work. However, OFDMA is 

not used directly by all subscribers in a network who support it, but is negotiated 

between individual (or all) subscribers and the access point. It can also be 

activated individually for the uplink or downlink [62]. It allows simultaneous 

transmission of different subscribers within one OFDM symbol by dividing the 

subcarriers among the participants [63]. This allocation of resource units (RUs) is 

done via trigger frames of which there are several types: Basic trigger frames, 

multi-user request-to-send (MU-RTS) frames, buffer status report frames, 

bandwidth query report poll (BQRP) and several more. The access point informs 

the participating STAs that they can use OFDMA with a certain amount of RUs.  

 

Figure 58: Trigger Buffer Status Report Poll (BSRP) Frame (a Trigger frame), sent from the Aruba 

AP to an Intel NIC telling it to use 484 tones of the 80 MHz channel, which is half of it. 

Regardless of whether UL-OFDMA or DL-OFDMA is to be used the access point 

must allocate the RUs to the STAs. In practice, the Aruba APs used also sent the 

necessary trigger frames. Wireshark captures for this are linked in the appendix 

for download. If OFDMA is used in the download an STA must respond with a 

clear-to-send after it has received an MU-RTS frame as a trigger, thereby 

confirming that the STA will use OFDMA in the future. The AP then sends multi-

user DL PPDUs to the STAs and requests acknowledgement of receipt with a 

block ACK request (BAR). The STAs then each respond with their own Block 

ACK. 
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OFDMA was tested with the AX210 in the 6 GHz band as well as in the 5 GHz 

band (802.11ax). An Intel AX201 (under Windows as well as MacOS) and an 

Apple iPhone with 802.11ax support were then also tested in the 5 GHz band. 

The AX210 was tested under Linux as well as Windows. No transmission with 

OFDMA could be reliably determined for any of the cards mentioned. The STAs 

partially responded to the trigger frames, e.g., an AX210 could be observed 

sending a block ACK, but only to a trigger frame that allocates the entire width 

(i.e. all subcarriers/tones) to the client, which corresponds to operation with 

OFDM: 

 

Figure 59: Intel NIC acknowledging a BSRP Trigger frame which allocated all channel subcarriers 

to the NIC, not a subset. 

In principle, after OFDMA has been successfully negotiated between the AP and 

one or more STAs, data frames should be transmitted via the respective allocated 

resource units. For the measuring station that listens to OFDM-modulated frames 

on the channel (with which the captures were made) this means that OFDMA-

modulated data frames are not recorded in the capture: Data frames that use, for 

example, a 484-tone RU at 80 MHz channel bandwidth are not captured. 

However, data frames from clients that have not actually been allocated the entire 

channel bandwidth are still captured in the captures: So, despite being told to use 

certain RUs, these clients continue to use the entire channel. In addition, when 

observing the channel occupancy (spectrum analysis), we were always able to 

detect utilization on the entire channel bandwidth. This both indicates that none 

of the clients in use is currently using OFDMA successfully. However, OFDMA-

modulated communication could possibly be observed in another case with a 

Samsung S10e and another access point Cisco (Catalyst) 9115 AP. But there is 

no certainty here either: In particular, OFDMA could not be reliably and 

reproducibly negotiated here either, but only in one test case [64]. Further, more 

in-depth analysis is therefore necessary here. Of particular interest here would be 

the possibility of recording OFDMA-modulated frames in Wireshark as well as a 

more detailed analysis of the frequency spectrum (i.e. recording of the subcarriers 

and their utilization).  
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Our observation at least shows the correct coordination of the allocation of RUs 

by the trigger frames of the AP. Only the other participating STAs do not yet react 

to this in such a way that OFDMA is used. However, the Wi-Fi Alliance has 

certified the NICs used for Wi-Fi 6 and Wi-Fi 6E [65] [66]. The certification also 

clearly states the support of OFDMA as well as the support of trigger frames. Upon 

request to the Wi-Fi Alliance, it has not yet been possible to determine how the 

Wi-Fi Alliance could successfully test OFDMA [67]. 
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6.3 Reference values in the 5 GHz Frequency Band 

In order to be able to make a better comparison between the measurements in 

the 6 GHz band and the previously possible 5 GHz band, measurements were 

also made with 80 MHz channel bandwidth in both bands. 160 MHz was not 

possible in the 5 GHz band, so no comparison can be made for the maximum 

possible channel bandwidth in the 6 GHz band. 

 

Figure 60: Measurement over 6 GHz with 80 MHz channel width, UDP. Due to only one spatial 

stream in the download direction download throughput is not directly comparable to download 

throughput with 5 GHz, which uses two spatial streams. 

In terms of throughput, the measurements with 802.11ax in the 5 GHz band and 

6 GHz band are almost identical if you disregard the fact that a spatial stream is 

missing in the download at 6 GHz. The maximum MCS index 11 is even selected 

here at 80 MHz in both cases. At 6 GHz, however, only for receive (i.e. only with 

a spatial stream) and at 5 GHz the high bit rate cannot be maintained as soon as 

a data transmission occurs: Here the MCS index is reduced to 9. Also worth 

mentioning here is the slight drop in the data transmission rate in transmit at 6 

GHz via UDP. This behavior also occurs at 160 MHz channel bandwidth (see 

above), but is not found at 5 GHz. An explanation for the phenomenon could not 

be found. TCP does not show this behavior. 
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Figure 61: Measurement over 5 GHz with 80 MHz channel width and 802.11ax enabled, UDP. 

Throughput is like 6 GHz upload in both directions, due to using two spatial streams. Note the 

change in the selected MCS/bitrate when actually transmitting or receiving and it changing when 

the direction is not in use. 

As an addition, the same measurement with 802.11ac is shown here. Note that 

the OFDM uses a different subcarrier spacing and OFDM symbol duration for the 

same MCS index, so the gross data rate is different: 

 

Figure 62: Measurement over 5 GHz with 80 MHz channel width and 802.11ac. Bitrate is lower 

despite same MCS as in the figure above due to different OFDM characteristics.  
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6.4 NetworkManager Problems on Debian 

The measurements were performed under Debian Sid with kernel 5.17. However, 

some measurements were not usable because they showed the following 

phenomenon:  

 

Figure 63: Debian NetworkManager causes low throughput while scanning on the interface for 

seven second intervals. 

About every fourteen seconds the data throughput drops by about 60% for seven 

seconds and then recovers. This regular pattern could be observed at both 5 GHz 

and 6 GHz. 

 

Figure 64: Debian NetworkManager scans for a network and while doing so, reduces throughput 

on the interface. 

The cause is the NetworkManager component of Debian: When the GUI interface 

of the NetworkManager is open (via this you see a list with the available WLAN 
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networks) an active scan for available networks is performed every seven 

seconds to update this list. Exactly during this scan interval, which lasts seven 

seconds, the drop in data throughput occurs. These scans should actually be 

executed in the background and not affect the throughput. The behavior could be 

circumvented in the further tests by closing the GUI component before each test. 

This meant that the problem did not occur any longer.  
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7 Summary and Future Prospects 

The automated management of Wi-Fi 6E networks and IoT devices in these 

networks can be well mapped with ThingsBoard. New devices can be integrated 

into the management platform via a provisioning process and also configured 

centrally. Communication between the devices and the platform can be 

authenticated and confidential. The devices can be controlled and (measurement) 

data can be received and sent. Central monitoring is possible as well as diagnostic 

collection of audit logs of the platform or device logs. Updates can also be 

managed centrally and applied to the devices. The flexible rule chains allow 

granular logic with which, for example, data can be processed, or the control of 

the devices can be carried out. Thinger.io takes a slightly different approach with 

the primary target group of microcontrollers, not the Linux systems used here in 

this thesis. In addition, some points, such as the control of the devices or the 

collection of data, are not as individually configurable or offer a smaller range of 

functions. 

In the future we should take a closer look at the behavior of ThingsBoard in a 

large-scale deployment: Only a few devices with Wi-Fi 6E support were available 

here so further questions arise when ThingsBoard works with many 

simultaneously managed devices: How do rule chains behave in such cases, does 

this affect performance in terms of telemetry data processing or provisioning? Are 

there bandwidth issues when rolling out firmware updates? Such a setup could 

perhaps also be realized more closely by a large number of simulated or 

virtualized devices to be managed. 

The focus of Thinger.io on microcontrollers urges a renewed evaluation of the 

software with, for example, Arduino devices, in order to be able to take a closer 

look at the differences to the use with the not yet fully developed HTTP API. 

802.11ax-compatible microcontroller boards could then be used, for instance, to 

evaluate Wi-Fi 6 or Wi-Fi 6E. 

Regarding the Quality of Service in the 6 GHz band (Wi-Fi 6E), it can be seen that 

the net data throughput lags behind the gross bit rate: Only between 58%-86% of 

the gross bit rate is actually achieved as UDP or TCP data throughput, with TCP 

expectedly slightly lower. In the tests the maximum MCS with two spatial streams 

could never be achieved for the optimal configuration (6 GHz channel with 160 
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MHz channel bandwidth). This was only possible with 80 MHz. Throughputs 

above 1 Gbit/s were nevertheless measured with both TCP and UDP. If the values 

measured here are taken as a basis, up to 2 Gbit/s can be expected for the 

maximum MCS index 11 with two spatial streams for UDP and about 1.7 Gbit/s 

for TCP. This could not be verified within the scope of this work but should be 

achievable in the future (perhaps through newly available drivers or other 

hardware). New drivers are also necessary for this reason alone, in order to 

address the existing errors: Currently, two spatial streams are not possible in the 

download in the 6 GHz band, nor could the maximum MCS be negotiated under 

Linux, despite good channel characteristics. Hardware with support for four spatial 

streams can also be expected in the foreseeable future. The use of such NICs is 

rather unlikely in the IoT environment but offers maximum throughput for other 

use cases. 

Some parameters of the Intel AX210 cannot yet be configured or accessed via 

the currently used driver, e.g. the modulation cannot yet be actively influenced, to 

for example prefer OFDMA on the client side. In general, OFDMA is correctly 

supported by the access points used and the APs send out trigger frames to 

allocate the resource units to the subscribers, but none of the devices tested 

currently supports OFDMA sufficiently to use this allocation. Data transfer via 

OFDMA cannot be observed. We can also hope for newer client hardware or 

drivers, especially from other manufacturers, to be able to analyze differences in 

the use of OFDMA.  

Under Linux the AX210s were also unable to perform correct roaming between 

two APs; this was only possible under Windows 11. In the future an evaluation of 

the test cases carried out under Windows could be considered, provided that the 

measurement software can be ported - here, the control of the NIC via the driver 

is particularly decisive: Under Windows some settings can be changed in the 

driver options, which are not possible under Linux (e.g., the roaming 

aggressiveness). 

Due to the limited amount of hardware so far and the fact that Wi-Fi 6E has not 

yet reached an advanced stage of deployment. Tt is not yet possible to make any 

statements on other points either: How will the restrictions on transmission power 

imposed by the Bundesnetzagentur affect deployments in Germany in reality? Will 

there be differences in the rollout between different states because of this?  
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A mesh topology in the 6 GHz band was also not considered in detail, although it 

could also be useful in the IoT environment. Here, however, it is to be hoped for 

better availability of Wi-Fi 6E-capable hardware that will enable the 

implementation of a mesh network and other future testing of more complex 

environment settings. Likewise, the 802.11ax standard results in further points 

such as BSS coloring and beamforming, which were not considered in this work, 

but could also have an influence with regard to data throughput. 
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Appendix A: Comparison chart IoT-Management-Software 

Maximum achievable points are defined by the requirement to reflect the 

importance: 10 points for MUST (required) requirements, 5 points for SHOULD 

(recommended) requirements, 3 points for MAY (optional) requirements and 1 

point for nice-to-have (NITH) requirements. If a requirement is only partially 

achieved/supported, then only partial points are awarded. The online 

documentation of the individual solutions was used as a reference for this 

overview [68] [28] [24] [69]: 

Category 
Maximum 

Points 

Open 

Remote 

Thinger.

io 

Things

Board 
Mainflux 

Provisioning 

SHOULD Initial setup 

can be automated via 

image  

5 0 5 0 0

MUST Initial setup can 

be automated via script 
10 10 10 10 5 

SHOULD Pre-

configuration possible 

directly from the software 

(setting and rolling out 

configuration parameters 

of the device) 

5 5 5 5 2,5

MUST Preconfigure 

network connection for 

initial registration from 

remote site 

10 0 10 5 0
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Category 
Maximum 

Points 

Open 

Remote 

Thinger.

io 

Things

Board 
Mainflux 

MAY Display and 

capture of the roll-out 

status or general state of 

a device 

3 3 3 3 0

MAY Deployment can be 

triggered via frontend 
3 1,5 0 3 0

Authentication 

MUST Device Identity 

Management 
10 10 10 10 10 

MUST Secure 

authentication at 

registration 

10 10 10 10 10 

SHOULD Authorization 

of the devices during 

operation/actions 

5 5 5 5 5

MAY Authentication via 

device identity possible 
3 3 0 0 3

SHOULD Authentication 

parameters can be 

configured in the 

frontend 

5 2,5 5 5 0

Configuration (Over-the-air programming) 
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Category 
Maximum 

Points 

Open 

Remote 

Thinger.

io 

Things

Board 
Mainflux 

MUST Identification of 

devices possible 

(parameters such as 

location, network, device 

configuration) 

10 10 10 10 10 

SHOULD Automatic 

change of network 

connection after initial 

login (Automatic Device 

Configuration) 

5 2,5 5 5 0

MUST Customization of 

functionality (network 

parameters such as 

changing the 

channel/radio 

parameters in operation). 

10 5 10 10 0

MAY Bulk-Configuration 3 1,5 3 3 3 

SHOULD Device 

grouping or configuration 

rules for rollouts 

5 2,5 3,75 2,5 5

SHOULD Full 

configuration of the 

devices can be viewed 

and changed via 

frontend 

5 2,5 5 5 0

Control 
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Category 
Maximum 

Points 

Open 

Remote 

Thinger.

io 

Things

Board 
Mainflux 

SHOULD Remote 

control (SHELL or 

similar) or triggering of 

commands on the 

device. 

5 2,5 5 5 0

MAY Change of the 

device state (Switched 

On/Switched 

Off/Connected/Disconne

cted) 

3 1,5 3 3 0

SHOULD 

Trigger/automate 

reboots and updates 

(rolling upgrade) 

5 2,5 5 5 0

MUST Start performance 

tests 
10 5 10 10 0

Monitoring 

SHOULD Capture 

system metrics centrally 

(metadata such as 

location, OS and device 

version, update status, 

etc.) 

5 5 5 5 5
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Category 
Maximum 

Points 

Open 

Remote 

Thinger.

io 

Things

Board 
Mainflux 

MUST Centrally capture 

performance metrics 

(network health such as 

throughput, congestion, 

CTS/RTS status, packet 

loss, utilization (CPU 

etc.)) 

10 5 10 10 10

MUST Prepared 

presentation of metrics in 

the frontend (GUI) 

10 5 10 10 0

SHOULD Reporting by 

the devices (Automated) 
5 2,5 5 5 5

MAY Notification of 

errors or security 

breaches 

3 0 0 3 3

SHOULD Automatic 

analyses/data 

visualization in 

dashboards 

5 2,5 5 5 0

Security 

SHOULD mTLS or 

HTTPs, DTLS or similar 

possible for general 

communication 

5 5 2,5 5 5
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Category 
Maximum 

Points 

Open 

Remote 

Thinger.

io 

Things

Board 
Mainflux 

MUST Access tokens or 

certificate-based 

authentication 

10 10 10 10 10 

SHOULD RBAC or 

similar for users 
5 2,5 0 5 0

NITH Multi-tenant 

capability 
1 1 0 1 0

Diagnostics 

MUST Device condition 

detection 
10 10 5 10 0

NITH Remote 

troubleshooting possible 

(Self-healing Network?) 

1 0 0 0 0

MAY Audit-Logs 3 0 0 3 3

MAY Central logging 3 0 3 0 0 

Up-to-dateness 

SHOULD System update 5 2,4 5 5 0 

MAY Rollbacks 3 0 1,5 3 0 

MUST Config backups 10 0 5 10 0 

Total points 224 136,5 189,75 204,5 94,5 
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Appendix B: Data References 

Description Link

Measurement Data (InfluxDB): https://www.kalytta.net/th-

assets/master/.wifi-influx-data.tar.gz 

Wireshark packet captures created 

while testing for OFDMA functionality, 

containing OFDMA Trigger Frames 

https://www.kalytta.net/th-

assets/master/pcaps/ 

Further graphs with measurements for 

throughput in 6 GHz and 5 GHz 

802.11ax and 802.11ac 

https://www.kalytta.net/th-

assets/master/graphs/ 
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Appendix C: Figures 

Figure 25: Measurement over 6 GHz with 80 MHz channel width, TCP: Some data points in the 

upload are zero. 
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Figure 26: Measurement over 6 GHz with 160 MHz channel width, TCP. Download with one spatial 

stream, upload with two spatial streams. Throughput reaches over 1 Gbit/s in this case. 
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Figure 27: Corresponding RTT measurement. The sawtooth-like behavior of while downloading 

with high jitter can be clearly differentiated from the low jitter behavior while uploading from the 

client. 
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Figure 28: RTTs measured via ICMP Ping for a UDP measurement, the first half for download, the 

second half for upload from client. 
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Figure 29: Measurement over 6 GHz with 80 MHz channel width, TCP. With two spatial streams 

in the TX theoretical throughput is 1.2 Gbit/s, due to limits by the RX spatial stream (only one), 

real throughput is much lower (only about 230 Mbit/s) 
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Figure 30: Measurement over 5 GHz with 80 MHz channel width, TCP. Throughput is nearly 

doubled with about 400 Mbit/s. The MCS flapped between 10 and 11 corresponding to 1080 Mbit/s 

and 1201 Mbit/s for both RX and TX. 
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Figure 31: Measurement over 6 GHz with 160 MHz channel width, TCP. Transmit via two spatial 

streams reaches about 1 Gbit/s. Gross bitrates are wrongly reported here by netlink, RX MCS 11 

corresponds to 1201 Mbit/s instead of 1500 Mbit/s and TX MCS 8 corresponds to 1729 Mbit/s  
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Figure 32: Measurement over 6 GHz with 160 MHz channel width, UDP. Transmit throughput 

reaches over 1.5 Gbit/s. Gross bitrates are wrongly reported here by netlink, RX MCS 11 

corresponds to 1201 Mbit/s instead of 1580 Mbit/s and TX MCS 8 corresponds to 1729 Mbit/s 
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Figure 33: Measurement over 6 GHz with 160 MHz channel width, TCP, between two Clients in 

two different BSS of an ESS. There are obvious fluctuations in the device transmit bitrates. RX 

and TX throughput are very low with about 300-400 Mbit/s compared to the expected 1 Gbit/s. 
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Figure 34: Measurement over 5 GHz with 80 MHz channel width, UDP, between two Clients in 

two different BSS of an ESS. Throughput reaches 850 Mbit/s which is reduced compared to the 

900-1000 Mbit/s reached with an external measurement server.
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Figure 60: Measurement over 6 GHz with 80 MHz channel width, UDP. Due to only one spatial 

stream in the download direction, download throughput is not directly comparable to download 

throughput with 5 GHz, which uses two spatial streams 
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Figure 61: Measurement over 5 GHz with 80 MHz channel width and 802.11ax enabled, UDP. 

Throughput is like 6 GHz upload in both directions, due to using two spatial streams. Note the 

change in the selected MCS/bitrate when actually transmitting or receiving and it changing when 

the direction is not in use. 
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Figure 62: Measurement over 5 GHz with 80 MHz channel width and 802.11ac. Bitrate is lower 

despite same MCS as in the figure above due to different OFDM characteristics. 
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Figure 63: NetworkManager causes low throughput while scanning on the interface for seven 

second intervals. 
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