
Implementation and evaluation
of network slicing in containerized

5G Campus Networks

Edisson Andres Zurita Hidalgo

Research Project
MSc. Communications Systems and Networks

Lecturer: Prof. Dr. Andreas Grebe

January 11, 2023

Abstract

Implementation and evaluation of network slicing in Containerized 5G
Campus Networks. In this project a 5G Core, Radio Access Network
(RAN) and User Equipment (UE) is deployed in Docker containers, in
order to configure Network Slices and evaluate their performance with
bandwidth throughput tests.

mailto:edisson_andres.zurita_hidalgo@smail.th-koeln.de

Edisson Andres Zurita Hidalgo January 11, 2023

Contents

1 Preface 3

2 Fundamentals 3
2.1 Fundamentals of 5G . 3

2.1.1 Architecture of Mobile Networks 3
2.1.2 Evolution of Mobile Core Network 4
2.1.3 5G Mobile Core Network 11
2.1.4 Network Functions Virtualization 14

2.2 Containerization Fundamentals 16
2.2.1 Introduction: What is a container? 16
2.2.2 Docker containers . 16
2.2.3 Docker compose . 17

3 Project Setup 18
3.1 Software tools used in the project 18

3.1.1 Open5GS . 18
3.1.2 UERANSIM . 19
3.1.3 iPerf3 . 19
3.1.4 Wireshark . 20

3.2 Project Testbed . 20
3.2.1 Containerized 5G Campus Network 21
3.2.2 Network slicing configuration 24

3.3 Testing procedure . 26

4 Test procedure 26
4.1 Bringing up the Mobile Core Network 26
4.2 Provisioning UEs . 29
4.3 Bringing up gNodeB and UEs . 31
4.4 Message exchange and Session establishments 31

4.4.1 gNodeB . 31
4.4.2 User Equipments . 34

4.5 iPerf Tests . 40
4.5.1 iPerf server in outside container 40
4.5.2 iPerf client on UEs . 40

4.6 Plot results . 42

5 Data analysis and Conclusions 43
5.1 Data analysis . 44

5.1.1 Docker behavior for future test 44
5.1.2 Network slicing performance 45
5.1.3 Lessons learned . 45
5.1.4 Future work . 45

5.2 Conclusions . 46

Bibliography 47

2

Edisson Andres Zurita Hidalgo January 11, 2023

1 Preface

This project wants to simulate a 5G core network in a containerized environ-
ment, to test mobile network scenarios as real as possible with docker containers
and try to measure parameters like delay, jitter so it can be considered as an
alternative for future commercial (or enterprise) implementations. All tested
scenarios were performed in TH Köln on-premise servers so it can be available
for future tests and implementations, and to recreate different testbeds accord-
ing to the researcher requirements.

2 Fundamentals

In this section, all the theoretical fundamentals that were used in this project
will be briefly described, so any reader could gather all fundamental concepts
before diving into the tests and investigation results itself.

2.1 Fundamentals of 5G

2.1.1 Architecture of Mobile Networks

A mobile telecommunications system is operated by a network operator such
as Deutsche Telekom, Telefonica or AT&T and is officially known as a public
mobile network (PLMN). As shown in Figure 1, it consists of four main com-
ponents, namely the core network (CN), the radio access network (RAN), the
management system and the user’s terminal device. The latter is colloquially
referred to as the cellphone and more formally as the user equipment (UE)Cox
[1]

Figure 1: Architecture of a mobile telecommunication system.

The core network transports data traffic between the cellphone and one or more
external networks, e.g., the public switched telephone network (PSTN) or the
Internet. The core network also controls the cell phone’s communication with
these external networks and stores information about the network operator’s
subscribers.

The radio access network controls the network’s radio communications with the
cellphone. It communicates with the core network through an interface called
backhaul and with the cellphone through the air interface, also called radio
interface. At this interface, the direction from the network to the cellphone is

3

Edisson Andres Zurita Hidalgo January 11, 2023

called the downlink (DL) or forward link, and the direction from the cellphone
to the network is called the uplink (UL) or reverse link.

The network is controlled by its own management system. Its tasks include
configuring the various components of the core and radio access network, mon-
itoring their performance, reporting faults to the network operator and billing
the user.

2.1.2 Evolution of Mobile Core Network

In this section, a brief review of the history of Mobile Networks (with focus on
Core Network) will be introduced, as it is important to understand the current
architecture used in modern networks.

Mobile Networks began their evolution around the decade of the 1950s, when its
first generation (1G) appeared with the purpose of expanding previous broad-
casting techniques in major important points that concerned the users at the
time, using analog voice modulation with really bulky user equipment, a mo-
bile telephony service (MTS) based on a manual circuit switch core (managed
by a group of call operators) Cox [1]. The most important drivers for mobile
networks at the moment:

• Simultaneous calls

• Spectrum usage

• Privacy and security

• Area coverage

• Reliability

All of them, as we can imagine, remain as main focus points of development for
all the research groups actively working on new standards and improvements
of hardware and software (already on production and upcoming). Some other
concerns where added to the list, as more services and advantages were needed
and the use became more spread (especially by the end of the 90s).

• Data transfer rate

• User mobility

• Quality of service

• Low latency

• End-User security

Given that the service became a massive necessity for all users around the world,
and found great applications such as Broadband internet connection (with high-
speed mobility), Internet of things applications (IoT) and Machine-to-Machine
communication (M2M).

2.1.2.1 Second Generation (2G) In the second generation (2G) of Mobile
Networks, the Mobile Core Network received a great improvement in separation
of planes. It was the pioneer that presented a clear separation between ra-
dio network and switching network. To accomplish that, the base station were

4

Edisson Andres Zurita Hidalgo January 11, 2023

controlled by a Base Station Controller (BSC) which acted as a traffic aggre-
gator/distributor between Base Transceiver Stations (BTS) and Mobile Core
Network. An image depicting 2G Architecture can be find below. There were
also great improvements regarding the following points.

• Digital modulation combined with multi-access schemes. Digi-
tal modulation techniques arose as an efficient way to accelerate voice
transmission and reduce spectrum usage. At the same time, multiplexing
techniques were employed to increase the number of simultaneous calls
allowed and enhance signaling mechanisms with dedicated channels for
control messages. Time Division Multiple Access (TDMA) and Code Di-
vision Multiple Access (CDMA) techniques emerged as the most suitable
options for mobile networks.

• Security and Handset flexibility. GSM introduced the suscriber iden-
tity module (SIM) card, which is a small memory card that stores user in-
formation and security parameters (e.g. user identity, key pairs and more),
providing and extra layer of security for both the user and provider, and
allowing the user to change devices at anytime.

• Improved Mobile Switching Center and new services. Providers
started to offer data exchange services. After the introduction of multiple
access techniques, a few access channels were destined for data exchange
(even though it was at low rate and without simultaneous use of voice, it
was a big progress). Short Message Service (SMS) was offered to, allowing
users to send up to 160 characters per message between each other.

Figure 2: 2G Mobile Network Architecture.

5

Edisson Andres Zurita Hidalgo January 11, 2023

2.1.2.2 A small step before third generation (2.5G and 2.75G) Some
small technical improvements were introduced in between 2G and 3G, due to
the fact that when the user placed a call, the data transmission service became
unavailable. Sudhakar Shetty [3]Instead of allocating all time slots for voice
channels, as done in GSM, a newly introduced concept called GPRS (General
Packet Radio Service) carved out a few channels to data transmission, allowing
users to keep data connections active and working, even when the user was in a
voice call, providing the ”always-on” data experience to the user. Other archi-
tecture changes were made in GPRS, being the most important the following:

• The introduction of direct connection to the packet switched data network
(packet data network, or PDN) instead of bypassing all this traffic through
PSTN. This includes connection to public internet, as well as private net-
works or intranets. This was enabled by the use of Serving GPRS Support
Node or SGSN (which face the suscriber side of the network) and Gate-
way GPRS Support Node or GGSN, which faced the PDN. Both blocks
encompass the so called GPRS Subsystem.

• Inside the Base Station Controllers, a capability called Packet Control
Unit (PDU) was included, which was in charge of redirecting voice traffic
to MSC and data traffic to GGRS. For data traffic, the GGSN then could
forward traffic directly to internet, or to a GPRS roaming exchange (GRX)
in the case the provider was serving traffic to a visiting user, thus, to
provide roaming service in 2G data connections.

An image of 2.5G Mobile Network is shown below:

Figure 3: 2.5G Mobile Network Architecture.

Since the maximum data rate of GPRS was still low (57.6 Kbps if the end user
occupies all the time slots), new modulation techniques and link adaptation

6

Edisson Andres Zurita Hidalgo January 11, 2023

methods were introduced in the early 2000s (with no major network-architecture
changes). This changes were presented to the market as Enhanced Data Rates
for GSM Evolution, or EDGE. The improvements targeted just the Radio
Access Network, and offered a maximum data transmission speed of 384 kbps
with all eight TDMA slots concatenated.

2.1.2.3 Third Generation (3G) In the early 2000s, the internet service
began to spread rapidly among companies and common users across the world,
with a everyday increasing offer of DSL lines for private purposes. This also
boosted the diversity of next-generation services offered through both fixed and
mobile networks, such as voice and video calls, car navigation and audio and
video streaming. Therefore, the data transmission speed offered by EDGE was
not enough for customers, which lead into an important milestone in Mobile Net-
works, and that is the creation of an international consortium called 3rd Gener-
ation Partnership Project (3GPP), composed by the most relevant vendors and
operators of Mobile System in the world at that time. The first specification of
this group was Release 99 that defined the Universal Mobile Telecommunica-
tions System (UMTS). In the figure below the 3G Architecture is shown.

Figure 4: 3G Architecture.

The UMTS comprehends two key components: UMTS Terrestrial Radio Access
Network (UTRAN) and UMTS Core Network (CN). In this initial realease the
CN components were very similar to the GPRS network but evolved deeply in
the next releases, however, the UTRAN part had some huge improvements for
the radio network, including new and advanced channel coding techniques and
the adoption of Wideband Code Division Multiple Access (WCDMA) to boost
up data transmission speeds. It included as well, the concept of NodeB as a
demarcation point between RAN and mobile backhaul network.

7

Edisson Andres Zurita Hidalgo January 11, 2023

Regarding the Core Network, most of the important core blocks remained un-
changed: MSC, GMSC, HLR GGSN and so on. Nevertheless, due to scalability
issues for continuously growing service demand pushed a major change in the
MSC, which was divided into two functions: MSC Server (MSC-S) and media
gateway (MGW).

Given that 3G was a standardized product, it evolved over time with different
”Releases” that were published. Most important features of each release are:

• Release 99. Which was already explained and separated core into two
main key components.

• Release 4. It began the transition to IP core network, to pave the path
from circuit switching to packet switching

• Release 5. Improved downlink speed with new radio specifications, reach-
ing a theoretical 14,4 Mbps maximum speed. On the mobile core a IP Mul-
timedia Subsystem (IMS) to move voice connections to a packet switched
manner. From Release 5 and subsequent releases are called High Speed
Packet Access (HSPA).

• Release 6. Enhanced uplink speed up to 5,8 Mbps under ideal radio
conditions.

• Release 7. Also referred as HSPA+, theoretical speeds of 28 Mbps for
downlink and 11 Mbps were achieved, with more sophisticated modulation
techniques.

• Release 8 and beyond. It the new Evolved Packet Core (EPC) for major
improvements in mobile core, and Enhanced Universal Terrestrial Radio
Access Network (E-UTRAN) for the radio side. These enhancements are
better known as Long-Term Evolution (LTE), leading the path into 4G
Networks.

In Figure 5, there is the progression of uplink and downlink speeds across 3GPP
releases.

Figure 5: 3GPP Releases and Corresponding Theoretical Speeds.

8

Edisson Andres Zurita Hidalgo January 11, 2023

2.1.2.4 Fourth Generation (4G) Release 8 of the 3GPP specifications
marked an important transition in Mobile Networks. It paved the way for
more modular core and radio networks, with open interfaces to be independent
from each other, but trying to keep all CN and RAN blocks connected together
smoothly, working constantly on improving data rates for the ever-growing ap-
plication market. It also tried to provide lower latency with better Quality of
Service (QoS) options Hassan [2]. At the same time, it warrantied interoper-
ability with existing 3G systems, so transition expenses could be soften and
slowly assumed by operators. In 4G, changes targeting the radio portion of the
network were referred to as Long Term Evolution (LTE), while the new mobile
core architecture was discussed as System Architecture Evolution (SAE).

Figure 6: 4G Mobile Network Architecture compared with 3G

System Architecture Evolution (SAE). It defined the Evolved Packet Core
(EPC) as the foundation of the Mobile Core Network. From that point ahead,
all mobile core design try to keep a very modular design, with open interfaces
to make each building block vendor-agnostic, with open interfaces to talk to
other blocks and guarantee backwards compatibility. It settled Internet Pro-
tocol (IP) within the packet core, including Voice over IP (VoIP) for calls and
emerging protocols to packet switching within the core (MPLS being the most
resourceful).

Evolved Packet Core (EPC). As a major development point of Mobile Core,
4G started the decoupling of Control Plane and User Plane and grouping those
functions to individual devices, allowing each blocked to be scaled and improved
independently from each other. Therefore, new nodes emerged from the EPC
evolution, which are described below.

• Mobility Management Function (MME). Is the centralized control
node of EPC. It inherited the user management role of the MSC-Server
as well as the control plane functions of SGSN and some RNC’s roles of
allocating radio resource and facilitating handoff scenarios; but, it doesn’t
handle any user traffic.

• Serving Gateway (SGW). The SGW is an aggregation point termi-
nating the GTP tunnel from the user’s device, and starting a new GTP
tunnel toward the PDN Gateway.

• Public Data Natework Gatewat (PGW). It allocates IP address to
user’s devices with appropriate and allowed connectivity to the PDN net-
work based on the APN, user profile, and type of subscribed services.

9

Edisson Andres Zurita Hidalgo January 11, 2023

PGW also registers and keeps track of data and voice consumption by
each user for billing purposes.

• Policy Charging and Rule Function (PCRF). It stores the policies
to allow or deny services to the user, although the enforcing of these rules
is still performed by PGW.

• Home Suscriber Server (HSS). Is consulted for user authentication,
authorization, session establishment. It uses a protocol called Diameter,
to perform AAA functions.

In the figure 7, the functions from 3G blocks and 4G corresponding successors
are depicted.

Figure 7: 4G Mobile Network Architecture compared with 3G

In legacy systems, the core network contains two domains that transport dif-
ferent types of traffic using different network technologies. The circuit-switched
(CS) domain transports fixed-rate data traffic, such as voice, so that users can
make calls to other devices on the PSTN or to the circuit-switched domains
of other network operators. This is done using a technique known as circuit
switching, where a separate two-way connection is established for each individ-
ual telephone call. The CS domain carries voice traffic at a constant data rate
with minimal delay, but is unsuitable for services where the data rate may vary.

The packet-switched (PS) domain transports variable-rate traffic, such as Web
pages and e-mail, between the user and external data networks such as the
Internet. In this process, a data stream is divided into packets, each of which is
tagged with the address of the desired destination device. Within the network,
routers read the destination addresses of incoming data packets and forward
them to these destinations according to the instructions in the internal routing
tables. The resources of the network are shared by all users, so this technique
is more efficient than circuit switching. However, delays can occur if too many
devices attempt to transmit at the same time.

Recently, the widespread use of smartphones has led to data traffic outweighing
voice traffic on cellular networks. In response, developers have abandoned circuit
switching and introduced mobile communications systems that use only packet

10

Edisson Andres Zurita Hidalgo January 11, 2023

switching. This simplifies the design and allows the system to be optimized for
carrying data traffic, but it also means that voice calls have to be handled in a
different way.

2.1.3 5G Mobile Core Network

There are two key components that redefined the EPC, to become 5GC (5G
Core). The first is the well-established separation of control and user plane
functions from each other, also known as CUPS (Control and USer Plane sep-
aration); and a Service Based Architecture (SBA). In addition, virtualization
capabilities began to be offered for 5GC, enabling a new concept called virtual
Evolved Packet Core (EPC), leading to a cloud-native packet Core.

2.1.3.1 Control and User Plane Separation (CUPS) The proposed
solution recognizes that the bulk of the traffic in the mobile networks is user
data, which is predominantly sent between the mobile devices and endpoints
reachable through the Public Data Network (PDN) interface of the packet core.
These endpoints could include content delivery servers, gaming servers, peer-
to-peer applications, and so on. Hence, if this PDN connectivity is provided
closer to the cell sites, the mobile transport network wouldn’t need to carry the
burden of transporting this massive amount of data between the mobile user
and the centralized packet core locations. CUPS, therefore, takes the plane
separation idea one step further and advocates that instead of co-locating the
devices implementing user-plane and control-plane functions, these should be
deployed independently—with the user-plane devices deployed much closer to
the cell site.

While 4G Core has evolved to 5G Core, it gained some new capabilities and some
functions are divided into more functions but general architecture is similar.
One of the most significant difference between 4G and 5G core network is the
separation of control and user plane functions from each other, also known as
CUPS (Control and USer Plane separation).

Towards a Cloud-Native 5G Core. The application of virtualization tech-
niques and principles of NFV had a major impact on the transformation from
EPC to vEPC and subsequently to 5GC. It is therefore meaningful to under-
stand these technologies that facilitate the transition toward a fully virtualized,
cloud-native 5G core network.

Virtualization, Containerization, and Docker. In the initial days of
server virtualization—to achieve isolation, application security, and resource
sharing—hardware-assisted virtualization through a hypervisor was the com-
monly used implementation. Hypervisor functionality running in a host op-
erating system allows for instantiation of a virtual machine (VM), where a
guest operating system (OS) and virtualized applications can independently
run. Hence, initial implementations of NFV followed the same model, and the
VNFs included an operating system ready to be instantiated as a VM. vEPC
followed the same path.

This can be considered just the tip of the iceberg, since there are much more
interesting concepts involved in 5G Core architecture and enhancements, just
to name a few:

11

Edisson Andres Zurita Hidalgo January 11, 2023

• Kubernetes: as an orchestration platform for better management and per-
formance monitoring and tuning, with a enormous toolset that enables
automation in many key processes (provisioning, maintenance, configura-
tion management.

• Microservices architecture: Since 5GC is broken up in scalable and inde-
pendant building blocks, each of them can be redesign, tested and version-
release controlled, this is a perfect suit for microservices-based implemen-
tation; offering a much higher resiliency of the whole core.

• Multi-Access Edge Compute (MEC). Since CUPS separates 5GC compo-
nents from each other, a great idea could be to terminate user traffic as
close to the user as possible. MEC makes it possible, providing data and
traffic resources in the ”edge” of the network facing the user, terminating
time-sensitive traffic everytime it is possible.

2.1.3.2 5G User Plane Function (UPF). The User Plane Network Func-
tion (UPF) is the cornerstone of CUPS and is responsible for the routing and
forwarding of mobile user’s traffic to an external network. To achieve low la-
tency, UPF may be placed in the edge or far-edge data centers, in addition to
the main DC, as previously discussed in the placement considerations for the
5GC user plane. Additionally, to provide ultra-reliability, either redundant UPF
or redundant traffic paths to the same UPF may be used.

Just like 4G, the 5G packet core also makes use of GTP-U protocol over IP to
encapsulate data traffic between the RAN and gateway to the external network,
simply referred to as Data Network (DN) in 5G terminology. This GTP-U
tunnel is established between the gNB and UPF over the N3 reference interface
(thus sometimes referred to as N3 GTP-U). The UPF terminates this GTP-U
tunnel and forwards the user traffic to the DN. The UPF (like other cloud-native
implementations) is meant to be scalable to meet traffic demands, and multiple
UPFs can be spun up when needed.

The mobile device and the UPF use a construct called a protocol data unit ses-
sion (PDU session) for traffic forwarding. This is similar in concept to the EPS
bearer that was defined in 4G networks, but it has some subtle differences—the
most important being the granularity of the QoS mechanism. Unlike the EPS
bearer, where a single QoS treatment is applied to all traffic, a PDU session can
apply different QoS behaviors to individual traffic flows.

2.1.3.3 5G Control Plane Network Functions Even though this tech-
nique provided great isolation and security, there was a cost to it in the form
of slight wastage of hardware resources and longer instantiation time. For de-
ployments where the balance is more toward agility and resource optimization
than a high level of isolation, the alternate approach of OS-level virtualization
became attractive. This type of virtualization, also referred to as container-
ization, leverages the capabilities built into the OS to provide some degree of
separation, resource sharing, and independence. This segregated environment
is referred to as a container.

Compared to VMs, containers have a smaller footprint and make better utiliza-
tion of the host’s resources while providing a relatively less amount of security

12

Edisson Andres Zurita Hidalgo January 11, 2023

and isolation. For example, containers do not require a guest OS, thus mak-
ing them light on system resource requirements. However, because they share
the host’s OS with other containers, they aren’t fully isolated from each other.
Most importantly, because containers use built-in OS capabilities, they are free
of additional software overhead and resource emulation that would have been
required for VMs. This makes containers the preferred choice for dynamic and
agile environments.

However, additional capabilities are needed for packaging, porting, maintaining,
and managing the containerized applications. Docker is a definite frontrunner
among the tools that offer these capabilities and has been the most popular
choice. Today, the words Docker and container are used interchangeably, almost
completely overlooking the fact that a container is a virtualized application while
Docker is an application to package, build, manage, instantiate, version-control,
and ship a containerized application.

Because some functions are divided, 5G core network has more functions as it
mentioned above. 5G Core Network Functions are like following:

• Access and Mobility Management function (AMF) supports: Ter-
mination of NAS signaling, NAS ciphering and integrity protection, regis-
tration management, connection management, mobility management, ac-
cess authentication and authorization, security context management.

• Session Management function (SMF) supports: session management
(session establishment, modification, release), UE IP address allocation
and management, DHCP functions, termination of NAS signaling related
to session management, DL data notification, traffic steering configuration
for UPF for proper traffic routing.

• User plane function (UPF) supports: packet routing and forwarding,
packet inspection, QoS handling, acts as external PDU session point of
interconnect to Data Network (DN), and is an anchor point for intra- and
inter-RAT mobility.

• Policy Control Function (PCF) supports unified policy framework,
providing policy rules to CP functions, access subscription information
for policy decisions in UDR.

• Authentication Server Function (AUSF) acts as an authentication
server.

• Unified Data Management (UDM) supports: generation of Authen-
tication and Key Agreement (AKA) credentials, user identification han-
dling, access authorization, subscription management.

• Application Function (AF) supports application influence on traffic
routing, accessing NEF, interaction with policy framework for policy con-
trol.

• Network Exposure function (NEF) supports: exposure of capabilities
and events, secure provision of information from external application to
3GPP network, translation of internal/external information.

13

Edisson Andres Zurita Hidalgo January 11, 2023

• NF Repository function (NRF) supports: service discovery function,
maintains NF profile and available NF instances.

• Network Slice Selection Function (NSSF) supports: selecting of the
Network Slice instances to serve the UE, determining the allowed NSSAI,
determining the AMF set to be used to serve the UE.

At this point, NFV becomes important because of cloud-native networking con-
cept because it will be possible for core network to request new network functions
from VNF catalog into E2E service chains. NFV will provide flexibility and time
efficiency to system.

2.1.4 Network Functions Virtualization

Network Functions Virtualization (NFV) is a technology that allows network op-
erators to virtualize network functions and services, such as routers, firewalls,
and load balancers, and run them on commercial off-the-shelf (COTS) servers
or other commodity hardware. This allows operators to deploy and manage net-
work functions and services more efficiently, and reduces the need for specialized
hardware and proprietary software.

One of the main benefits of NFV is that it allows network operators to more
easily and quickly deploy new network functions and services. By using NFV,
operators can create and deploy new network functions and services as virtual
appliances, without having to purchase and install specialized hardware. This
allows operators to respond more quickly to changing customer demands and
market conditions, and to introduce new services and capabilities more rapidly.
Zhang [5]

Another benefit of NFV is that it allows network operators to more easily scale
their networks to meet changing demand. By using NFV, operators can create
virtual networks that can be quickly and easily expanded or contracted, depend-
ing on the needs of their customers. This allows operators to more efficiently
utilize their network resources, and to better manage their costs.

NFV also offers several other benefits. It allows network operators to more easily
migrate their networks to new technologies and architectures, such as software-
defined networking (SDN) and 5G. It also enables operators to more easily
integrate their networks with other systems, such as cloud computing platforms
and internet of things (IoT) networks. Finally, NFV can help operators to
improve the security and reliability of their networks, by allowing them to isolate
and protect different network functions and services.

2.1.4.1 Network Slicing Network slicing is a technology that allows ser-
vice providers to create multiple virtual networks on top of a shared physical
infrastructure. These virtual networks, or slices, can be customized to meet
the specific requirements of different types of users or applications. This allows
service providers to offer a wide range of services with different performance,
security, and reliability characteristics, while still utilizing a common underlying
infrastructure.

One of the main drivers for network slicing is the emergence of 5G networks.
5G networks are expected to support a wide range of new applications and ser-

14

Edisson Andres Zurita Hidalgo January 11, 2023

vices, including high-speed broadband, low-latency communications, and mas-
sive machine-type communications. These applications have very different re-
quirements in terms of performance, security, and reliability, and cannot be
supported by a single network architecture.

Network slicing allows service providers to create virtual networks that are tai-
lored to the specific requirements of each type of application or service. For
example, a service provider might create a slice for broadband services that is
optimized for high-speed data transfer, and another slice for low-latency ap-
plications that is optimized for real-time communications. Some of the typical
slices that might be used in a 5G network include:

• Enhanced Mobile Broadband (eMBB): This type of slice is optimized
for high-speed data transfer, and is designed to support applications such
as streaming video, online gaming, and virtual reality. eMBB slices are
typically characterized by high throughput and low latency, and are able
to support a large number of users simultaneously.

• Ultra-Reliable Low-Latency Communications (URLLC): This type
of slice is designed to support applications that require extremely low la-
tency and high reliability, such as remote surgery, self-driving cars, and
industrial automation. URLLC slices are typically characterized by very
low jitter and packet loss, and are able to support a small number of users
with very high-quality connections.

• Massive Machine-Type Communications (mMTC): This type of
slice is designed to support a large number of devices that communicate
infrequently and in small data bursts, such as sensors, meters, and wear-
ables. mMTC slices are typically characterized by high connectivity den-
sity and low energy consumption, and are able to support a very large
number of devices with minimal network overhead.

In the figure below there is a graphical overview of each slice characteristics and
trade-offs:

Figure 8: 5G network slices and its characteristics.

15

Edisson Andres Zurita Hidalgo January 11, 2023

These are just a few examples of the types of slices that might be used in a
5G network. Other possible slices include ones optimized for specific industries,
such as healthcare or transportation, or ones that support specific types of
services, such as virtual private networks or internet of things applications. By
using network slicing, service providers can create customized virtual networks
that are tailored to the specific requirements of different types of users and
applications.

2.2 Containerization Fundamentals

Since one of the goals of this project is to simulate a 5G Core with Docker
containers, a brief introduction of Containers fundamentals is needed.

2.2.1 Introduction: What is a container?

Containers have seen widespread adoption across the Tech industry. Almost
every company has started adopting containers for deploying microservices.
Container orchestration technology such as Kubernetes(K8) has simplified the
management of containers. Companies using Kubernetes have observed im-
provements in scalability, reliability and operability of their systems. But what
is a container, and why is it so widely used?

Containers provide developers (and almost every tech group in every company)
a fast, easy and portable method to test, deploy and redeploy applications and
new features in a continuous manner. By using the concepts of Namespaces
and Cgroups, containers use a ”subset” of the hosts operating system to provide
isolation from them and offering a lightweight, scalable and flexible alternative
to Virtual Machines (VMs).

2.2.2 Docker containers

Docker is a powerful tool for creating and managing containers, which are iso-
lated environments that allow you to package and run applications in a pre-
dictable and isolated manner. Containers are an increasingly popular way to
develop and deploy applications because they make it easy to create consistent,
repeatable environments that are portable and can be run on any machine with
Docker installed.

To create a Docker container, you first need to create a Docker image. This is
done using a Dockerfile, which is a text file that contains all of the instructions
for building the image. The Dockerfile specifies the base image to use for the
container, as well as any additional dependencies, libraries, or other software
that the application needs to run.

Once the Dockerfile is complete, you can use the docker build command to build
the image. This will create a new image that you can use to run a container.
To run a container, you can use the docker run command, followed by the name
of the image you want to run. This will create a new container and start it
running.

You can use the docker ps command to see a list of all running containers, and
the docker stop command to stop a running container. You can also use the

16

Edisson Andres Zurita Hidalgo January 11, 2023

docker logs command to view the output of a running container, or the docker
exec command to run a command in a running container.

Docker is a powerful tool that can greatly simplify the process of building and
deploying applications. By using containers, you can ensure that your applica-
tions will run consistently and reliably on any machine with Docker installed.

2.2.3 Docker compose

Docker compose is a basic container orchestrator, widely used to deploy and
manage a Docker applications, especially in testing environments. It is the
simplest and first step to bring an application with multiple containers running
and ready for testing and evaluating, because it offers the developer/tester to
run the application locally or remotely, and specify all involved parameters in a
single file.

To use Docker Compose, first a docker-compose.yaml file is needed that defines
the services that make up your application. This file uses a YAML syntax to
specify the details of each service, such as the image to use, any dependencies,
ports, and other configuration options.

Once the docker-compose.yaml file is complete, the docker-compose up com-
mand should be used to start all of the services defined in the file. This
will create and start containers for each of the services, and link them to-
gether so that they can communicate with each other. On the other hand,
the docker-compose down command to stop all of the services and remove the
containers. Some other useful commands are docker-compose logs command
to view the output of all of the services, or the docker-compose exec command
to run a command in a specific service.

A small example of a docker-compose.yaml file is shown below, it defines a
web application, a database, and a cache service:

version: '3'

services:

web:

image: my -web -app:latest

depends_on:

- db

- cache

ports:

- "8080:80"

db:

image: postgres:latest

environment:

POSTGRES_USER: myuser

POSTGRES_PASSWORD: mypassword

POSTGRES_DB: mydb

cache:

image: redis:latest

17

Edisson Andres Zurita Hidalgo January 11, 2023

3 Project Setup

3.1 Software tools used in the project

3.1.1 Open5GS

Open5GS is an Open-Source implementation written in C, to emulate Mobile
Core Network, fulfilling 3GPP group specifications for fourth and fifth genera-
tions. Therefore, it has a Service Based Architecture (SBA) and provides full
flexibility for developers and researchers, to test, personalize and deploy Mobile
Cores based on individual needs. In this project, for the sake of researching we
will use 5G Standalone Setup, meaning there is no 4G components in Core Net-
work, neither in RAN. A descriptive picture for Open5Gs architecture is shown
below on Figure 9:

Figure 9: Open5Gs Architecture

The Open5GS 5G SA Core contains the following functions:

• NRF - NF Repository Function

• SCP - Service Communication Proxy

• AMF - Access and Mobility Management Function

• SMF - Session Management Function

• UPF - User Plane Function

18

Edisson Andres Zurita Hidalgo January 11, 2023

• AUSF - Authentication Server Function

• UDM - Unified Data Management

• UDR - Unified Data Repository

• PCF - Policy and Charging Function

• NSSF - Network Slice Selection Function

• BSF - Binding Support Function

The 5G SA core works in a different way to the 4G core - it uses a Service Based
Architecture (SBI). Control plane functions are configured to register with the
NRF, and the NRF then helps them discover the other core functions. Running
through the other functions: The AMF handles connection and mobility man-
agement; a subset of what the 4G MME is tasked with. gNBs (5G basestations)
connect to the AMF. The UDM, AUSF and UDR carry out similar operations
as the 4G HSS, generating SIM authentication vectors and holding the sub-
scriber profile. Session management is all handled by the SMF (previously the
responsibility of the 4G MME/ SGWC/ PGWC). The NSSF provides a way to
select the network slice, and PCF is used for charging and enforcing subscriber
policies. Finally there is the SCP that enable indirect communication.

The 5G SA core user plane is much simpler, as it only contains a single function.
The UPF carries user data packets between the gNB and the external WAN. It
connects back to the SMF too.

With the exception of the SMF and UPF, all config files for the 5G SA core
functions only contain the function’s IP bind addresses/ local Interface names
and the IP address/ DNS name of the NRF.

3.1.2 UERANSIM

UERANSIM is the open source state-of-the-art 5G UE and RAN (gNodeB)
simulator. UE and RAN can be considered as a 5G mobile phone and a base
station in basic terms. The project can be used for testing 5G Core Network
and studying 5G System.

There are three main interface in UE and RAN perspective, 1) Control Inter-
face (between RAN and AMF), 2) User Interface (between RAN and UPF),
3) Radio Interface (between UE and RAN). UERANSIM supports to run with
Open5GS and some other Open Source Mobile Core implementations (Free5GC
for example). We can connect UERANSIM to one of these 5G Core network
and test the functionality.

3.1.3 iPerf3

IPerf3 is built on a client-server model and measures maximum User Datagram
Protocol, TCP and Stream Control Transmission Protocol throughput between
client and server stations. It can also be used to measure LAN and wireless
LAN throughput.

The tool is simple to use: A single executable runs on both the client and the
server. Command-line parameters indicate which system will take on the role

19

Edisson Andres Zurita Hidalgo January 11, 2023

of the server – the target –and which will be the client. It makes no difference
which is which.

3.1.4 Wireshark

Wireshark is a free and open-source packet analyzer. It is used for network
troubleshooting, analysis, software and communications protocol development,
and education. Originally named Ethereal, the project was renamed Wireshark
in May 2006 due to trademark issues

Wireshark is a data capturing program that ”understands” the structure (en-
capsulation) of different networking protocols. It can parse and display the
fields, along with their meanings as specified by different networking protocols.
Wireshark uses pcap to capture packets, so it can only capture packets on the
types of networks that pcap supports.

• Data can be captured ”from the wire” from a live network connection or
read from a file of already-captured packets.

• Live data can be read from different types of networks, including Ethernet,
IEEE 802.11, PPP, and loopback.

• Captured network data can be browsed via a GUI, or via the terminal
(command line) version of the utility, TShark.

• Captured files can be programmatically edited or converted via command-
line switches to the ”editcap” program.

• Data display can be refined using a display filter.

• Plug-ins can be created for dissecting new protocols.

• VoIP calls in the captured traffic can be detected. If encoded in a com-
patible encoding, the media flow can even be played.

• Raw USB traffic can be captured.

• Various settings, timers, and filters can be set to provide the facility of
filtering the output of the captured traffic.

Wireshark’s native network trace file format is the libpcap format supported by
libpcap and WinPcap, so it can exchange captured network traces with other
applications that use the same format, including tcpdump and CA NetMaster.
It can also read captures from other network analyzers, such as snoop, Network
General’s Sniffer, and Microsoft Network Monitor.

Wireshark can color packets based on rules that match particular fields in pack-
ets, to help the user identify the types of traffic at a glance. A default set of
rules is provided; users can change existing rules for coloring packets, add new
rules, or remove rules.

3.2 Project Testbed

For this project, a VM with the following characteristics was implemented in
the private cloud of TH Köln, in the DN Lab infrastructure:

20

Edisson Andres Zurita Hidalgo January 11, 2023

• Operating System: Ubuntu 22.04

• Core: 8 vCPU

• Memory 32 GB

• Disk: 200 GB

• GPU: 16 GB

Inside this VM, a docker implementation of Open5GS was launched, following
one of the tutorials from the official documentation of Open5GS, that can be
found in the following link:

https://open5gs.org/open5gs/docs/tutorial/03-VoLTE-dockerized/

In this tutorial, a dockerized VoLTE network is configured and deployed using
docker containers for each 5G Core building block, and docker-compose as or-
chestration tool. This GitHub project has a broad scope that comprehends a
Kamailio SIP Server as Callserver and more Voice-over-IP functions, that are
not included in this project since they are out of this project research span.

3.2.1 Containerized 5G Campus Network

In figure 10, a diagram showing the container interconnection is shown to depict
how the docker network will be set up.

Figure 10: Dockerized 5G Core Network

For this purpose, first we need to build the corresponding docker images for
each component of the network.

21

Edisson Andres Zurita Hidalgo January 11, 2023

3.2.1.1 5G Core in Docker Compose file. To build base docker image for
the whole core network, we need to switch to base directory and then build the
docker image. The same procedure is followed afterwards to build UERANSIM
images to be used as gNodeB and User Equipment (UE).

cd docker_open5gs/base

docker build --no-cache --force -rm -t docker_open5gs .

To confirm that the images are correctly build, we could check with the corre-
sponding docker command:

andres@5g -simulation :~$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

docker_mysql latest f61c62007cd7 7 weeks ago 742MB

docker_dns latest 5100 b10cee22 7 weeks ago 251MB

docker_mongo latest f1a96ea930a4 7 weeks ago 281MB

docker_ueransim latest a20cea925dad 7 weeks ago 168MB

docker_open5gs latest 7c479d8de8e6 7 weeks ago 567MB

Before continuing to build the docker compose services, we need to set up
environment variables so they can be passed to the docker-compose.yaml file.
An environment variable is a value that can be passed to the operating system
or an application at runtime. These variables are used to configure various
aspects of the operating system or an application, such as the location of files
or directories, the behavior of an application, or the system path. Environment
variables can be set globally for the entire operating system, or they can be
set for a specific user or application. They are often used to store information
that may change between different environments, such as development, staging,
and production environments. The complete environment variable file is show
below:

andres@5g -simulation :~/ docker_open5gs$ cat .env

Set proper timezone to sync times between docker host and

containers

#TZ=Europe/Berlin

MCC =001

MNC =01

TEST_NETWORK =172.22.0.0/24

DOCKER_HOST_IP =192.168.1.223

MONGODB

MONGO_IP =172.22.0.2

HSS - open5gs

HSS_IP =172.22.0.3

PCRF

PCRF_IP =172.22.0.4

SGW

SGWC_IP =172.22.0.5

SGWU_IP =172.22.0.6

SGWU_ADVERTISE_IP =172.22.0.6

SMF

SMF_IP =172.22.0.7

22

Edisson Andres Zurita Hidalgo January 11, 2023

UPF

UPF_IP =172.22.0.8

UPF_ADVERTISE_IP =172.22.0.8

MME

MME_IP =172.22.0.9

AMF

AMF_IP =172.22.0.10

AUSF

AUSF_IP =172.22.0.11

NRF

NRF_IP =172.22.0.12

UDM

UDM_IP =172.22.0.13

UDR

UDR_IP =172.22.0.14

MYSQL

MYSQL_IP =172.22.0.17

ICSCF

ICSCF_IP =172.22.0.19

SCSCF

SCSCF_IP =172.22.0.20

PCSCF

PCSCF_IP =172.22.0.21

UERANSIM

NR_GNB_IP =172.22.0.23

NR_UE_IP =172.22.0.24

NR_UE2_IP =172.22.0.35

USER EQUIPMENT 1

UE1_IMEI =356938035643803

UE1_IMEISV =4370816125816151

UE1_IMSI =001011234567895

UE1_KI =8 baf473f2f8fd09487cccbd7097c6862

UE1_OP =11111111111111111111111111111111

UE1_AMF =8000

USER EQUIPMENT 2

UE2_IMEI =356938035643804

UE2_IMEISV =4370816125816152

UE2_IMSI =001011234567891

UE2_KI =8 baf473f2f8fd09487cccbd7097c6865

UE2_OP =11111111111111111111111111111111

UE2_AMF =8000

OPEN5GS WEBUI

WEBUI_IP =172.22.0.26

PCF

PCF_IP =172.22.0.27

23

Edisson Andres Zurita Hidalgo January 11, 2023

NSSF

NSSF_IP =172.22.0.28

BSF

BSF_IP =172.22.0.29

ENTITLEMENT SERVER

ENTITLEMENT_SERVER_IP =172.22.0.30

Next, the docker compose images must be build so it can be ready when it will
start to run. For that we need to set up our environment variables that will
help to pass important parameters to the docker network (such as: containers
IP addresses, MCC, NCC, IMSI parameters for UE and more).

For that we need to run the following commands:

set -a

source .env

docker -compose build --no-cache

Then we can move on to build RAN and UE docker images.

3.2.1.2 Containerized RAN and UEs. To build the docker images for
gNodeB and UEs (known as docker_ueransim) we do the following:

cd ../ ueransim

docker build --no-cache --force -rm -t docker_ueransim .

We can check if the image is correctly built with the following command:

andres@5g -simulation :~/ docker_open5gs$ docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

...

...

docker_ueransim latest a20cea925dad 2 months ago 168MB

...

The Mobile Core Network and the RAN and USER portion are ready to be
deployed, but we will bring it alive in a later step.

3.2.2 Network slicing configuration

For an appropriate configuration of network slicing, we need to modify the
proper configuration files of the building blocks that handle slicing in 5G core
and RAN portion of the network. Below the details of each file are shown and
remarked.

3.2.2.1 AMF. In the AMF configuration we must include the Service Dif-
ferentiator (SD) and Slice Service Type (SST) field values, so the slices can be
defined and distinguished among each other and the ”default” slice. The file
below is ∼/amf/amf.yaml :

plmn_support:

- plmn_id:

mcc: MCC

mnc: MNC

24

Edisson Andres Zurita Hidalgo January 11, 2023

s_nssai:

- sst: 1

sd: 00000a

- plmn_id:

mcc: MCC

mnc: MNC

s_nssai:

- sst: 2

sd: 00000b

3.2.2.2 NSSF. In the NSSF config we must also include the SD value so
the NSSF block can provide this details to NRF, so the control plane is aware
that two slices are provisioned across the whole 5G core. The file below is
∼/nssf/nssf.yaml :

nssf:

sbi:

- addr: NSSF_IP

port: 7777

nsi:

- addr: NRF_IP

port: 7777

s_nssai:

sst: 1

sd: 00000a

- addr: NRF_IP

port: 7777

s_nssai:

sst: 2

sd: 00000b

3.2.2.3 UERANSIM - gNodeB. Of course we must tell the gNodeB in
the RAN section to support slices, so the UEs can properly register and access
all the functions needed. The configuration is shown below and can be found in
∼/ueransim/open5gs-gnb.yaml :

List of supported S-NSSAIs by this gNB

slices:

- sst: 1

sd: 000010

- sst: 1

sd: 000011

3.2.2.4 UERANSIM - UE. Both UEs must specify, to which network
slices they want to be registered and served, so this details are configured below.
The configuration file is under∼/ueransim/open5gs-ue.yaml and∼/ueransim/open5gs-
ue2.yaml :

UE 1 (for eMBB slice):

Initial PDU sessions to be established

sessions:

- type: 'IPv4 '
apn: 'internet '
slice:

sst: 1

sd: 000010

emergency: false

25

Edisson Andres Zurita Hidalgo January 11, 2023

Configured NSSAI for this UE by HPLMN

configured -nssai:

- sst: 1

sd: 000010

Default Configured NSSAI for this UE

default -nssai:

- sst: 1

sd: 000010

UE 2 (for mMTC slice):

Initial PDU sessions to be established

sessions:

- type: 'IPv4 '
apn: 'internet '
slice:

sst: 2

sd: 000011

emergency: false

Configured NSSAI for this UE by HPLMN

configured -nssai:

- sst: 2

sd: 000011

Default Configured NSSAI for this UE

default -nssai:

- sst: 2

sd: 000011

Reaching that milestone, we can say that our test-bed is all setup and ready to
be used for network slicing experiments.

3.3 Testing procedure

Since the main goal of this project is to check how does a 5G mobile core with
network slicing parameters performs using Docker containers as its foundations,
the following steps are to be followed. So as a first step, the ”bring-up the
testbed network” will be presented (including 5G Mobile Core, gNodeB and
UEs), depicting logs and packet capture for specific sessions and slices. Then
an additional container will be deployed to perform measurements for each slices
about throughput and delay with similar parameters.

4 Test procedure

4.1 Bringing up the Mobile Core Network

With all the images and services correctly built, now we can run the Mobile
Core Network in docker environment.

docker -compose up -d

To verify if the docker compose is running, we can check with docker compose ls

to see of the compose file is running:

26

Edisson Andres Zurita Hidalgo January 11, 2023

andres@5g -simulation :~/ docker_open5gs$ docker compose ls

NAME STATUS CONFIG FILES

docker_open5gs running (23) ~/ docker_open5gs/docker -compose.yaml

Or docker container ls to check the state of every individual container:

Figure 11: Running containers for 5G Mobile Core

A short version of the docker-compose.yaml file is shown below, the complete
file will be included in the Gitlab project of the DN Lab form TH Cologne:

version: '3'
services:

mongo:

build: ./mongo

image: docker_mongo

container_name: mongo

env_file:

- .env

volumes:

- ./mongo:/mnt/mongo

- mongodbdata :/var/lib/mongodb

- /etc/timezone :/etc/timezone:ro

- /etc/localtime :/etc/localtime:ro

expose:

- "27017/ udp"

- "27017/ tcp"

networks:

default:

ipv4_address: ${MONGO_IP}
webui:

image: docker_open5gs

container_name: webui

depends_on:

- mongo

env_file:

- .env

environment:

- COMPONENT_NAME=webui

volumes:

- ./webui:/mnt/webui

- /etc/timezone :/etc/timezone:ro

- /etc/localtime :/etc/localtime:ro

expose:

- "3000/ tcp"

ports:

- "3000:3000/ tcp"

networks:

default:

ipv4_address: ${WEBUI_IP}
nrf:

image: docker_open5gs

27

Edisson Andres Zurita Hidalgo January 11, 2023

container_name: nrf

env_file:

- .env

environment:

- COMPONENT_NAME=nrf -1

volumes:

- ./nrf:/mnt/nrf

- ./log:/ open5gs/install/var/log/open5gs

- /etc/timezone :/etc/timezone:ro

- /etc/localtime :/etc/localtime:ro

expose:

- "7777/ tcp"

networks:

default:

ipv4_address: ${NRF_IP}
ausf:

image: docker_open5gs

depends_on:

- nrf

container_name: ausf

env_file:

- .env

environment:

- COMPONENT_NAME=ausf -1

volumes:

- ./ausf:/mnt/ausf

- ./log:/ open5gs/install/var/log/open5gs

- /etc/timezone :/etc/timezone:ro

- /etc/localtime :/etc/localtime:ro

expose:

- "7777/ tcp"

networks:

default:

ipv4_address: ${AUSF_IP}
udr:

image: docker_open5gs

depends_on:

- nrf

- mongo

container_name: udr

env_file:

- .env

environment:

- COMPONENT_NAME=udr -1

volumes:

- ./udr:/mnt/udr

- ./log:/ open5gs/install/var/log/open5gs

- /etc/timezone :/etc/timezone:ro

- /etc/localtime :/etc/localtime:ro

expose:

- "7777/ tcp"

networks:

default:

ipv4_address: ${UDR_IP}
networks:

default:

ipam:

config:

- subnet: ${TEST_NETWORK}
volumes:

mongodbdata: {}

dbdata: {}

28

Edisson Andres Zurita Hidalgo January 11, 2023

With the docker compose file up and running, then we must build the docker
image of UERANSIM to be used as gNodeB and UE.

4.2 Provisioning UEs

Another important step to be started before bringing the RAN containers up,
is to add UE configuration via the WEB GUI of Open5GS. That will store all
important data (such as IMSI, AMF value, in our case slice configuration and
much more) in the MongoDB of the core and then provided to the 5G core
functions, so the UEs can be registered and granted all key functions for the
tests.

After the docker-compose up -d execution, the webui container offers a friendly
GUI to the user in order to provision User Equipment (UE) information. To
enter into the WebUI, one must open a browser and place the IP address of the
host machine with port 3000, which is the port exposed for that purposed.

Figure 12: Open5GS Web UI

The default login credentials are user: admin and password:1423. As a good
practice the password was changed after first deployment.

Figure 13: Open5GS Web UI login window

29

Edisson Andres Zurita Hidalgo January 11, 2023

To add a new UE, we must move to the Subscriber tab and click on the plus
sign and the bottom right corner. Then a new submenu appears to enter all
necessary data for the new subscriber. The fields marked with an asterisk (*)

are mandatory. All these parameters are specified in the .env inside the project
directory (includes IMSI, Suscriber Key (K), AMF, OP Key. In Figure 14 below,
the fields are filled for UE1.

Figure 14: Adding a new UE in Open5GS

For this project purposes, next step is to fill is the Slice Configuration section
of the subscriber. As of the completion of the practical phase of this project
(August 2022), Open5GS has a limit of four different network slices supported.
This is enough since the test just involves two different slices to evaluate.

The slice configuration for UE1 is shown below in Figure 15, with the corre-
sponding values for the eMBB slice which is sST=1, sD=00000a and rate limit
of 1Gbps for Up and Downlink transfer maximum rate.

Figure 15: Slice configuration for UE1

30

Edisson Andres Zurita Hidalgo January 11, 2023

The same is depicted for UE2 in Figure 16, which works in mMTC slice, sST=2,
sD=00000b and rate limit of 1Mbps for Up and Downlink transfer maximum
rate.

Figure 16: Slice configuration for UE2

One important remark to make, is that both UEs will get registered in the same
Access Point Name (APN), so both share the same infrastructure and the slice
principle remains in place. After completing all mandatory fields, the final step
is to save the configuration by clicking in the save button on the Suscriber

submenu. Then we can continue to turn up gNodeB and UEs.

4.3 Bringing up gNodeB and UEs

To bring up the gNodeB and UEs needed for the tests, and attach them to the
previously created docker network, the following commands need to be executed:

UERANSIM gNB

docker -compose -f nr-gnb.yaml up -d && docker attach nr_gnb

UERANSIM NR-UE 1

docker -compose -f nr-ue.yaml up -d && docker attach nr_ue

UERANSIM NR-UE 2

docker -compose -f nr-ue2.yaml up -d && docker attach nr_ue2

4.4 Message exchange and Session establishments

4.4.1 gNodeB

4.4.1.1 gNodeB Logs. As a first step, when the gNodeB starts to run, it
must exchange authentication messages with AMF, so it can be authenticated,
checked on capabilities and accepted to offer services to users (UEs). This
can be reviewed and analyzed on the logs displayed on the AMF function of
Open5GS. In the log picture below, we find the logs in AMF container for the
gNB authentication.

Figure 17: gNodeB authentication with AMF function

31

Edisson Andres Zurita Hidalgo January 11, 2023

Here we can see that the gNodeB gets registered in the AMF function, then
the AMF sets up a profile and add the gNB with its IP address (which is
172.22.0.23 in this case), and also a maximum number of streams is fixed.
Inita

4.4.1.2 Packet captures. To analyze in a deeper level, we can inspect the
packets exchanged between AMF and gNB containers. The first packet is a
NGSetUpRequest message, in which there are four items present:

• id-GlobalRANNodeID.Which includes identification values like gNB-ID
which is the ”name” of gNB, in this case is ”000001” as is the first base
station that gets registered.

• id-RANNodeName. Specify a RANNodeName for the new gNodeB. In
our case is UERANSIM-gnb-1-1-1.

• id-SupportedTAList. In this item, the gNodeB tells the AMF function
(and therefore the whole 5G Core) which slices are available and wants
offered to users. Since we already configured in previous steps the slice
values, here we can verify that indeed this slices are advertised: sST=1 and
sD=00000a which emulates eMBB silce; and sST=2 and sD=00000b which
emulates mMTC silce.

• id-DefaultPagingDRX. It indicates to the Core the DRX Paging value.
Paging in Mobile Networks is an important feature, since it allows UEs
to remain in ”idle mode” until they actually have ”something to say” to
basestations and Core Network, to save battery power. UEs in RRC Idle
mode use Discontinuous Reception (DRX) also known as paging cycle to
reduce power consumption. This DRX cycle determines how frequently
UE check for paging messages. In this case it is set to v128 (2), which
means 128 radio frames to wait, that is translated to 1.28 seconds.

Below the packet capture is depicted, splitted into two figures to get the whole
message complete. Figure 18 shows id-GlobalRANNodeID and id-RANNodeName

fields.

Figure 18: gNodeB Setup Request in AMF (part1)

32

Edisson Andres Zurita Hidalgo January 11, 2023

In Figure 19 id-SupportedTAList and id-DefaultPagingDRX are shown.

Figure 19: gNodeB Setup Request in AMF (part2)

The next message is the response sent by the AMF function to gNodeB. Within
this message, which states a ”Successfull Outcome” of the previous request,
there are also four items or fields to explain:

• id-AMFName. It advertises the AMFName which is a basic name of AMF
core function, in this case is open5gs-amf0 for this testbed. More details
are exchanged in the next item.

• id-ServedGUAMIList. GUAMI (Globally Unique AMF ID) is used to
uniquely identify an AMF within a 5G network. It is comprised of the
MCC, MNC, AMF Region ID (set to 02), AMF Set ID (set to 0040) and
AMF Pointer (set to 00).

• id-RelativeAMFCapacity. It indicates the relative processing capacity
of an AMF with respect to the other AMFs in the AMF Set in order to
load-balance AMFs. In our case is set to 255, which makes sense since it
is the only AMF available to process data.

• id-PLMNSupportList. Similar to the id-SupportedTAList , but in
this case the AMF function confirms the offered slices are valid and ready
to be used in the Mobile Core. Here we can once again affirm that the
slices are correctly accepted: sST=1 and sD=00000a which emulates eMBB
silce; and sST=2 and sD=00000b which emulates mMTC silce.

Below the packet capture is depicted, once again splitted into two figures to get
the whole message complete. id-AMFName and id-ServedGUAMIList are shown

33

Edisson Andres Zurita Hidalgo January 11, 2023

in the Figure 20.

Figure 20: gNodeB Setup Response in AMF (part1)

In Figure 21 below id-RelativeAMFCapacity and id-PLMNSupportList are
shown.

Figure 21: gNodeB Setup Response in AMF (part2)

4.4.2 User Equipments

4.4.2.1 UE logs. We will check the logs going from ”bottoms up” way,
meaning from UE up to the 5G mobile core.

In the UE, the entire registration process is illustrated, since there are the
following messages:

34

Edisson Andres Zurita Hidalgo January 11, 2023

• Receives and ACK for the registration request

• Switches state to [MM-REGISTERED/NORMAL-SERVICE] and sends registra-
tion complete.

• Sends a PDU Session Establishment Request.

• After the Core (AMF function) authenticates and grants acccess, a Con-
fig Update message is received with initial setup parameters such as IP
Address and network slice parameters.

• Finally, PDU Session Establishments is successful and the uesimtun0 net-
work interface comes up.

The log picture for UE1 is shown below in Figure 22.

Figure 22: UE 1 turn up log

The same can be checked in Figure 23 for UE2:

Figure 23: UE 2 turn up logs

In gNodeB we can check logs for bot UEs, the process consists of the following:

• The gNodeB identifies a new signal for each UE and starts Radio Resource
Control (RRC) protocol exchange, to setup Air Interface parameters (com-
pletely emulated and assumed for UERANSIM). The major functions of
the RRC protocol include connection establishment and release functions,
broadcast of system information, radio bearer establishment, reconfigura-
tion and release, RRC connection mobility procedures, paging notification
and release and outer loop power control

• Next, the NAS (Non-access stratum) protocol exchange starts, in order to
maintain a continous comunication between UE and gNB and core as it
moves through the network.

• Finally, PDU Session is established between UE and Mobile Core Network,
so the UE setup is complete.

The complete log process is illustrated below:

Figure 24: UE setup in gNodeB

35

Edisson Andres Zurita Hidalgo January 11, 2023

In the 5G Core, three important functions will produce logs during the UE
setup.

In the AMF function, the authtentication process goes as following:

• AMF receives an Initial UE Message, and after verifying that the UE
data is correct (registered in Core database), it gets identified and added
to the AMF.

• Next, the Registration process starts by specifying which functions and
capabilities does the UE support and can actually access. This information
is transmited in a Configuration update command message.

• Finally, UE gets granted access and capabilities accordingly to the APN
and Network Slice that it belongs to.

In the figure below, the process for UE2 is showed, we can see the corresponding
values; DNN:internet, SST:2, SD:0xb.

Figure 25: UE2 authentication in AMF

UE1 produces a similar log result in AMF function, which is shown below.

Figure 26: UE1 authentication in AMF

In the UPF function, there is a new UPF-session added everytime a newly regis-
tered UE becomes alive. If the UE was already registered, UPF just reactivates
the old session checking on parameters.

Figure 27: UE logs in UPF function

The behavior in SMF function is similar as UPF, since it handles sessions (PDU
Session) to be specific for each UE, so everytime a UE want to establish con-
nections (mostly outgoing connections to internet), this functions gets queried.

Figure 28: UE logs in SMF function

36

Edisson Andres Zurita Hidalgo January 11, 2023

4.4.2.2 Packet captures. In the packet capture we can further check mes-
sage exchange for UE registration with more details. One important point to
mention, is that these messages are exchanged between gNodeB and AMF, on
behalf of UE, so there is no direct communication from UE to AMF in this
case. This can be reflected in the picture below, where all authentication and
negotiation messages are sent between gNB IP add: 172.22.0.22 and AMF
container 172.22.0.10.

Figure 29: Message exchange for UE authentication

In Figure 30, the packet capture is shown for id-AMF-UE-NGAP-ID and PDUSes-
sionResourceSetupItemSURe values.

Figure 30: PDU Session Request message for UE1 (Part 1)

One interesting packet to analyze is the PDUSessionResourceSetupRequest,
in which many important UE parameters are exchanged. To name the most
relevant:

• id-AMF-UE-NGAP-ID: which identifies with a number (ID) the sesion
between UE and AMF. It is used to distinguished this session among
the ones with other UEs so the correct parameters can be passed and
controlled between Mobile Core and UE. Technote [4]

• PDUSessionResourceSetupItemSUReq: Which includes encryption
parameters for the messages, and most importantly s-NSSAI information,
or in other words, network slice configuration values.

37

Edisson Andres Zurita Hidalgo January 11, 2023

• id-UL-NGU-UP-TNLInformation: in this field, important details about
GTP tunnelling are exchanged, stating the TransportLayerAddress. This
is set to 172.22.0.8.

• id-QosFlowSetupRequestList: contains important information about
QoS values for 5G mobile core network. The fiveQI value is set to 9 in
eMBB slice and to 1 in mMTC slice.

• id-UEAggregateMaximumBitRate: explicitly states the maximum
bit rate (for both Uplink and Downlink channels). In eMBB a maximum
rate of 1Gbps is set, and a maximum value of 1Mbps is set for mMTC slice.

An important parameter to observe is also the Message Authentication Code
(MAC), which is suposed to be encrypted in real world application. We can
see as well, that the capture corresponds to UE1 authentication process, since
the slices parameters correspond to this particular device, with sST:01 and
sD:00000a.

In Figure 31, the packet information about QoS values, GTP tunneling and
Max Bit Rate is illustrated:

Figure 31: PDU Session Request message for UE1 (Part 2)

Another detail that worth to observe, is how SMF and UPF transmit messages
between each other, in order to establish GTP tunnel parameters. This is
accomplished using Packet Forwarding Control Protocol (PFCP), and in the
SessionModificationRequest packet the functions agree regarding the ”outer”
IP address for future packet forwarding, from the UE to outside. In Figure 32

38

Edisson Andres Zurita Hidalgo January 11, 2023

we can see in detail this packet and its data.

Figure 32: PFCP exchange between UPF and SMF

To check if the GTP encapsulation is working properly (meaning, that the
User Plane of 5G Mobile Core is working properly), a simple PING message
is sent to one public DNS server to check if it is reachable and duly encapsu-
lated with GTP. In Figure 33 we can see the ping command used, noticing the
-I useimtun0 option that forces the ICMP packets to be sent with the ”SIM
card” IP address as source address.

Figure 33: Ping test from UE2 to public DNS

This packets were captured with wireshark and we confirm that GTP is used
to encapsulate the ICMP packets that are sent to the outside network. Check
Figure 34 were all details are shown:

Figure 34: Packet capture of Ping test from UE2 to public DNS

39

Edisson Andres Zurita Hidalgo January 11, 2023

Note that there is a QoS Flow Identifier (QFI) is displayed there, but it doesn’t
correspond with 5QI values that were configured in UE provisioning, it corre-
sponds to legacy fields for LTE sessions.

4.5 iPerf Tests

The chosen tool to make throughput evaluation of network slices is iPerf3, as
one of the easiest and more practical way to test a network channel. So, as a
first step in the Dockerfile used to build docker_ueransim container image
which is used to run UEs.

As explained in previous sections, iPerf uses a client-server topology. In our
case, the UEs will act as ”clients” and an external container acting as ”server”
will be attached to docker_open5gs_default container network so it can reach
both UEs easily.

4.5.1 iPerf server in outside container

The iPerf server is setup as a ”standalone container” meaning it is just turned
up for testing purposes and then deleted inmediatly. We use a public docker
image form Dockerhub (networkstatic/iperf3) with the following command:

$ docker run -it --rm --name=iperf3 -server -p 5201:5201 --network

docker_open5gs_default --ip 172.22.0.50 networkstatic/iperf3 -s

Server listening on 5201

We pass the following options for the docker run command:

• To indicate to which docker network this container must get connected,
we use option --network docker_open5gs_default.

• An IP address must be set, for that the option --ip 172.22.0.50 is used.

As we can see the iperf3 container is running in server mode and listening for
incoming connections on port 5201. So next step is to trigger test on client side
(UEs).

4.5.2 iPerf client on UEs

As soon as we start to run iPerf as client mode in each UE, the test will begin
and will print results to stdout. So the command used to run the test looks as
follows:

iperf3 -c 172.22.0.50 -B 192.168.100.2 -b 100K -O 2 -u -V -t 12 -

R -p 5201

iperf 3.7

....

[5] local 192.168.100.2 port 46425 connected to 172.22.0.50 port

5201

Starting Test: protocol: UDP , 1 streams , 1348 byte blocks , omitting

2 seconds , 12 second test , tos 0

[ID] Interval Transfer Bitrate Total

Datagrams

[5] 0.00 -1.00 sec 13.2 KBytes 108 Kbits/sec 10 (omitted)

[5] 1.00 -2.00 sec 11.8 KBytes 97.1 Kbits/sec 9 (omitted)

40

Edisson Andres Zurita Hidalgo January 11, 2023

[5] 0.00 -1.00 sec 11.8 KBytes 97.0 Kbits/sec 9

.....

[5] 11.00 -12.00 sec 11.8 KBytes 97.1 Kbits/sec 9

- -

Test Complete. Summary Results:

[ID] Interval Transfer Bitrate Jitter

Lost/Total Datagrams

[5] 0.00 -12.00 sec 146 KBytes 99.8 Kbits/sec 0.000 ms

0/111 (0%) sender

[5] 0.00 -12.04 sec 146 KBytes 99.4 Kbits/sec 0.062 ms

0/111 (0%) receiver

CPU Utilization: local/sender 3.8% (2.0%u/1.9%s), remote/receiver

0.0% (0.0%u/0.0%s)

iperf Done.

The iperf3 client options used for the test are the following:

• -c option indicates that is running in client mode.

• -B 192.168.100.2 binds the uesimtun0 IP address as source address to
send packets.

• -b 100k sets the maximum bandwidth to be tested (100 kbps in the ex-
ample above).

• -O 2 tells iPerf3 to omit the first two tests, to avoid unexpected high
values due to TCP slow start mechanism.

• -u forces UDP to be used.

• -t 12 so the test has a 12 seconds duration, but since we are omitting the
first two seconds, its 10 effective secconds to be taken into account.

• -R sets reverse mode, meaning that the server starts the test by sending
packets to client.

• -V defines more ”verbosity” in this test.

• -p 5201 the port to which client must connect to.

Since the slices applications differ a lot between each other (in bandwidth terms),
two different sets of values are defined per slice. The performance values that
are documented are packet loss and jitter (offered directly in the output by
iPerf3).

Values for eMBB Slice (Max Bandwidth 1 Gbps)

• 500 Kbps

• 1 Mbps

• 10 Mbps

• 50 Mbps

• 100 Mbps

• 500 Mbps

• 1 Gbps

41

Edisson Andres Zurita Hidalgo January 11, 2023

• 1.5 Gbps

Values for mMTC Slice (Max Bandwidth 1 Mbps)

• 1 Kbps

• 10 Kbps

• 20 Kbps

• 50 Kbps

• 100 Kbps

• 500 Kbps

• 1 Mbps

• 1.5 Mbps

• 2 Mbps

4.6 Plot results

The iPerf test were recorded and will be stored in separate files, so just a table
for each test set will be shown here with the final results. Table 1 show results
for the test performed for UE1.

Bandwith (bps) Jitter (ms) Packet Loss (%)
500 K 0.081 0
1 M 0.133 0
10 M 0.019 0
50 M 0.027 0
100 M 0.023 0
500 M 0.006 0.21
1 G 0.006 3.4
1.5 G 0.01 27

Table 1: Bandwidth test results for UE1 (eMBB slice)

Table 2 depicts test results for UE2.

Bandwith (bps) Jitter (ms) Packet Loss (%)
1 K 0.0003 0
10 K 0.049 0
20 K 0.081 0
50 K 0.129 0
100 K 0.096 0
500 K 0.129 0.0
1 M 0.093 30
1.5 M 0.102 31
2 M 0.127 49

Table 2: Bandwidth test results for UE2 (mMTC slice)

42

Edisson Andres Zurita Hidalgo January 11, 2023

The graphical plots for these experiments are shown below. They clearly depict
an expected behavior of increasing packet loss as soon as we reach and pass the
bandwidth limit for each slice.

Graphic plot for UE1

Figure 35: Packet loss and Jitter results for UE1

Graphic plot for UE2

Figure 36: Packet loss and Jitter results for UE2

5 Data analysis and Conclusions

In this final sections, an analysis about the results of the tests and experiments
is presented for future references and be recalled by possible readers.

43

Edisson Andres Zurita Hidalgo January 11, 2023

5.1 Data analysis

5.1.1 Docker behavior for future test

• The containerized option of Open5GS offer a flexible solution to easily
deploy a 5G Core Network in virtual machines. It could be easily taken
also to public clouds since the docker-compose.yaml is already provided
and ready to be used.

• All containers handling network functions worked as expected, providing
full functionality for the experiment purpose. With all C language running
smoothly on the background keeping all 5G signaling. In the case of
containerized environments, an important consideration is to keep track
of the open ports to offer each service for each 5G function.

• Since there is no jitter introduced by ”external factors” in these test
rounds, it only depends on the machine performance and state during the
tests runs, which can be fastly confirmed with the irregular jitter values
obtained on both UEs.

• Open5GS and its containerized deployments offer as well the posibility to
connect to external RAN portions, so it is really flexible for both experi-
mental and real-world purposes.

• The docker network works perfectly fine for the experiment. There is even
proven topologies that include IMS functions to provide voice functional-
ities.

Another important remark to show, is that CPU consumption for each iPerf
test reflected a small growth, depending on the bandwidth tested. In the UPF
container, which is the function that handles packet forwarding for this scenario,
the CPU utilization went to maximum value of 13.12% for a test of 5 Gbps
maximum throughput, which sounds well but might be too much for just one
UE demanding top bandwidth.

Figure 37: UPF CPU utilization during bandwidth tests

In Figure 37 above, we can check a peak 10.5% CPU utilization for 1Gbps tests,
a peak 6.56% for 100 Mbps tests and 3.94% for 1 Mbps tests.

44

Edisson Andres Zurita Hidalgo January 11, 2023

5.1.2 Network slicing performance

• Both slices fulfill their main purpose, which was to limit the maximum
data rate for Uplink and Downlink channels. The tests reflect a good
performance in this matter, despite providing an abnormal high bandwidth
at the beggining of the iPerf test.

• Jitter can’t be properly simulated and tested since all is deployed on a
virtual environment (including the Air Interface which introduces the most
disturbance into the UE communication). However, Open5GS has proved
that it is reliable in that area keeping jitter to minimum levels.

• It is mandatory to modify all container configuration of 5G core functions
so the UEs and Slices are properly authenticated and provisioned.

• Network slicing is a potential boosting feature to improve Quality of Ex-
perience for every mobile user, since it can boost applications performance
based on specific requirements for each application. Therefore, more ex-
periments including open source solutions for RAN portion could lead to
great development in 5G core.

5.1.3 Lessons learned

• In the present environment since all is ”directly-connected” in a virtual
level (docker network), all jitter values only depend on computing power
and actual CPU use of host machine. This can be confirmed with the
irregular values of jitter obtained in each test run, which doesn’t depend
on bandwidth and doesn’t actually influence on packet loss values.

• Some issues were faced after updating UERANSIM version to the latest
stable, so as a good practice is a nice idea to always get the project and
results in a git repository, maybe even tag each progress so it can be easily
move backwards when needed to previous versions.

• After every change made into the configuration files, a new docker build
and docker-compose build must be run, so trying to keep this rebuild as
few as possible is a nice idea to save time. Also pushing docker images to
a public or private registry is a good practice that can be included.

5.1.4 Future work

• For now, in this solution there is no support for IPv6, which drives 5G
new deployments in the industry, so it would be useful for future testers
to try to include it in the supported protocols list.

• The docker compose solution is not easy to escalate and maintain if more
services are included, so a different orchestration tool like Kubernetes
could be used. A good manifest file or Helm Chart file could be developed
and published to make a 5G Core deployment even more portable and
flexible with the user.

• Including real hardware in RAN portion could lead to better and more
realistic results, and there are already articles explaining about Voice-over-
LTE (VoLTE) deployments in real world scenarios for small business.

45

Edisson Andres Zurita Hidalgo January 11, 2023

5.2 Conclusions

• Open5GS keeps a good seed of knowledge in the official documentation
and a big community that supports and contributes to its continuous
improvement, which is a great advantage over some other open source
solutions for 5G core, so it is the better option (in the author’s opinion)
for 5G tests and projects.

• The docker container technology is perfect for this type of solucions and
for fast and ”portable” deployments. It behaves as a robust and ”nor-
mal” virtual machine with much less used resources, even for demanding
applications such as a 5G Core.

• More conclusive analysis could be reached with real-world RAN portion
experiments, although there is already articles and posts on the internet
that proves excellent performance on that matter.

46

Edisson Andres Zurita Hidalgo January 11, 2023

Bibliography

1 Cox, Christopher: An Introduction to 5G. 1. Wiley, Hoboken, NJ. USA,
2018. – ISBN: 9781119602668

2 Hassan, Syed F.: A Network Architect’s Guide to 5G. 1. Pearson Education
Limited, Hoboken, NJ. USA, 2022. – ISBN: 0-13-737684-7

3 Sudhakar Shetty, Rajaneesh: 5G Mobile Core Network : Design, Deploy-
ment, Automation, and Testing Strategies. 1. Apress, Bangalore, Kanata,
Inidia, 2018. – ISBN: 978-1-4842-6472-0

4 Technote, Share: IP Network - NGAP. https://www.sharetechnote.

com/html/IP_Network_NGAP.html. Version: Februar 2021. – Last accessed
18 November 2022

5 Zhang, Ying: Network Function Virtualization: Concepts and Applica-
bility in 5G. 1. Wiley-IEEE Press, Hoboken, NJ. USA, 2018. – ISBN:
9781119390602

47

https://www.sharetechnote.com/html/IP_Network_NGAP.html
https://www.sharetechnote.com/html/IP_Network_NGAP.html

	Preface
	Fundamentals
	Fundamentals of 5G
	Architecture of Mobile Networks
	Evolution of Mobile Core Network
	5G Mobile Core Network
	Network Functions Virtualization

	Containerization Fundamentals
	Introduction: What is a container?
	Docker containers
	Docker compose

	Project Setup
	Software tools used in the project
	Open5GS
	UERANSIM
	iPerf3
	Wireshark

	Project Testbed
	Containerized 5G Campus Network
	Network slicing configuration

	Testing procedure

	Test procedure
	Bringing up the Mobile Core Network
	Provisioning UEs
	Bringing up gNodeB and UEs
	Message exchange and Session establishments
	gNodeB
	User Equipments

	iPerf Tests
	iPerf server in outside container
	iPerf client on UEs

	Plot results

	Data analysis and Conclusions
	Data analysis
	Docker behavior for future test
	Network slicing performance
	Lessons learned
	Future work

	Conclusions

	Bibliography

