Technology
Arts Sciences

TH Koln

Evaluation of 5G Open Radio
Access Network
Simulation Environments

Md Nur Mohammad

Master Research Project
MSc. Communication Systems and Networks

Supervisor: Prof. Dr. Andreas Grebe

August 9, 2023

Abstract

The main focus of this research project is to deploy the O-RAN sim-
ulator and connect with the 5G core network in the future. The O-RAN
Alliance software community still needs to develop its complete architec-
ture successfully. According to the latest (G-Release) release, the O-RAN
Alliance software community successfully developed the RAN intelligent
controller (RIC) components. Now the focus is on assessing the deploy-
ment environments and deploying O-RAN RIC components by following
the O-RAN architecture in a containerized environment orchestrated by
Kubernetes. According to the release, during this project deployed non-
real-time and near-real-time RIC, connected both, and analyzed the data
through Wireshark. The findings contribute to understanding RAN in-
telligent components function for future open RAN deployment for 5G
networks. All implementation is performed on TH Koln’s (DN.LAB) on-
premise servers to be available for future research or performance.

Keywords: open RAN, O-RAN software, RAN intelligent controller
(RIC), containerized environment, Kubernetes, 5G networks.

md_nur.mohammad@smail.th-koeln.de

Md Nur Mohammad

August 9, 2023

Contents

List of Figures

1

2

5

6

Introduction

O-RAN Alliance and O-RAN Ecosystem
2.1 O-RAN Alliance Overview
2.2 Release Specifications oo oL
2.3 O-RAN Software Community
2.4 Architectural Release
24.1 Release Notes oL
2.5 Architecture of O-RAN o
2.5.1 Service Management and Orchestration (SMO)
2.5.2 near-real time RAN Intelligent Controller (near-RT RIC)
2.5.3 non-real time RAN Intelligent Controller (non-RT-RIC)) .
2.5.4 O-RAN Central Unit (O-CU)
2.5.5 O-RAN Distributed Unit (O-DU)
2.5.6 O-RAN Radio Unit (O-RU)
257 Ollnterface.
2.6 RAN Intelligent Controller

RIC Environment Set-up and Deployment

3.1 Infrastructure Preparation and Deployment of near-RT RIC.
3.1.1 Prerequisites Installation and deployment of near-RT RIC.

3.2 Infrastructure Preparation and Deployment of non-RT RIC. . . .
3.2.1 Prerequisites Installation of non-RT RIC.
3.2.2 Deployment of non-RT RIC.

3.3 Deployment Status Testing.
3.3.1 mear-RT RIC Status.
3.3.2 non-RT RIC Status.

Testing and Analysis

4.1 Connection set-up. oL o

4.2 Create Policy.

4.3 Result. L
4.3.1 Wireshark Capture and Analysis.

4.4 Follow-up opportunities,

4.5 Challenges

Conclusion

Abbreviations

Bibliography

18
18
18
29
30
34
37
37
37

39
39
43
47
48
49
49

51

52

53

List of Figures

1 Logical Architecture of Open RAN. 9
2 O-RAN architecture overview showing Near-RT RIC interfaces . 11
3 Non-RT RIC reference Architecture 13
4 RAN Intelligent Controller Architecture 17
5 Non-RT RIC Control Panel 38
6 Policy Control functions. 38
7 Non-RT RIC Enrichment information Coordinator 39
8 RIC configuration updates. 44
9 Created Policy 21003 47
10 Packets after creating Policy 21003 48
11 Policy Packet (HTTP/JSON Protocol) 49

Md Nur Mohammad August 9, 2023

1 Introduction

The rise of 5G networks has become crucial to meeting the growing demand
for fast data transmission and improved network capacity. The Open Radio
Access Network (O-RAN) architecture offers a solution to enhance the flexibility
and interoperability of 5G networks. To ensure the successful deployment and
optimization of O-RAN, it is essential to evaluate and test its components and
functionalities. Simulating O-RAN in controlled environments provides a cost-
effective way to assess its performance.

This research project aims to evaluate simulation environments for deploying
O-RAN. By analyzing simulation tools and methodologies, this study aims to
identify their components and suitability for simulating O-RAN. Additionally,
this research will test the connectivity of components and create a service using
the Open Network Automation Platform (ONAP). This platform was intro-
duced by the O-RAN Alliance software community.

O-RAN Alliance has developed O-RAN components and published their re-
leases, including this research paper based on G-Release. G-Release is developed
on Docker and Kubernetes, and this research followed Kubernetes implementa-
tion.

Apart from that, this Kubernetes implementation needs additional support from
Docker and Helm Chart.

Kubernetes: Kubernetes, an open-source container orchestration platform,
revolutionizes how applications are deployed, scaled, and managed. Initially
created by Google and overseen by the Cloud Native Computing Foundation,
Kubernetes provides developers with a powerful and intuitive solution to handle
applications across server clusters or virtual machines effectively. By abstracting
the complexities of the underlying infrastructure, it offers features such as load
balancing, automatic scaling, and storage orchestration. With its widespread
adoption, Kubernetes has emerged as the de facto standard for container or-
chestration, empowering the development of resilient and scalable cloud-native
solutions.

Docker for Kubernetes: Docker is a platform that helps automate the de-
ployment of applications using containers. In Kubernetes, Docker is used as
the container runtime. It allows applications to be packaged as Docker images,
which are portable and self-contained. Kubernetes utilizes Docker to manage
and run these containers on a cluster, making it easier to scale and deploy
applications efficiently. Together, Docker and Kubernetes provide developers
with the ability to build, package, and manage applications in a containerized
environment.

Helm Chart: Helm emerges as a convenient package manager designed specif-
ically for Kubernetes, streamlining the process of deploying and managing ap-
plications. With Helm, applications can be packaged into Helm Charts, which
consist of multiple files that configure and encapsulate Kubernetes resources.

Md Nur Mohammad August 9, 2023

This packaging approach enables effortless installation and consistent manage-
ment of applications, fostering repeatability and ease of use. By providing a
standardized mechanism for defining, sharing, and deploying applications, Helm
significantly simplifies the management of complex applications while promoting
seamless collaboration among teams.

Chapter 2 will detail information about the O-RAN Alliance and the ecosystem.
Apart from that, the O-RAN architecture [Figure 1] will be presented, along
with complete information on every component of O-RAN.

In Chapter 3, possible solutions with an environment for the deployment of vir-
tual infrastructure able to deploy O-RAN RIC components are discussed—moreover,
a detailed description of prerequisite installation steps with necessary commands
and example output.

Next, Chapter 4 will describe the steps to connect RIC components and create
a service between them. In addition, in the result section, there is a Wireshark
capture and analysis of packets.

2 O-RAN Alliance and O-RAN Ecosystem

2.1 O-RAN Alliance Overview

The O-RAN Alliance was established with the primary objective of advancing
openness and intelligence within the Radio Access Network (RAN) industry.
Since its inception, the alliance has garnered significant momentum, attract-
ing over 200 members, including major mobile operators, network equipment
vendors, and system integrators.

A key focus of the O-RAN Alliance is the development of open interface specifi-
cations that facilitate multi-vendor interoperability and enable the deployment
of virtualized RAN solutions. These open interfaces empower network operators
to select and integrate components from different vendors, fostering competi-
tion and avoiding vendor lock-in. To ensure compliance with the alliance’s
specifications and promote interoperability, the organization offers testing and
certification services. This ensures that RAN components from various vendors
can seamlessly work together, reducing the risk of vendor lock-in and providing
network operators with the flexibility to choose the most suitable components
for their specific requirements.

In addition, the O-RAN Alliance has created a range of use cases that exemplify
the benefits of an open RAN architecture. These use cases span diverse scenarios
and exemplify how an open and interoperable RAN can enhance coverage, offer
flexible deployment options, and deliver improved performance.

The O-RAN Alliance seeks to create a more open and intelligent RAN by:

1. Open RAN architecture: The O-RAN Alliance promotes an open RAN
architecture that enables network operators to select best-of-breed com-
ponents from different vendors. This approach allows network operators

Md Nur Mohammad August 9, 2023

to avoid vendor lock-in and promotes competition in the industry.

2. O-RAN specifications: The Alliance develops and maintains a set of
specifications that define the interfaces between different RAN compo-
nents. These specifications are designed to be open and interoperable,
allowing network operators to mix and match components from different
vendors.

3. O-RAN testing and certification: The Alliance provides testing and
certification services to ensure that RAN components from different ven-
dors are interoperable and compliant with the Alliance’s specifications.
This helps reduce vendor lock-in risk and enables network operators to
choose the best components for their specific needs.

4. O-RAN wuse cases: The Alliance has developed several use cases that
demonstrate the benefits of an open RAN architecture. These use cases
cover a range of scenarios, from rural coverage to indoor deployments, and
showcase the advantages of open and interoperable RAN components.

5. O-RAN market momentum: The O-RAN Alliance has gained sig-
nificant momentum recently, with many major mobile network operators
and equipment vendors joining the organization. The Alliance’s focus on
open and interoperable RAN components has struck a chord with many
industry stakeholders seeking more choice and flexibility.

Overall, the O-RAN Alliance is crucial in driving innovation and competition
in the RAN industry. Its focus on openness and interoperability is helping to
create a more diverse and vibrant market. At the same time, its testing and
certification services ensure that RAN components from different vendors work
together seamlessly.

2.2 Release Specifications

The O-RAN Alliance has released several specifications and technical reports
since its inception. These releases are designed to promote interoperability and
support the development of open and intelligent RAN solutions.

Here are some of the key releases from the o-ran Alliance:

1. O-RAN Architecture: In this release, we aim to give you an in-depth
understanding of the O-RAN architecture. We outline the key components
and interfaces that constitute this system. The architecture is purpose-
fully designed to offer flexibility and scalability, enabling it to adapt to
various deployment scenarios. Whether it’s a small-scale or large-scale
implementation, the O-RAN architecture is built to accommodate diverse
needs and ensure seamless scalability.

2. O-RAN Use Cases: The O-RAN Alliance has developed several use
cases demonstrating the benefits of an open and interoperable RAN. These
use cases cover a range of scenarios, from small indoor cells to rural deploy-
ments, and highlight the flexibility and cost savings that can be achieved
with an open RAN architecture.

Md Nur Mohammad August 9, 2023

3. O-RAN Radio Intelligent Controller (RIC) Functional Descrip-
tion: At the heart of the O-RAN architecture, the O-RAN RIC (Ra-
dio Intelligent Controller) is a central intelligence layer. It is vital for
managing and orchestrating RAN (Radio access network) resources. This
specification offers an extensive overview of the RIC’s functionalities and
interfaces, providing a comprehensive understanding of its capabilities and
how it interacts within the O-RAN ecosystem.

4. O-RAN Testing and Integration: The O-RAN Alliance provides test-
ing and integration services to ensure that RAN components from different
vendors are interoperable and compliant with the Alliance’s specifications.
This release provides an overview of the testing and certification process
and information on the testing tools and environments used.

5. O-RAN Software Community: The O-RAN Alliance has established
a software community to promote the development of open-source software
for the RAN industry. The community is focused on developing software
that supports the Alliance’s specifications and promotes interoperability
between different vendors.

These updates demonstrate the O-RAN Alliance’s strong commitment to open-
ness and interoperability in the RAN industry. The Alliance provides precise
specifications and guidelines to create a more diverse and competitive market.
This, in turn, benefits both network operators and end-users by offering more
choices and improving performance in the industry.

2.3 O-RAN Software Community

The O-RAN Alliance has started a cooperative project called the O-RAN Soft-
ware Community to promote the creation of open-source software for the RAN
sector. The community is designed to bring together developers, vendors, and
network operators to work on software projects that support the O-RAN Al-
liance’s specifications and promote interoperability between different RAN com-
ponents.

The community’s primary focus is on developing software for the O-RAN Intel-
ligent Controller (RIC), which is a key component of the O-RAN architecture.
The RIC provides a centralized intelligence layer that can be used to manage
and orchestrate RAN resources, and the community is working on developing
software that supports the RIC’s functionality and interfaces.

In addition to the RIC, the community is also working on other software projects
that support the O-RAN Alliance’s specifications. These include projects re-
lated to network management, performance monitoring, testing, and integra-
tion. One of the key benefits of the O-RAN Software Community is that it pro-
vides a collaborative environment for developers to work on software projects
that are aligned with the O-RAN Alliance’s goals. By working together, de-
velopers can share knowledge and resources and ensure that their software is
compatible with other components of the RAN ecosystem.

Overall, the O-RAN Software Community is a key initiative that is helping to
drive innovation and openness in the RAN industry. By promoting the devel-

Md Nur Mohammad

August 9, 2023

opment of open-source software, the community is helping to create a more
diverse and competitive market, which ultimately benefits network operators
and end-users alike. Developing software that supports the RIC’s functionality

and interfaces.

2.4 Architectural Release

Accordingly, the O-RAN architecture [Figure 1] contains several components

that are developed by O-RAN Alliance software community.

There are eight releases with release dates:

Release Number

Release Name

Release date

1 A Release (Amber) November 2019
2 B Release (Bronze) Jun 2020

3 C Release (Cherry) | December 2020
4 D Release (Dawn) July 2021

5 E Release (Emerald) | December 2021
6 F Release July 2022

7 G Release December 2022
8 H Release Upcoming

Table 1: O-RAN Alliance Releases

2.4.1 Release Notes

This research focused on G-Release, which has specific release notes. The release

notes are below:

e RAN Intelligent Controller Applications (RICAPP) features.

e Near Real-time RAN Intelligent Controller (RIC) features.

e Non-Real time RAN Intelligent Controller (NONRTRIC) features.

e Operations and Maintenance (OAM) features.

e O-RAN Central Unit (OCU) features.

e O-RAN Distributed Unit High Layers (ODU-HIGH) features.

e Infrastructure (INF) features.

e Integration and Testing (INT) features.

e Service Management and Orchestration (SMO) features.

Md Nur Mohammad August 9, 2023

2.5 Architecture of O-RAN

The Open RAN logical architecture provides versatility, adapting to diverse
network needs. With standardized interfaces, RAN components from differ-
ent vendors can seamlessly communicate and work together. The division into
radio and non-radio domains enables effective management of both physical
and control aspects of the RAN system. This architecture empowers network
operators to have greater flexibility in deploying and optimizing their RAN in-
frastructure. By promoting interoperability and modularity, the Open RAN
architecture drives innovation and competition in the RAN industry.

The architecture [Figure 1] is thoughtfully divided into two main domains to
facilitate efficient management and control. The radio domain encompasses the
base station and associated equipment responsible for wireless signal transmis-
sion and reception. The non-radio domain focuses on management and orches-
tration functions, providing the necessary intelligence to oversee and optimize
RAN resources effectively.

Legend
R1
Service Management 3GPP interfaces
(| Orch and —— O-RAN interfaces
tration Frai Non-Real Time RIC Framework - = = = For future study
MNon-Real Time RIC

T I]

: o1 r— Near-Real Time RIC xApps J

Figure 1: Logical Architecture of Open RAN.
(Source*)

2.5.1 Service Management and Orchestration (SMO)

Service Management and Orchestration (SMO) is a functional area in the O-
RAN architecture [figure 1] that is responsible for managing and orchestrating
services and applications across the RAN network. The SMO layer is designed
to work in conjunction with other functional areas, such as the Management and
Orchestration (MANO) layer and the Network Slicing Function (NSF) layer, to
ensure that services and applications are deployed and managed effectively.

https://docs.o-ran-sc.org/en/latest/architecture/architecture.html

Md Nur Mohammad August 9, 2023

The Service Management and Orchestration (SMO) layer within the O-RAN
architecture plays a crucial role in enabling the non-RT RIC to access specific
functionalities related to RAN optimization actions, such as collecting Perfor-
mance Measurements (PM) through O1 and O2 interfaces. However, SMO
also has a much broader mandate, including the orchestration of the Network
Functions Virtualization Infrastructure (NFVI) and managing the lifecycle of O-
RAN network elements, which can be either Virtual Network Functions (VNF's)
hosted in specific locations of the O-Cloud infrastructure or Physical Network
Functions (PNFs) exposed by cell sites.

For non-virtualized parts, such as O-RU functionalities that are related to area
coverage and must be placed at cell sites, the SMO supports the deployment
of physical network elements on dedicated physical resources with management
through the O1 interface. However, for virtualized network elements, the SMO
has the capability to interact with the O-Cloud to perform network element
lifecycle management. For example, it can instantiate the virtualized network
element on the target infrastructure through the O2 interface or indicate the
selected geo-location for each VNF to be instantiated.

To ensure smooth communication between the deployed network elements, the
SMO is also responsible for IP addressing, network reconfiguration, and system
updates. To support a range of deployment solutions, the Operation and Main-
tenance architecture defined by O-RAN describes in detail the requirements
necessary for the SMO framework to be provided by third-party Network Man-
agement Systems (NMS) or orchestration platforms, such as the Linux Founda-
tion’s Open Network Automation Platform (ONAP).

Overall, the Service Management and Orchestration framework is a critical com-
ponent of the O-RAN architecture, providing a standardized interface and pro-
tocols for managing and orchestrating services and applications across the RAN
network. With its ability to interact with both virtualized and physical network
elements, the SMO enables greater interoperability, flexibility, and efficiency, ul-
timately benefiting both network operators and end-users.

2.5.2 near-real time RAN Intelligent Controller (near-RT RIC)

In the O-RAN architecture [figure 1], the near-RT RIC, or near-real-time RAN
Intelligent Controller, serves as a crucial function for enabling real-time con-
trol and optimization of O-RAN resources via fine-grained data collection and
actions through the E2 interface.

Figure 2 shows the logical architecture and interfaces of the near-RT RIC. The
near-RT RIC is connected to the non-RT RIC through the Al interface. Al
interface work for policy-based guidance.

Now the E2 is a logical interface that connects the near-RT RIC with an E2
node. The O-CU-CP, O-CU-UP, O-DU, and O-eNB are connected with the
near-RT RIC. Only one E2 node will be connected with near-RT RIC, and

10

Md Nur Mohammad August 9, 2023

Service management & Orchestration Framework

Non-RTRIC

Near-RTRIC
E2 Node
I I E1
E2 E? O-CU-CP
E2 Node
E2 O-CU-UP
E2 Node
F1-C F1-U
0O-eNB
-’ 0-DU
E2 Node
Open Fronthaul
0O-RU

Figure 2: O-RAN architecture overview showing Near-RT RIC interfaces
(Source*) Download WG3

multiple E2 nodes will be connected with E2 nodes, i.e., multiple O-CU, O-DU,
and O-eNBs. The F1 and E1 are logical 3GPP interfaces.

Additionally, the Near-RT RIC serves as a host for multiple xApps that collect
real-time information and provide extra services using the E2 interface. It can
receive policies and obtain data enrichment information through the Al inter-
face. The E2 interface protocols are based on control plane protocols. In the
event of an E2 or Near-RT RIC failure, the E2 Node can still offer services, but
certain value-added services exclusive to the Near-RT RIC may experience an
outage.

e Near-RT RIC Requirements: The Near-RT RIC architecture is ex-
pected to meet the following set of requirements:

— Each E2 node configured to directly supply RIC services to the Near-RT
RIC must be uniquely identified via the dedicated E2 connection that the
Near-RT RIC uses.

— A fact Several E2 nodes that each support a different RAT type may be
able to establish E2 connections with near-RT RIC.

— The Near-RT RIC is in charge of requesting from the E2 Nodes a list
of the functions that provide RIC services and their related E2 service
models.

— The Near-RT RIC hosts a set of applications known as xApps. Each

11

https://orandownloadsweb.azurewebsites.net/specifications

Md Nur Mohammad August 9, 2023

xApp can target specific RAN functions within a specific E2 node.

— The Near-RT RIC, like other network elements, should provide an O1
interface to the Service Management Orchestration layer. This interface
makes element administration and configuration easier.

— The Near-RT RIC should provide an Al interface to the Non-RT RIC,
allowing for the exchange of policies that can affect the behavior of the
Near-RT RIC and its hosted xApps, influencing the behavior of E2 Nodes.

— In the event of an E2 interface or Near-RT RIC failure, the E2 nodes
ought to be able to function without the Near-RT RIC.

— The 10 ms to 1 s latency requirements for near-real-time optimization
should be met by the Near-RT RIC.

e Near-RT RIC functions: Following functions are supported by near-
RT RIC:

— Termination of the A1 interface: First, terminate the interface from
a non-RT RIC. After that, forward the A1 messages.

— Termination of the O1 interface: In order to send management
messages to the Near-RT RIC management function, the O1 interface from
the Service Management Orchestration layer terminates at the Near-RT
RIC.

— Termination of E2 interface: The Near-RT RIC terminates the E2
interface from an E2 Node, directing xApp-related messages to the in-
tended xApp and non xApp-related messages to the E2 Manager.

— xApps host: The Near-RT RIC enables the execution of RRM con-
trol functionalities within its domain and enforces them in the E2 Nodes
through the E2 interface. It also initiates xApp-related transactions over
the E2 interface and handles the corresponding responses received from
the E2 interface.

2.5.3 non-real time RAN Intelligent Controller (non-RT-RIC))

The non-RT RIC, or non-real-time RAN Intelligent Controller, is responsible
for non-real-time control and optimization of RAN resources, including AI/ML
workflows such as model training and updates and policy-based guidance of
applications/features in the near-RT RIC. [Figure 3] demonstrating the interface
and services of non-real time RIC.

12

Md Nur Mohammad August 9, 2023

SMO-Framework I
I rApps IJ
R1 interface l >

R1 service management and i Other Non-RT RIC
exposure functions framework functions

Al Termination
| Non-RT RIC Framework |

Near-RT RIC

Figure 3: Non-RT RIC reference Architecture
(Source*) Download WG2

R1 Services:

R1 services refer to a collection of services provided by logical functions within
the Non-RT RIC framework or SMO (Service Management and Orchestration)
framework, as well as by rApps (RIC applications).

These services are designed to enable various functions such as service reg-
istration, service discovery, service notification, authorization, authentication,
communication support, and potentially bootstrap and heartbeat services.

The R1 services are essential for managing and exposing functionalities within
the Non-RT RIC framework, or rApps.

R1 Service Management and Exposure:

R1 service management and exposure functions are responsible for facilitating
the usage and access of R1 services.

These functions handle tasks such as registering R1 services, discovering avail-
able services, notifying relevant parties about service updates, and providing
authorization and authentication mechanisms for secure access to the services.

13

https://orandownloadsweb.azurewebsites.net/specifications

Md Nur Mohammad August 9, 2023

Additionally, communication support is provided to enable the exchange of mes-
sages between the Non-RT RIC framework, rApps, and the R1 services.

R1 Termination and R1 Interface:

The R1 termination represents the endpoint or interface through which the
Non-RT RIC framework and rApps communicate with the R1 services.

The R1 interface acts as the means for exchanging messages and accessing the
R1 services.

It enables the Non-RT RIC framework and rApps to interact with the R1 ser-
vices, leveraging the functionalities provided by the R1 service management and
exposure functions.

Service management and exposure services:

Service management and exposure services within the Non-RT RIC (Non-Real-
Time RAN Intelligent Controller) framework or SMO (Service Management
and Orchestration) framework encompass essential functionalities for handling
services. These services include registration, discovery, notification, and secure
access.

Service Registration: It involves making services available within the frame-
work, or SMO environment. The framework or related apps register the services
they offer, making it possible for other entities to find and use them.

Service Discovery: This feature enables entities within the framework or SMO
environment to find and identify available services. By querying a registry or
directory, entities can locate the specific services they require for their operations
or interactions.

Service Notification: When changes or updates occur to registered services,
relevant parties are informed through notifications. This ensures that entities
stay informed about modifications, such as updates or terminations, to the
services they rely on.

Service management and exposure services play a critical role in the Non-RT
RIC framework or SMO framework, ensuring efficient operation, coordination,
and secure access to services. By providing registration, discovery, notifica-
tion, authorization, and communication support, these services enable seamless
utilization of services within the framework or SMO environment.

A1 policy related services:

14

Md Nur Mohammad August 9, 2023

Al policy-related services are services that pertain to the management, en-
forcement, and administration of policies within a system or framework. These
services are responsible for defining, configuring, and enforcing policies to guide
the behavior, actions, and access rights of entities within the system. Here are
key aspects of Al policy-related services:

Policy Definition and Configuration: These services allow the definition
and configuration of policies that govern various aspects of the system, such as
security, access control, resource allocation, or behavior guidelines.

Policies are typically defined using policy languages or rule-based systems, spec-
ifying conditions and actions to be enforced.

Policy Evaluation and Enforcement: A1l policy-related services evaluate
and enforce policies in real-time or as needed. They assess the current state of
the system, including the actions of entities and the context, and compare it
against the defined policies.

If a policy violation is detected, appropriate actions are taken to enforce com-
pliance or trigger mitigation procedures.

Policy Monitoring and Reporting:

These services provide monitoring capabilities to track policy compliance and
system behavior. They generate reports and alerts regarding policy violations,
exceptions, or patterns of non-compliance, enabling system administrators to
take appropriate actions.

Policy Adaptation and Learning:

A1 policy-related services may incorporate adaptive or learning capabilities to
dynamically adjust policies based on evolving system conditions or changing
requirements.

They can analyze system behavior, gather feedback, and modify policies accord-
ingly to optimize system performance or adapt to new circumstances.

Policy Interoperability and Integration:

A1 policy-related services facilitate the integration and interoperability of poli-
cies across different components or systems within an ecosystem. They enable
policy exchange, translation, or synchronization mechanisms to ensure consis-
tent policy enforcement and coordination across the system.

A1 policy-related services play a crucial role in managing and enforcing poli-
cies within a system, ensuring compliance, security, and appropriate behavior.
They provide the necessary mechanisms to define, evaluate, adapt, and monitor
policies, promoting system stability, consistency, and governance.

15

Md Nur Mohammad August 9, 2023

2.5.4 O-RAN Central Unit (O-CU)

The O-RAN Central Unit, or O-CU, is a logical node that houses the RRC,
SDAP, and PDCP protocols. Specifically, the O-CU-CP hosts the RRC and
control plane parts of the PDCP protocol, while the O-CU-UP hosts the user
plane parts of the PDCP protocol and the SDAP protocol.

2.5.5 O-RAN Distributed Unit (O-DU)

The O-RAN Distributed Unit, or O-DU, is a logical node that houses the RLC,
MAC, and High-PHY layers based on a lower layer functional split.

2.5.6 O-RAN Radio Unit (O-RU)

The O-RAN Radio Unit, or O-RU, is a logical node that houses the low-PHY
layer and RF processing based on a lower-layer functional split. This is like
3GPP’s "TRP” or "RRH,” but is more specific in including the Low-PHY layer,
such as FFT/IFFT and PRACH extraction.

2.5.7 O1 Interface

O1 is an interface that facilitates communication between management entities
in the Service Management and Orchestration Framework and O-RAN managed
elements. Its primary purpose is to enable the operation and management of
these elements by supporting functions such as FCAPS management, software
management, and file management. The O1 interface provides a standardized
and secure means of accessing and controlling O-RAN network elements, ensur-
ing efficient and effective management of these critical components.

2.6 RAN Intelligent Controller

RAN Intelligent Controller (RIC) [Figure 4] is a logical function that provides
near-real-time control and optimization of Radio Access Network (RAN) re-
sources through fine-grained data collection and actions over the E2 interface.
RIC architecture is based on the principles of Open RAN and is designed to be
flexible, scalable, and vendor neutral.

The RIC comprises two main elements: the near-RT RIC and the non-RT RIC.
The near-RT RIC provides near-real-time control and optimization of RAN
elements and resources, such as radio resource allocation, traffic steering, and
interference management. On the other hand, the non-RT RIC enables non-
real-time control and optimization of RAN elements and resources, including
AI/ML workflows for model training and updates and policy-based guidance of
applications/features in near-RT RIC.

16

Md Nur Mohammad August 9, 2023

Service Management and Orchestration (SMO)

Non-RT RIC Framework

Open APIs

Policies/Guidance

RAN Optimization

Mear-RT RIC

Near-RT RIC Framework

Directives/Control

ORAN ELRAN

Distributed Unit (0-DU) Central Unit {O-CU)

Figure 4: RAN Intelligent Controller Architecture
(Source*) Download WG1

The RIC architecture also includes other key elements such as O-CU, O-CU-
CP, O-CU-UP, O-DU, and O-RU. O-CU is the central unit in the RAN that
hosts RRC, SDAP, and PDCP protocols. O-CU-CP is the control plane part
of the PDCP protocol, while O-CU-UP hosts the user plane part of the PDCP
protocol and the SDAP protocol. O-DU hosts RLC, MAC, and high-PHY layers
based on a lower-layer functional split, while O-RU hosts low-PHY layers and
RF processing based on a lower-layer functional split.

RIC architecture also includes an O1 interface between management entities in
the Service Management and Orchestration Framework and O-RAN managed
elements. The O1 interface is used for operation and management, through
which FCAPS management, software management, file management, and other
operations are achieved.

17

https://orandownloadsweb.azurewebsites.net/specifications

Md Nur Mohammad August 9, 2023

3

3.1

RIC Environment Set-up and Deployment

Infrastructure Preparation and Deployment of near-
RT RIC.

Hardware Requirements:

Operating System Ubuntu 20.04
Core 8 vCPU
Memory 16 GB

Disk 100 GB

GPU 16 GB

Table 2: Hardware Requirements for near-RT RIC

Software Requirements:

Container orchestration: Kubernetes- v1.16
Container runtime: Docker and docker-compose (latest)
Kubernetes Package manager Helm Chart v3.5

Helm Chart Repository: ChartMuseum

3.1.1 Prerequisites Installation and deployment of near-RT RIC.

1.

Start by preparing a fresh Ubuntu 20.04 environment specifically tailored
for near-RT RIC deployment.

Install Kubernetes, helm, and the necessary base chart, ensuring they are
properly configured for the upcoming Near-RT RIC deployment.

Proceed with the installation of near-RT RIC, taking care to follow the
recommended guidelines and dependencies.

Compile and establish a seamless connection to the O-RAN E2 (e2-node)
simulator sourced from the O-RAN SC simulator project.

Utilize the dms-cli tool to effortlessly deploy xApps, streamlining the de-
ployment process and enhancing efficiency.

Compile, onboard, and install the hw-go xapp derived from the O-RAN
SC xApp project, incorporating its functionality into the system with
precision.

18

Md Nur Mohammad August 9, 2023

Step (1): Prepared ubuntu 20.04 from DN.Lab with hardware
specifications.

According to the prerequisites, set up the Ubuntu server from DN.LAB
(TH Koéln). Now we can check the Ubuntu version [Figure 5] against the
requirements by following the command.

lsb_release -a

To ensure that, Ubuntu version is right:

root@srv6:/home/o-ran# lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu

Description: Ubuntu 20.04.6 LTS
Release: 20.04
Codename: focal

Step (2): Install Kubernetes, helm, and the necessary base chart,
ensuring they are properly configured for the upcoming Near-RT
RIC deployment.

(Note: Run all command in root user.)
Sample command: sudo su

Now clone the git repository that has deployment scripts and additional
files (ric-plt/dep) with the following command.

git clone https://gerrit.o-ran-sc.org/r/ric-plt/ric-dep

To deploy near-RT RIC we need to install Docker, Kubernetes, Helm, and
Kubernetes-CNI.

To install Kubernetes, run the following command in the right directory:
cd ric-dep/bin

./install_k8s_and_helm.sh

Note: It will take time, and once it’s done, check if Kubernetes is installed
or not with the following command. It will show whether Kubernetes
system pods are running or not.

Kubectl get pods -n kube-system

Output:

root@srv:/home/o-ran# kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE
coredns -5644d7b6d9 -58xml 1/1 Running 2 12d

19

Md Nur Mohammad August 9, 2023

coredns -5644d7b6d9-d446p 1/1 Running 2 12d
etcd-srv6.5g.dn.th.koeln.de 1/1 Running 2 124
kube -apiserver -srv6.5g.dn.th... 1/1 Running 2 12d
kube-flannel-ds-rr56g 1/1 Running 2 124
kube -proxy-dgxvm 1/1 Running 2 124
kube-scheduler-srv6.5g.dn.th.... 1/1 Running 2 12d

This is the output of the Kubectl get pods -n kube-system command.
Here, all necessary pods are running, which is mandatory for Kubernetes
installation. Now Kubernetes is installed properly.

Note: Make sure curl is installed. If not, then run this command to install
curl:

apt install curl

To set up the new systemconfig folder, we need to create it and then
include the *PROXY variables. Additionally, make sure to add the line
”EnvironmentFile=-/etc/sysconfig/docker” and include the registry-mirrors
in the ExecStart.

Include the line ”EnvironmentFile=-/etc/sysconfig/docker” in the ”sys-
temconfig” folder. This line configures the Docker environment.

Add the registry-mirrors entry in the ExecStart section. This enables the
system to use mirror servers for faster Docker image downloads.

Ensure that the systemconfig folder contains all the necessary configura-
tions, including the *PROXY variables, the ” EnvironmentFile=-/etc/sysconfig
/docker” line, and registry-mirrors.

Run the commands below

mkdir /etc/sysconfig

vi /etc/sysconfig/docker

vi /lib/systemd/system/docker.service
systemctl daemon-reload

service docker restart

Now we will install Chart Museum into Helm and add ric-common tem-
plates with the following command.
./install_common_templates_to_helm.sh

Step (3):Proceed with the installation of near-RT RIC, taking
care to follow the recommended guidelines and dependencies.

Now Create a txt file to separate the image pull from the public image
registry from the actual installation. make sure to use same versions as in

../RECIPE_EXAMPLE/example_recipe_oran_f_release.yaml

20

Md Nur Mohammad August 9, 2023

Run this command:

vim versions.txt

Note: 'vim’ is an editor. Make sure vim is installed.

Now create a Docker container text file.From the developer images list
(below), copy them and save them as versions.txt.

versions.txt
nexus3.o-ran-sc.org:10002/o-ran-sc/ric-plt-a1:3.0.0
nexus3.o-ran-sc.org:10002/o-ran-sc/ric-plt-appmgr:0.5.7
nexus3.o-ran-sc.org:10002/o-ran-sc/ric-plt-dbaas:0.6.2
nexus3.o-ran-sc.org:10002/o-ran-sc/ric-plt-e2mgr:6.0.1
nexus3.o-ran-sc.org:10002/o-ran-sc/ric-plt-e2:6.0.1
nexus3.o-ran-sc.org:10002/o-ran-sc/ric-plt-rtmgr:0.9.4
nexus3.o-ran-sc.org:10002/o-ran-sc/ric-plt-submgr:0.9.5
nexus3.o-ran-sc.org:10002/o-ran-sc/ric-plt-vespamgr:0.7.5
nexus3.o-ran-sc.org:10002/o-ran-sc/ric-plt-01:0.6.1
nexus3.o-ran-sc.org:10002/o-ran-sc/ric-plt-alarmmanager
:0.5.14
nexus3.o-ran-sc.org:10002/o-ran-sc/it-dep-init:0.0.1
docker.io/prom/prometheus:v2.18.1
docker.io/kong/kubernetes-ingress-controller:0.7.0
docker.io/kong:1.4

docker.io/prom/alertmanager:v0.20.0

So, we saved all Docker images in versions.txt file . Now Pull the docker
images from nexus3.o-rano-sc.org

Run the command below.

for i in “cat versions.txt ; do echo $i; docker pull $i;
done

Note: It will take time. We pulled this image before creating Kubernetes
pods because Kubernetes will create as following RECIPE_ EXAMPLE
file. We pulled the actual Docker container file for near-real-time ric de-
ployment.

After the recipes are edited and helm started, the Near Realtime RIC
platform is ready to be deployed, but first update the deployment recipe
as per instructions in the next section.

Now modify and deploy near-RT RIC. Now we can start the installation
of near-RT RIC. Before that, we need the IP address of the particular
node, and to get the IP address, run the following command.

ip a

21

Md Nur Mohammad August 9, 2023

Edit the recipe files ./RECIPE_EXAMPLE /example_recipe_latest_stable.yaml
(which is a softlink that points to the latest release version). “exam-
ple_recipe_latest_unstable.yaml points to the latest example file that is
under current development.

vim ../RECIPE_EXAMPLE/example_recipe_oran_f_release.
yaml

Deployment scripts support both helm v2 and v3. The deployment script
will determine the helm version installed in cluster during the deployment.

After updating the recipe, we can deploy the RIC with the command
below. Note that we generally use the latest recipe marked stable or one
from a specific release.

Run the command below:

cd ric-dep/bin
./install -f ../RECIPE_EXAMPLE/example_recipe_oran_f\
_release.yaml

Note: It will take time. After installation succeeds, we can see that near
the RT RIC platform, pods are actually running.

Now check the deployment status with the following command.

Kubectl get pods -n ricplt

The output of Kubectl get pods -n ricplt command is below:

root@srvé:/home/o-ran# kubectl get po -n ricplt

NAME READY STATUS

deployment -ricplt-almediator -669cc7 1/1 Running
4647-t22qp

deployment -ricplt-alarmmanager -577 1/1 Running
85458dd-p95s4

deployment -ricplt -appmgr -77986c9c 1/1 Running
bb-16b21

deployment -ricplt -e2mgr-5dd878£f58 1/1 Running
b-npdff

deployment -ricplt-e2term-alpha-68 1/1 Running
98£8696d -5smjj

deployment ~ricplt -Olmediator -5ddd6 1/1 Running
6b4d6-5x1v9

deployment -ricplt -rtmgr -788975975 1/1 Running
b-ghlgs

deployment -ricplt -submgr -68fc6564 1/1 Running
88-6wnd6

deployment -ricplt-vespamgr -84£f7d8 1/1 Running
7dfb-rq7zx

r4-infrastructure-kong-7995£f4679b 2/2 Running
-bs956n

r4-infrastructure-prometheus-aler 2/2 Running

22

Md Nur Mohammad August 9, 2023

tmanager -5798b78f48 -gkkcn

r4-infrastructure -prometheus-serv 1/1 Running
er-c8ddcfdf5-6kd48
statefulset -ricplt-dbaas-server -0 1/1 Running

Here, near-real-time RIC pods (ricplt) are running with all of the RIC
services installed properly.

Once all ricplt pods are running, we need to check whether the helm list
was created or not with the following command:

helm list -A

Output:

root@srv6:/home/o-ran# helm list -A

NAME NAMESPACE REVISION STATUS CHART
r4-almediator ricplt 1 deployed almediator
r4-alalarmmanager ricplt 1 deployed alalarmm..
r4-appmgr ricplt 1 deployed appmgr
r4-dbaas ricplt 1 deployed dbaas
r4-e2mgr ricplt 1 deployed e2mgr
r4-e2term ricplt 1 deployed e2term
r4-infrastructure ricplt 1 deployed infrastr..
r4-0Olmediator ricplt 1 deployed Olmediator
ré-rtmgr ricplt 1 deployed rtmgr
r4-submgr ricplt 1 deployed submgr
r4-vespamgr ricplt 1 deployed vespamgr

Here, all (r4) of the helm lists are deployed in the same (ricplt) nampe-
spaces, which are for near-RT-RIC.

Step (4): Compile and establish a seamless connection to the
O-RAN E2 (e2-node) simulator sourced from the O-RAN SC
sitmulator project.

Now we compile and build the Connection E2 simulator. First, we clone
the git repository of source code from O-RAN SC.

Run the command below:

git clone https://gerrit.o-ran-sc.org/r/sim/e2-interface

Now we will install the prerequisites to compile and connect the E2 sim-
ulator.

Run the command below:

apt-get install cmake g++ libsctp-dev

23

Md Nur Mohammad August 9, 2023

Now we will modify the Dockerfile with this command to change the di-
rectory first.

Run the command below:

cd e2-interface/e2sim
cd docker/
vi Dockerfile

Now go to the last line of the Dockerfile and edit the CMD part and change
the IP address, which is the E2 termination of the RIC side.

”sleep 1000000007

Let’s start the compilation process of the simulator by taking the first
step, which involves creating specific Debian packages that will be utilized
in the subsequent Docker stage.

Run the command below:

mkdir build

cd build

cmake .. && make package && cmake .. -DDEV_PKG=1 && make
package

Now copy the Debian directory to create a Docker file to connect to the
E2 simulator.

Run the command below:

cp *.deb ../e2sm_examples/kpm_e2sm/
cd ../e2sm_examples/kpm_e2sm/

Now build oran simulator Docker container with following command.

docker build -t oransim:0.0.999
docker run -d --name oransim -it oransim:0.0.999

Now, to run the simulator, we launch the bash terminal within the con-
tainer with the following command:

docker exec -ti oransim /bin/bash

Now check if the simulator is running or not with the following command:

kpm_sim "IP" 36422

24

Md Nur Mohammad August 9, 2023

Note: Replace ”IP” to run the simulator. For that, run the command
below.

kubectl get services -n ricplt

Output:

root@srv6:/home/o-ran# kubectl get services -n ricplt

NAME TYPE CLUSTER -IP PORT (S)

aux-entry ClusterIP 10.105.132.177 80/TCP
,443/TCP

r4-infrastructur -kong-proxy NodePort 10.98.2.131
32080:32080/TCP ,32443

r4-infrastructure-alertman: ClusterIP 10.100.7.125 80/ TCP

r4-infrastructure-server ClusterIP 10.105.33.31 80/TCP

service-ricplt-almedia:-http ClusterIP 10.102.109.89 10000/
TCP

service-ricplt-almedia:-rmr ClusterIP 10.96.120.158 4561/
TCP ,4562/ TCP

service-ricplt-alarm:-http ClusterIP 10.105.220.145 8080/
TCP

service-ricplt-alarm:-rmr ClusterIP 10.107.6.137 4560/
TCP ,4561/TCP

service-ricplt-appmgr-http ClusterIP 10.100.8.154 8080/
TCP

service-ricplt-appmgr-http ClusterIP 10.102.179.240 4561/
TCP ,4560/TCP

service-ricplt-dbass-tcp ClusterIP None 6379/
TCP

service-ricplt-e2mgr-http ClusterIP 10.109.47.153 3800/
TCP

service-ricplt-e2mgr-rmr ClusterIP 10.108.234.78 4561/
TCP ,3801/TCP

service-ricplt-e2term-pro.. ClusterIP 10.96.118.19 8088/
TCP

service-ricplt-e2term-rmr.. ClusterIP 10.102.139.254 4561/
TCP ,38000/ TCP

service-ricplt-e2term-sctp.. NodePort 10.102.107.2

36422:32222/SCTP
service-ricplt-olmediator-htt ClusterIP 10.111.228.73 9001/
TCP ,8080/TCP ,3000/ TCP

Now copy the IP from output services in ricplt with the 36422 port and
use it in the previous step.

Example:kpm_sim 10.102.107.2 36422

Once we run that command, we will see the simulator is connected to
near-RT RIC.

To show that the e2 simulator is connected to the near RT RIC follow the
below steps.

Copy the E2 manager IP and run the curl command with the following
command:

25

Md Nur Mohammad August 9, 2023

curl -X GET http://"IP":3800/vl/nodeb/states 2>/dev/null]|
ja

Now run the following command and take the correct IP:

kubectl get services -n ricplt

Output:

root@srv6:/home/o-ran# kubectl get services -n ricplt

NAME TYPE CLUSTER -IP PORT (S)

aux-entry ClusterIP 10.105.132.177 80/TCP
,443/TCP

r4-infrastructur -kong-proxy NodePort 10.98.2.131
32080:32080/TCP,32443

r4-infrastructure-alertman: ClusterIP 10.100.7.125 80/TCP

r4-infrastructure-server ClusterIP 10.105.33.31 80/ TCP

service-ricplt-almedia:-http ClusterIP 10.102.109.89 10000/
TCP

service-ricplt-almedia:-rmr ClusterIP 10.96.120.158 4561/
TCP ,4562/TCP

service-ricplt-alarm:-http ClusterIP 10.105.220.145 8080/
TCP

service-ricplt-alarm:-rmr ClusterIP 10.107.6.137 4560/
TCP ,4561/TCP

service-ricplt -appmgr-http ClusterIP 10.100.8.154 8080/
TCP

service-ricplt -appmgr-http ClusterIP 10.102.179.240 4561/
TCP ,4560/TCP

service-ricplt-dbass-tcp ClusterIP None 6379/
TCP

service-ricplt -e2mgr-http ClusterIP 10.109.47.153 3800/
TCP

service-ricplt-e2mgr-rmr ClusterIP 10.108.234.78 4561/
TCP ,3801/TCP

service-ricplt-e2term-pro.. ClusterIP 10.96.118.19 8088/
TCP

service-ricplt-e2term-rmr.. ClusterIP 10.102.139.254 4561/
TCP ,38000/ TCP

service-ricplt-e2term-sctp.. NodePort 10.102.107.2

36422:32222/SCTP

service-ricplt-olmediator-htt ClusterIP 10.111.228.73 9001/
TCP ,8080/TCP ,3000/ TCP

service-ricplt-olmediator-tcp NodePort 10.108.87.21
830:30830/TCP

service-ricplt-rtmgr-http ClusterIP 10.109.105.95 3800/
TCP

service-ricplt -rtmgr -rmr ClusterIP 10.105.222.135 4561/
TCP ,4560/ TCP

service-ricplt-submgr-http ClusterIP None 3800/
TCP

service-ricplt-submgr-rmr ClusterIP None 4560/

TCP ,4561/TCP
service-ricplt-vespamgr-http ClusterIP 10.100.198.129 8080/
TCP ,9095/TCP

Now, copy the E2 manager IP (service - ricplt - e2mgr - http) and Re-
place "IP” with the e2 manager IP. Run this command in the ric-dep/bin

26

Md Nur Mohammad August 9, 2023

directory. And we will see the E2 simulator connected to RT RIC.

Example: curl -X GET http:// 10.109.47.153:3800/v1/nodeb/
states 2>/dev/nulll|jq

Step (5): Utilize the dms-cli tool to effortlessly deploy xApps,
streamlining the deployment process and enhancing efficiency.

The DMS component plays a vital role in the RIC platform as it manages
the near-real-time (NRT) data and metadata utilized by the platform,
including policy and configuration data. To interact with the DMS and
perform tasks like querying, updating, and deleting data and metadata,
the ”dms_cli” tool is commonly employed through command-line instruc-
tions.

In the context of xApp onboarding services for operators, the xApp on-
boarder offers a convenient cli tool named ”dms_cli.” This tool takes in
the xApp descriptor and optionally an additional schema file and generates
xApp helm charts.

To ensure the successful deployment of any xApp, it is essential to load
its corresponding Helm chart into a designated private Helm repository.
This repository serves as a prerequisite for xApp deployment.

Run the command below.

docker run --rm -u O -it -d -p 8090:8080 -e DEBUG=1 -e STORAGE
=local -e STORAGE_LOCAL_ROOTDIR=/charts -v $(pwd)/charts:/
charts chartmuseum/chartmuseum:latest

Note: Run it in the home directory.

Set up the environment variables for a CLI connection using the same port
as used above. Now export the chart repository url with the following
command:

export CHART_REPO_URL=http://0.0.0.0:8090

Step(6): Utilize the dms-cli tool to effortlessly deploy xApps,
streamlining the deployment process and enhancing efficiency.

To deploy xapp we need to clone the app-manager repository with the
following command:

git clone https://gerrit.o-ran-sc.org/r/ric-plt/appmgr -b
f-release

27

Md Nur Mohammad August 9, 2023

Now change the xapp_onboarder directory to install Python for onboarding
xapp with the following command:

cd appmgr/xapp_orchestrater/dev/xapp_onboarder

Note: If pip3 is not installed, install pip packages for python install with
the following command:

apt-get install python3-pip

Note: If the dms_cli binary is already installed, then uninstall it first “using
following command.

pip3 uninstall xapp_onboarder

Now it’s time to install xapp_onboarder. For that first install Python
dependencies with the following command:

pip3 install ./

Now modify the permissions. The instructions are for Python 3.6, and
here we will install Python 3.8 with the following commands:

l1s -la /usr/local/lib/python3.8
chmod -R 755 /usr/local/lib/python3.8

Step(7): Compile, onboard, and install the hw-go xzapp derived
from the O-RAN SC xApp project, incorporating its functional-
ity into the system with precision.

To compile and deploy hw-go xapp, we need source code, and for that,
run clone the ric-app repository by using the following command:

git clone https://gerrit.o-ran-sc.org/r/ric-app/hw-go

Build Docker templates and examples. con:80 is a tag. It could be any
url. It will run in the local registry. This will be used later. Follow the
below commands:

cd hw-go
docker build -t example.com:80/hw-go:1.2

Now modify config-file.json to build a connection with xapp onboard for
deployment. We are changing the registry, name, and tag in the configu-
ration. For this, run the command below:

28

Md Nur Mohammad August 9, 2023

vim config/config-file. json

Note: Edit the config file in the following steps:

registry: nexus3.o-ran-sc.org:10004 to example.com:80.
name: hw-go.
tag: 1.2

Now make sure the xapp descriptor config file and the schema file are on
my local file system. We can do it by following the command:

dms_cli onboard ./config/config-file.json ./config/schema.
json

To Install hw-go use the following command:

dms_cli install hw-go 1.0.0 ricxapp

When hw-go is installed, it will make e2 subscriptions to all e2 nodes that
it finds connected. Now we can see ric-xapp is running and connected
with the E2 simulator.

Run this command to check if ricxapp pods are running or not.

kubectl get pods -n ricxapp

Summary: Now the near-RT RIC is successfully deployed with the speci-
fications of the O-RAN software community.

3.2 Infrastructure Preparation and Deployment of non-
RT RIC.

Hardware Requirements:

Operating System Ubuntu 20.04
Core 8 vCPU
Memory 32 GB

Disk 150 GB

GPU 16 GB

Table 3: Hardware Requirements for non-RT RIC

Software Requirements:

e Container orchestration: Kubernetes- v1.19+

29

Md Nur Mohammad August 9, 2023

e Container runtime: Docker and docker-compose (latest)
e Kubernetes Package manager Helm Chart v3.5

e Helm Chart Repository: ChartMuseum
3.2.1 Prerequisites Installation of non-RT RIC.

To deploy non-RT RIC, it requires Kubernetes, Kubernetes CNI, Helm
Chart, Chartmeusume, and Docker with non-RT RIC dependencies. The
following steps will show the installation process for all of them.

1. Install Packages: To install the package, we need ca-certificates,
and we will install it with the command below:

sudo apt-get update
sudo apt-get install -y apt-transport-https ca-
certificates curl

2. Install Containerd: We have a few container runtimes available.
Before we install a container, we need to create its configuration file. We
will do it with the following commands:

curl -fsSLo containerd-config.toml\https://gist.
githubusercontent.com/oradwell/31
ef858de3cad3addef68ff971£459c2/raw /5099
df007eb717a11825c3890a0517892fal12dbf/containerd-config.
toml

sudo mkdir /etc/containerd

sudo mv containerd-config.toml /etc/containerd/config.toml

Now, without any convenience, we can install container ed from the official
GitHub repo with the following commands:

curl -fsSLo containerd-1.6.14-1linux-amd64.tar.gz\https://
github.com/containerd/containerd/releases/download/vl
.6.14/containerd-1.6.14-1linux-amd64.tar.gz

Note: It will pull compressed binaries, so we need to extract that, which
will happen with the below command:

sudo tar Cxzvf /usr/local containerd-1.6.14-linux-amd64.
tar.gz

Now it’s time to install containered as a service. Follow the command
below:

30

Md Nur Mohammad August 9, 2023

sudo curl -fsSLo /etc/systemd/system/containerd.service \
https://raw.githubusercontent.com/containerd/containerd/
main/containerd.service

sudo systemctl daemon-reload

sudo systemctl enable --now containerd

3. Install runc: To create and run containers we need to install a native
feature called runc which is a low level of container runtime. Following
command will install it:

curl -fsSLo runc.amd64 \
https://github.com/opencontainers/runc/releases/download/vi
.1.3/runc.amd64
sudo install -m 755 runc.amd64 /usr/local/sbin/runc

4. Install network plugins CNI: We install network interface plugins
from their official git repository. Following commands will install CNI:

curl -fsSLo cni-plugins-linux-amd64-vi.1.1.tgz \
https://github.com/containernetworking/plugins/releases/
download/v1.1.1/cni-plugins-linux-amd64-v1.1.1.tgz
sudo mkdir -p /opt/cni/bin
sudo tar Cxzvf /opt/cni/bin cni-plugins-linux-amd64-vl.1.1.tgz

5.Enable IPvj forwarding and configure iptables for bridged net-
work traffic.

To enable proper functionality, ensure the overlay and br_netfilter kernel
modules are enabled, and grant iptables the capability to inspect bridged
network traffic.

Run the following command:

cat <<EOF | sudo tee /etc/modules-load.d/k8s.conf
overlay

br_netfilter

EOF

sudo modprobe -a overlay br_netfilter

The required sysctl parameters must be configured for the setup, ensuring
their persistence across reboots. Run the following commands:

cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf

net.bridge.bridge-nf-call-iptables = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.ipv4.ip_forward =1
EQF

Apply sysctl params without reboot
sudo sysctl[U+FFFD] system

31

Md Nur Mohammad August 9, 2023

6. Install Kubectl, Kubelet, Kubeadm: Now we are ready to install
kuberenetes. We need to make sure that their versions are compatible
with the following commands:

Add Kubernetes GPG key
sudo curl -fsSLo /usr/share/keyrings/kubernetes-archive-

keyring.gpg \
https://packages.cloud.google.com/apt/doc/apt-key.gpg

Add Kubernetes apt repository
echo "deb [signed-by=/usr/share/keyrings/kubernetes-
archive-keyring.gpgl https://apt.kubernetes.io/ kubernetes
-xenial main" \
| sudo tee /etc/apt/sources.list.d/kubernetes.list

Fetch package list
sudo apt-get update
sudo apt-get install -y kubelet kubeadm kubectl

Prevent them from being updated automatically
sudo apt-mark hold kubelet kubeadm kubectl

7. Ensure swap is disabled: In order to comply with Kubernetes’ lack
of support for the swap feature, it is necessary to disable it. Run the
following commands:

swapon --show
sudo swapoff -a

8. Create the cluster using kubeadm: Our non-RT RIC will work on
single node clusters or multi node clusters. This research project is based
on a single-node cluster.

With just a single command, the cluster can be initialized. However, in
single-node environments, it may not offer full functionality until certain
modifications are made. It is important to note that we are providing the
”—pod-network-cidr” parameter, as mandated by our CNI plugin (Flan-
nel). Run the following commands:

sudo kubeadm init --pod-network-cidr=10.244.0.0/16

9. Configure kubectl: Configuring Kubectl is important to get access
to the cluster. Run the following commands:

mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

10. Untaint node: To ensure pods can be deployed to our single-node
cluster without any issues, it is necessary to untaint the node. Failure

32

Md Nur Mohammad August 9, 2023

to do so may result in pods being stuck in a pending state. Run the
commands below to avoid this issue:

kubectl taint nodes --all node-role.kubernetes.io/master-
kubectl taint nodes --all node-role.kubernetes.io/control-
plane-

Note: Sometimes it will not work. At that time, run the following com-
mand:

kubectl get nodes
kubectl taint nodes "IP" node-role.kubernetes.io/control-
plane=:NoSchedule

11. Install a CNI pligin: To enable networking functionality, the
installation of a Container Network Interface (CNI) plugin is required. In
our case, we are installing flannel as the chosen plugin with the following
command:

kubectl apply -f https://raw.githubusercontent.com/coreos/
flannel/master/Documentation/kube-flannel.ym

12. Install Helm: For non-RT RIC, we need helm v3.5. We install our
package by following the command:

curl https://raw.githubusercontent.com/helm/helm/master/
scripts/get-helm-3 | bash

13. Install ChartMuseum: To run the chartmuseum we insrtalled
packages with the following command:

curl https://raw.githubusercontent.com/helm/chartmuseum/
main/scripts/get-chartmuseum | bash

14. Install CSI driver: For the storage to work, need to install the
Container Storage Interface driver. Here used CSI is OpenEBS with the
command below:

helm repo add openebs https://openebs.github.io/charts
kubectl create namespace openebs
helm --namespace=openebs install openebs openebs/openebs

15. Run Kubectl proxy: To avoid the localhost error for a single node
cluster, open a new terminal and run the following command:

33

Md Nur Mohammad August 9, 2023

kubectl proxy --port=8080

Summary: To sum up, our Kubernetes is now installed perfectly. To see
if the Kubernetes pods are running or not, run the following command:

kubectl get po -n kube-system

Output:

root@srv:/home/o-ran# kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE
coredns -5644d7b6d9 -58xml 1/1 Running 2 124d
coredns -5644d7b6d9 -d446p 1/1 Running 2 12d
etcd-srv6.5g.dn.th.koeln.de 1/1 Running 2 124
kube -apiserver -srv6.5g.dn.th... 1/1 Running 2 12d
kube-flannel -ds-rr56g 1/1 Running 2 12d
kube -proxy-dgxvm 1/1 Running 2 124
kube-scheduler -srv6.5g.dn.th.... 1/1 Running 2 12d

The Kubernetes pods are running, and Kubernetes is installed. Now Ku-
bernetes is ready to install non-RT RIC.

3.2.2 Deployment of non-RT RIC.

After the successful installation of prerequisites, it is now time to deploy
non-RT RIC. As we are following G-Release, the next steps will go through
o-ran software community guidelines.

1. Preparation: Downloaded the specific repository (it/dep) based on
G-release. Make sure the branch exists before cloning from the master
branch. For that run the following command:

git clone "https://gerrit.o-ran-sc.org/r/it/dep" -b g-
release

or

git clone "https://gerrit.o-ran-sc.org/r/it/dep"

2. Installation Component Configuration:

It is simple to configure the installation of nonrtric components, such as
the controller and A1 simulators. All you need to do is make adjustments
to a specific file known as the Helm package override file to customize the
installation according to your preferences. Run the following command
and use any editor to edit the example_recipe.yaml file:

\"editor" dep/RECIPE_EXAMPLE/NONRTRIC/example_recipe.

yaml

The file shown below is part of the override example_recipe.yaml.

34

Md Nur Mohammad August 9, 2023

To enable installation, set any parameters starting with ’install’ to 'true’,
and to disable installation, set them to ’false’.

You can only enable either the install Non-rt- ric gateway or the install
Kong parameters at the same time.

The file also contains other parameters that might need to be adjusted
for a specific environment, such as the hostname, namespace, and port of
the message router. However, this guide does not provide instructions for
configuring these integration details.

Editor override file:

nonrtric:

installPms: true
installAlcontroller: true
installAlsimulator: true
installControlpanel: true
installInformationservice: true
installRappcatalogueservice: true
installRappcatalogueEnhancedservice: true
installNonrtricgateway: true
installKong: false
installDmaapadapterservice: true
installDmaapmediatorservice: true
installHelmmanager: true
installOruclosedlooprecovery: true
installOdusliceassurance: true
installCapifcore: true

volumel :

Set the size to O if you do not need the volume (if you are
using Dynamic Volume Provisioning)

size: 2Gi

storageClassName: pms-storage

volume?2:

Set the size to 0 if you do not need the volume (if you are
using Dynamic Volume Provisioning)

size: 2Gi

storageClassName: ics-storage

volume3:
size: 1Gi
storageClassName: helmmanager -storage

3. Installation: There is a script that uses the helm command to pack
and install the components. The installation requires a values override file,
like the one mentioned before. To run this example, follow these steps:

sudo dep/bin/deploy-nonrtric -f
dep/nonrtric/RECIPE\ _EXAMPLE/example_recipe.yaml

35

Md Nur Mohammad August 9, 2023

4. Result of the Installation:

During the installation process, a single Helm release will be created, and
all associated Kubernetes objects will be placed within a designated name

space. The predefined name space for these objects is 'nonrtric’ and cannot
be modified.

After the installation is complete, we can verify that by following output
of the Kubernetes objects that have been created by using the ’kubect!’
command. For instance, if all components are enabled, you can check the
deployed pods using the following example command:

kubectl get po -n nonrtric

Output:

root@srv5;/home/o-ran# kubectl get po -n nonrtric

NAME READY STATUS RESTARTS AGE
al-sim-std-0-7d7d6d5b69 1/1 Running 3(98m ago) 3h 55m
-gxx2d

topology-6c5cd99d6d -q4p8r 1/1 Running 3(98m ago) 3h 556m
al-sim-o0sc-1-5bb7478885 - 1/1 Running 3(98m ago) 3h 55m
7ssh8

al-sim-std2-0-64cc667968 - 1/1 Running 3(98m ago) 3h 55m
cnzs7r

al-sim-std-1-6d7b644cbb-g 1/1 Running 3(98m ago) 3h 55m
749h

nonrtricgateway -689d9cf595 1/1 Running 6(96m ago) 3h 55m
-mwévg

dmaapadapterservice -0 1/1 Running 3(98m ago) 3h 556m
al-sim-o0sc-0-547cc8fc84 - 1/1 Running 3(98m ago) 3h 55m
86vvé

informationservice -0 1/1 Running 3(98m ago) 3h 55m
rappcatalogueservice -8844f 1/1 Running 3(98m ago) 3h 556m
9469 -ppwt7

oran-nonrtric-odu-app-86c5 1/1 Running 3(98m ago) 3h 55m
d494fb-pg2mr

oran-nonrtric-kong-594db9 2/2 Running 11(96m ago) 3h 55m
cb8b-h4m4j

oran-nonrtric-odu-app-ics- 1/1 Running 3(98m ago) 3h 55m
version....

al-sim-std2-1b668b97df -98 1/1 Running 3(98m ago) 3h 55m
cmd

helmanager -0 1/1 Running 5(98m ago) 3h 556m
dmaapmediatorservice -0 1/1 Running 4(95m ago) 3h 55m
controlpanel -6£fb4£f88778 - 1/1 Running 15(95m ago) 3h 556m
rhmph

oru-app-8db46d4ct -jd66b 1/1 Running 1(105m ago) 3h 556m

Summary: Now we can see that all pods are in the running stage. Where
the A1 simulator, controller, helmanager and other necessary Kubernetes
pods are active. It means the non-RT RIC platform is ready to use.

36

Md Nur Mohammad August 9, 2023

3.3 Deployment Status Testing.

To check the deployment status of both RAN intelligent controllers, follow
the following steps:

3.3.1 near-RT RIC Status.

Kubernetes Pods status: To ensure that near-RT RIC is deployed or
not, we need to check pod status. We can see that all pods are running. So,
near-RT RIC has been deployed successfully. Run the following command.

kubectl get po -n ricplt

Output:

root@srv6:/home/o-ran# kubectl get po -n ricplt

NAME READY STATUS AGE
deployment -ricplt-almediator -669cc?7 1/1 Running 18d

4647-t22qp

deployment -ricplt-alarmmanager -577 1/1 Running 18d
85458dd-p95s4

deployment -ricplt -appmgr -77986c9c 1/1 Running 18d

bb-16b21

deployment -ricplt -e2mgr -5dd878£f58 1/1 Running 18d
b-npdff

deployment -ricplt-e2term-alpha-68 1/1 Running 18d
98f8696d -5smjj

deployment -ricplt -Olmediator -5dddé 1/1 Running 18d
6b4d6-5x1v9

deployment -ricplt -rtmgr -788975975 1/1 Running 18d
b-ghlgs

deployment -ricplt -submgr -68fc6564 1/1 Running 18d
88-6wnd6

deployment -ricplt-vespamgr -84£f7d8 1/1 Running 18d
7dfb-rq7zx

r4é-infrastructure -kong-7995f4679b 2/2 Running 18d
-bs956n

r4-infrastructure-prometheus-aler 2/2 Running 18d
tmanager -5798b78f48 -gkkcn

r4-infrastructure-prometheus-serv 1/1 Running 18d
er-c8ddcfdf5-6kd48

statefulset -ricplt -dbaas-server -0 1/1 Running 18d

Here,all necessary service pods are running. Importantly, al mediator,
armanager, appmgr and 01 mediator are running. Which are responsible
for building connections with non-RT RIC.

3.3.2 non-RT RIC Status.

For non-RT RIC, we have seen that all pods are running in previous steps.
According to o-ran allaince instruction after the deployment of non- RT
RIC part, we will browse it and have a control panel [Figure 5].

37

Md Nur Mohammad August 9, 2023

€ > C A Notsecure | 139.6.19.29:3009 2 % B9 » I 0OM:

SM M inbox- numoham... @ YouTuke G Google) KAWstudentoan(l. namaz DevOpscourse THKon O-RAN M Erinerung: Gebihr.. @ Line ntegralsof Sc.. M Ihre & .. @ Amazon High Vol

= (€ Non-RT RIC Control Panel unt @ oark

POLICY CONTROL ENRICHMENT INFORMATION
COORDINATOR

Figure 5: Non-RT RIC Control Panel

This non-RT RIC control panel [Figure 5] will represent the policy control
and enrichment information coordinator.

Policy Control:

€ > C A Notsecure | 139.6.19.29:30091 ® % B YN OMS:

SM M Inbox-numoham.. 8 YouTube G Google) KWstudentloan(l.. namaz DevOpscowse THKSn O-RAN M Einnerung: Gebihr.. @ Line Integrals of Sc.. My Ihre Anmeldung zu.. @ Amazon High Volu

= Non-RT RIC Control Panel

A Home

23 Policy v

B3 Enrichment Information Coordinator

Figure 6: Policy Control functions.

In policy control, policy, policy type, and RIC configuration [Figure 6]
will appear, and the coordinator will highlight them with ID, type, and
status.

38

Md Nur Mohammad August 9, 2023

Enrichment Information Coordinator:

€ > C A Notsecure | 139.6.19.29:30091/ei-coordinator 2 * B YR OM:

SM M inbox-numohem.. @3 YouTube G Google) KWstcentlomn(l. namez DevOps course THKoh ORAN M Einnerung:Gebihr.. @ LineIntegralsof Sc.. M Ihre Anmeldung zu.. @ Amazon High Vol

= € Non-RT RIC Control Panel

Enrichment Information Coordinator

Producers

Producer ID Producer types Producer status

DmaapGenericinfoProducer ExampleinformationTypeKafka,ExampleinformationType ENABLED

DMaaP_Mediator_Producer STD_Fault Messages ENABLED

Jobs

[utorefresh

No records found.

Figure 7: Non-RT RIC Enrichment information Coordinator

Now, on the coordinator page [Figure 7], there is also an option to create
jobs for further work.

4 Testing and Analysis

4.1 Connection set-up.

To build the connection between near-RT RIC and non-RT RIC we need
to follow a few steps. Which is guided by the software community of o-ran
Alliance.

Assign external IP to near and non RT RIC services: To connect
a near-RT RIC with a non-RT RIC platform, it is mandatory to assign an
external IP address to all components of both RIC.

For near-RT RIC The following command will set an external IP:

kubectl patch svc "service-ricplt-almediator-http" -n "
ricplt" -p '{"spec":{"externalIPs":["139.6.19.30"]}}"

After running the command, we can see that the external IP assigned or
not with the following command:

kubectl get services -n ricplt

Output:

39

Md Nur Mohammad August 9, 2023

root@srvé:/home/o-ran# kubectl get services -n ricplt

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

aux-entry ClusterIP 10.105.132.177 139.6.19.30 80/TCP
,443/TCP

r4-infrastr NodePort 10.98.2.131 139.6.19.30

32080:32080/TCP ,32443

uctur -kong-proxy

r4-infrastructu ClusterIP 10.100.7.125 139.6.19.30 80/TCP

re-prometheus -alertmanager

r4-infrastruct ClusterIP 10.105.33.31 139.6.19.30 80/TCP

ure-prometheus -server

service-ricplt ClusterIP 10.102.109.89 139.6.19.30 10000/
TCP

-almediator -http

service-ricplt ClusterIP 10.96.120.158 139.6.19.30 4561/
TCP ,4562/TCP

-almediator -rmr

service-ricplt ClusterIP 10.105.220.145 139.6.19.30 8080/
TCP

-alarmanager -http

service-ricplt ClusterIP 10.107.6.137 139.6.19.30 4560/
TCP ,4561/TCP

-alarmanager -rmr

service-ricplt ClusterIP 10.100.8.154 139.6.19.30 8080/
TCP

-appmgr -http

service-ricplt ClusterIP 10.102.179.240 139.6.19.30 4561/
TCP ,4560/TCP

-appmgr -rmr

service-ricplt ClusterIP None 139.6.19.30 6379/
TCP

-dbass-tcp

service-ricplt ClusterIP 10.109.47.153 139.6.19.30 3800/
TCP

-e2mgr -http

service-ricplt ClusterIP 10.108.234.78 139.6.19.30 4561/
TCP ,3801/TCP

-e2mgr -rmr

service-ricplt ClusterIP 10.96.118.19 139.6.19.30 8088/
TCP

-e2term-prometheus -alpha

service-ricplt ClusterIP 10.102.139.254 139.6.19.30 4561/
TCP ,38000/ TCP

-e2term-rmr-alpha

service-ricplt NodePort 10.102.107.2 139.6.19.30
36422:32222/SCTP

-e2term-sctp-alpha

service-ricplt ClusterIP 10.111.228.73 139.6.19.30 9001/
TCP ,8080/TCP ,3000/ TCP

-olmediator-http

service-ricplt NodePort 10.108.87.21 139.6.19.30
830:30830/TCP

-olmediator -tcp-netconf

service-ricplt ClusterIP 10.109.105.95 139.6.19.30 3800/
TCP

-rtmgr-http

service-ricplt ClusterIP 10.105.222.135 139.6.19.30 4561/
TCP ,4560/TCP

-rtmgr -rmr

service-ricplt ClusterIP None 139.6.19.30 3800/
TCP

40

Md Nur Mohammad August 9, 2023

-submgr -http

service-ricplt ClusterIP None 139.6.19.30 4560/
TCP ,4561/TCP

-submgr -rmr

service-ricplt ClusterIP 10.100.198.129 139.6.19.30 8080/
TCP ,9095/TCP

-vespamgr -http

In the output of the kubectl services, it shows all pods are assigned an
external IP of 7139.6.19.30”.

For non-RT RIC Now we will asigned external IP for non-RT RIC and in

this case IP is 7139.6.19.26”. The following command will set an external
IP:

kubectl patch svc "service-ricplt-almediator-http" -n "

ricplt" -p '{"spec":{"externalIPs":["139.6.19.29"]}}"'

To check if it works or not, run the following command:

kubectl ger services -n nonrtric

Output:

root@srv5;/home/o-ran# kubectl get po -n nonrtric

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

al-sim-std2-0 ClusterIP 10.152.183.167 139.6.19.29 8085/TCP
,8185/TCP

helmmanager ClusterIP 10.152.183.29 139.6.19.29 8112/TCP

topology NodePort 10.152.183.220 139.6.19.29

3001:32001/TCP

al-sim-osc-1 ClusterIP 10.152.183.127 139.6.19.29 8085/TCP
,8185/TCP

al-sim-osc-0 ClusterIP 10.152.183.224 139.6.19.29 8085/TCP
,8185/TCP

al-sim-std-0 ClusterIP 10.152.183.44 139.6.19.29 8085/TCP
,8185/TCP

information ClusterIP 10.152.183.51 139.6.19.29 9082/TCP
,9083/TCP

service

al-sim-std-1 ClusterIP 10.152.183.178 139.6.19.29 8085/TCP
,8185/TCP

oran-nonrtric NodePort 10.152.183.205 139.6.19.29
8444:30634/TCP

-kong-admin

dmaapadapter ClusterIP 10.152.183.136 139.6.19.29 9087/TCP
,9088/TCP

service

controlpanel NodePort 10.152.183.174 139.6.19.29
8182:30091/TCP,8082:30092/TCP

al-sim-std-1 ClusterIP 10.152.183.71 139.6.19.29 8085/TCP
,8185/TCP

oran-nonrtric LoadBal.. 10.152.183.232 139.6.19.29 80:30742/
TCP ,443:32516/TCP

-kong-proxy

oru-app NodePort 10.152.183.207 139.6.19.29
830:30835/TCP

41

Md Nur Mohammad August 9, 2023

oran-nonrtric ClusterIP 10.152.183.149 139.6.19.29 80/TCP

-odu-app

nonrtricgatew NodePort 10.152.183.13 139.6.19.29
9090:30093/ TCP

dmaapmediatore ClusterIP 10.152.183.60 139.6.19.29 8085/TCP
,8185/TCP

service

oran-nonrtric- ClusterIP 10.152.183.14 139.6.19.29 8095/TCP

odu-app-ics

-version

rappcatalogue ClusterIP 10.152.183.251 139.6.19.29 9085/TCP
,9086/TCP

service

Now it shows that external IPs are assigned, and now both RIC are able
to communicate with both of them.

42

Md Nur Mohammad August 9, 2023

4.2 Create Policy.

The following steps will show the process of creating a policy.

Edit application_configuration.json file (non-rt ric): Run the fol-

lowing to edit this json file:

sudo vim /var/nonrtric/pms-storage/application\
_configuration. json

Edit this json file by using the following codes:

"config": {
"controller": [
{
"name": "controllerl",
"baseUrl": "https://sdnc.onap:8443",
"userName": "admin",
"password": "
Kp8bJ4SXszMOWX1lhak3eHlcse2gAw84vaoGGmJIvUy2U"
}
1,
"ric": [
{
"name": "ric-testing",
"baseUrl": "http://$NONRTRIC_IP:10000",
"customAdapterClass": "org.onap.ccsdk.oran.
alpolicymanagementservice.clients.OscAl1Client",
"managedElementIds": [
"kista_1",
"kista_2"

}
1,
"streams_publishes": {
"dmaap_publisher": {
"type": "message_router",
"dmaap_info": {
"topic_url": "http://message-router:3904/events/Al
-POLICY-AGENT-WRITE"
}
}
Yo
"streams_subscribes": {
"dmaap_subscriber": {
"type": "message_router",
"dmaap_info": {

"topic_url": "http://message-router :3904/events/Al
-POLICY-AGENT-READ/users/policy-agent?timeout=15000&1imit
=100"

}
}
¥
}
}

43

Md Nur Mohammad August 9, 2023

Now, if we go to the non-RT RIC control panel, we will see that the
configuration is updated perfectly.

<« > C A Not secure | 139.6.19.29:30091/ric-config

SM ™4 Inbox - nurmoham... @ YouTube & Google KfW student loan (1... namaz DevOps course TH K&In

= (" Non-RT RIC Control Panel

RIC Configuration

Note! This configuration will not be used if the system is using Consul.

"config™: {
"controller”: [

"name"; "controller1”,

"baseUrl": "https://sdnc.onap:8443",

"userName": "admin”,

"password": "Kp8bJ4SXszM0OWXIhak3eHIcse2gAw84vaoGGmJvUy2U"

"ric™:
"name": "ric-testing”,
"baseUrl": "http://139.6.19.30:10000",
"customAdapterClass": "org.onap.ccsdk.oran.alpolicymanagementservice.clients.0OscA1Client”,
"managedElementids": [
"kista_1",
"kista_2"
|
}

Format .JSON

Figure 8: RIC configuration updates.

[Figure 8] is the non-RT RIC control panel. Now reload the page, and we
will see that the RIC configuration is updated with the application file.

Create a policy in non-RT RIC and ONAP components instal-
lation:

To create a policy, we need to update the policy schema file. This file
is provided by default. Apart from that, ONAP has developed a policy-
creating platform. So, before we create policies, we need to set up a few

dependencies, which are provided by ONAP. Run the following command
to deploy Helm for ONAP services.

helm deploy \
--debug onap local/onap \
--namespace onap \

-f /root/dep/smo-install/helm-override/default/onap-
override.yaml \

--set global.persistence.mountPath="/dockerdata-nfs/
deployment -$timestamp" \

--set dmaap.message-router.message-router-zookeeper.

persistence.mountPath="/dockerdata-nfs/deployment -
$timestamp" \

44

Md Nur Mohammad August 9, 2023

--set dmaap.message-router.message-router -kafka.
persistence.mountPath="/dockerdata-nfs/deployment -
$timestamp"

Now non-rt ric is ready to create policy. First we need to edit pol-
icy_schema_ratecontrol.json file by replacing following script.

{
"name": "Policy for Rate Control",
"policy_type_id":21003,
"description":"This policy is associated with rate control.
Entities which support this policy type must accept the
following policy inputs (see the payload for more specifics
) : class, which represents the class of traffic for which
the policy is being enforced",

"create_schema":{

"$schema":"http://json-schema.org/draft-07/schema#",
"type":"object",
"additionalProperties":false,
"required":["class"],
"properties":{

"class":{

"type":"integer",

"minimum":1,

"maximum":256,

"description":"integer id representing class to
which we are applying policy"

Po

"enforce":{

"type":"boolean",
"description": "Whether to enable or disable
enforcement of policy on this class"

1,

"window_length":{
"type":"integer",
"minimum":15,
"maximum":300,
"description":"Sliding window length in seconds"

Po

"trigger_threshold":{
"type":"integer",
"minimum":1

1,

"blocking_rate":{
"type":"number",
"minimum":0,

"maximum":100
}
}
3,

"downstream_schema":{
"type" . llobjectll .
"additionalProperties":false,
"required":["policy_type_id", "policy_instance_id",
operation"],
"properties":{
"policy_type_id":{
"type":"integer",

45

Md Nur Mohammad August 9, 2023

"enum":[21000]

¥,

"policy_instance_id":{
lltype n : n String"

P

"operation":{
"type":"string",

"enum": ["CREATE", "UPDATE", "DELETE"]
1,
"payload":{
"$schema":"http://json-schema.org/draft-07/
schema#",
lltypell : llobject" s
"additionalProperties":false,
"required":["class"],
"properties":{
"class":{
"type":"integer",
"minimum":1,
"maximum":256,
"description":"integer id representing
class to which we are applying policy"
e
"enforce":{
"type":"boolean",
"description": "Whether to enable or
disable enforcement of policy on this class"
Yo
"window_length":{
"type":"integer",
"minimum":15,
"maximum":300,
"description":"Sliding window length in
seconds"
Yo
"trigger_threshold":{
"type":"integer",
"minimum":1
b
"blocking_rate":{
"type":"number",
"minimum":0,
"maximum":100
}
}
}

}
1,
"notify_schema":{
Iltypell . "Object" .
"additionalProperties":false,
"required":["policy_type_id", "policy_instance_id", "
handler_id", "status"],
"properties":{
"policy_type_id":{
"type":"integer",
"enum": [21000]
Po
"policy_instance_id":{
"type":"string"

46

Md Nur Mohammad August 9, 2023

},
"handler_id":{
"type":"string"

} 3
"status":{

"type":"string",

"enum":["0K", "ERROR", "DELETED"]
}

}
}

Now curl this file, and once it’s done, a policy will be created, and to see
the policy, we need to go to policy control on the RIC platform: For that,
first run the following command to create a policy:

curl -X PUT "http://localhost/al-p/policytypes/21003/" -H
"Content -Type: application/json" -d @policy_schema\
_ratecontrol. json

Now go to the non-RT RIC control panel and enter the option policy type
bar. Refresh the page, and we will see that the policy has been created.
In my case, the policy name is 21003 [Figure 9]

€ 2 C A Notsecure | 139.6.19.29:30091/policy

SM M Inbox - nurmoham... YouTube & Google KfW student loan (1... namaz DevOps course

= (" Non-RT RIC Control Panel

Policy Types

v 21003

Figure 9: Created Policy 21003

4.3 Result.

In the next step, we need to acknowledge the significance of the policy
created earlier. This policy represents the connection between the enti-
ties involved. With the policy in place, data packets will be transferred
between them. To understand this data transfer better, we will use Wire-
shark. Wireshark captures and analyzes the packets exchanged during
communication. It helps us examine the contents, protocols, and interac-
tions within the captured packets. By analyzing the packet captures, we
can gather information such as source and destination addresses, timing,
headers, and payload contents. We can also identify any issues or er-
rors that may occur during the data exchange. Using Wireshark, we can

47

Md Nur Mohammad August 9, 2023

validate the expected behavior, troubleshoot problems, and ensure the
smooth and secure transmission of data packets between the components.
Wireshark provides valuable insights into the network traffic, helping us
understand the communication process between the entities involved.

4.3.1 Wireshark Capture and Analysis.

In the following Wireshark [Figure 10] capture, we will see that near-RT
RIC and non-RT RIC transferring packets. Here, 139.6.19.30 is for near-
RT RIC and 139.6.19.29 is for non-RT RIC platforms.

1 . dst==139.6.10. 3088 =K
- -

Time Source Destiaton Frotocol Lengn o

139.5.19.30 66 51502 -~ 16908 [ACK] Seq=L Ack=1 Win=64256 Len=b TSval=1167967365 Tsecr=2934933179 m
139.5.19.30 e 246 51502 - 10000 [PSH, ACK] Seq=1 Ack=1 Hin=54256 Len=180 TSval-1167967365 TSecr-2934333179 [TCP.

139.5.19.30 Tcp 66 5150 ~ 10909 [ACK] Seq=181 Ack=26 Win=64256 Len=d TSval=1167967365 Tsecr=2934933180
139.5.19.30 3583 PUT /a1-p/policytypes/2103/ HTTP/1.1 , Javascript Object Notation (application/json)

EEET

87801 54.646 139.6.19.29 139.5.19.30 Tcp 12228 ~ 18080 [ACK] Seq=1 Ack=1 Win=64512 Len=9 T5val-2086633226 Tsecr=2934972049
87802 54,648 139.6.19.29 139.5.19.30 e 195 GET Jov-olpotteytypes MIPAL
57507 54.652 139.6.19.29 139.5.19.30 Tcp 6 12228 ~ 10009 [ACK] Seq=138 Ack=135 Win=64384 Len=0 TSval-208663323 TSecr=2934972055 -
87813 54.659 139.6.19.29 139.5.19.30 Tcp 66 46245 ~ 10908 [ACK] Seq=L Ack=1 Win=64512 Len= TSval-2086633238 Tsecr=2934972061

87514 54,662 139.6.19.29 139.5.19.30 e 210 GET /a1-p/policytypes/21003 /policies HITP/L.
87517 54.663 139.6.19.29 139.5.19.30 Tcp 4624 - 10000 [ACK] Seq=145 Ack-169 Win-54334 Len=0 TSval-2086633243 TSecr=2934972065

87523 54,673 139.6.19.29 139.5.19.30 Tcp e T] S e LR L R R e
875824 54,674 139.6.19.29 139.5.19.30 e 195 GET /a1-p/policytypes HTTF

87527 54.675 139.6.19.29 139.5.19.30 Tcp 56 5405 = 20000 1KY Seqeio0 Acke135 WineGA334 LD TSVALeZGB663925 TSecraZS34ST2070

87533 54,678 139.6.19.29 139.5.19.30 Tce 7 T S O I8 L R s e s
87834 54,679 139.6.19.29 139.5.19.30 e 195 GET /a1-p/policytypes HTF

57537 54,680 139.6.19.29 139.5.19.30 e 567255 - 1000 1K1 Seqe130 Aek15 WineGA354 LenD TSVALe2636633260 Tecra253457200)

<

> Frane 632: 74 bytes on uire (592 bits), 74 bytes captured (592 bits) on Interface ensi6d, 1d 0
> Ethernet II, Src: Vihiare_bcibc:2f (09:0c:29:bcibei2f), Dst: Vihiare_53:e6:49 (00:0c:29:53:e6:49)
> Internet Protocol Version 4, Src: 139.6.19.29, Dst: 139.6.19.30

>

0000 00 0c 25 53 26 49 00 0c 29 be be 21 08 00 45 00)T
010 00 3c ba 0140 00 40 06 44 73 8b 06 13 1 8b 05 <
0020 13 1e 9 26 2710 7d b5 1= 4d 00 00 00 00 20 02

0030 %a 0 3c 76 00 00 02 04 05 bd 04 02 08 0a 45 94 <V
| oot a8 oo 00 00 00 o103 0307

Figure 10: Packets after creating Policy 21003

-
e

Now the [Figure 11] is about the transferred packet. Here, packet number
87806 is a transfer from non-RT RIC to near-RT RIC, which is a policy
packet.

48

Md Nur Mohammad August 9, 2023

‘ Wireshark - Packet 87806 - policy capture.pcapng

[Time delta from previous captured frame: 8.803094918 seconds]
[Time delta from previous displayed frame: ©.003856183 seconds]
[Time since reference or first frame: 54.652725632 seconds]
Frame Number: 87806
Frame Length: 20@ bytes (16808 bits)
Capture Length: 208@ bytes (1600 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ethertype:ip:tcp:http:json]
[Coloring Rule Name: HTTP]
[Coloring Rule String: http || tcp.port == 8@ || http2]
Ethernet II, Src: VMware_53:e6:49 (88:8c:29:53:06:49), Dst: VMware_bc:bc:2f (00:0c:29:bc:bc:2f)
Internet Protocol Version 4, Src: 139.6.19.3@, Dst: 139.6,19,29
Transmission Control Protocol, SrE_EEF¥?_E§E§E, Dst Port: 12228, Seq: 1, Ack: 138, Len: 134
Hypertext Transfer Protocol
v JavaScript Object Notation: application/json
~ Array
[Path with value: /[]:21883]
[Member with value: []:21883]
Number value: 21003

00 Bc 29 bc bc 2f 00 Bc 29 53 e6 49 88 60 45 00 Y-/)S-I--E
00 ba c3 90 46 00 3f @6 3b 66 8b 86 13 le 8b 06 @2 ;f

13 1d 27 18 2f c4 38 b2 c7 c5 36 f9 de 21 80 18 to/-8 6

91 fe @1 le 60 60 01 @1 ©8 Ba ae fO le 97 Jc 5F |
7f Bc 48 54 54 50 2f 31 2e 31 20 32 3@ 38 20 4f HTTP/1 .1 286 O

4b @d Ba 43 6f 6e 74 65 6e 74 2d 54 79 78 65 3a K- -Conte nt-Type:
20 61 7@ 7@ 6c €9 63 61 74 €9 of 6e 2f 6a 73 of applica tion/jso
6e @d Ba 44 61 74 65 3a 20 54 75 65 2c 20 31 36 n--Date: Tue, 16
20 4d 61 79 20 32 38 32 33 20 31 24 3a 32 31 3a May 202 3 14:21:
31 36 20 47 4d 54 @d ©a 43 6f 6e 74 65 6e 74 2d 16 GMT-- Content-
0820 4c 65 6e 67 74 68 3a 20 38 0d Ba SN SRR Length: 8- -{@eih[=
Lo 74 69 6f 6e 3a 28 63 6c 6f 73 65 Od Ga:LE:FEEEction: ¢ lose- -

5b 32 31 3@ 38 33 5d @a [21003]

Figure 11: Policy Packet (HTTP/JSON Protocol)

This packet was transferred through the HT'TP/JSON protocol. Applica-
tion/json file presenting the data, and the policy name is 21003, which we
have seen before in the RIC control panel. Here in the JavaScript Object
Notation section, there is an option with the name ”array. This array
contains a path and a member with the value 21003.

4.4 Follow-up opportunities

Currently, the system is not prepared to connect with the 5G core network
as it solely encompasses RIC components. However, the development of
other components is underway, and once completed, the system will be
ready for integration with the 5G core network. The O-RAN Alliance
is actively involved in the development of these additional components,
providing open-source implementation resources through their published
releases. As part of future work, the focus will be on deploying these forth-
coming components and establishing the necessary connections between
them and the 5G core network. This ongoing effort will pave the way for a
comprehensive and fully functional system that leverages the capabilities
of the 5G core network.

4.5 Challenges

Infrastructure Requirements: Setting up Non-RT RIC and Near-RT
RIC involves configuring complex infrastructure. This includes deploying

49

Md Nur Mohammad August 9, 2023

the necessary hardware, networking components, and virtualization plat-
forms and hypervisors. Ensuring that the infrastructure meets the specific
requirements of these components can be a time-consuming and intricate
process.

Software Dependencies: Non-RT RIC and Near-RT RIC rely on vari-
ous software dependencies, such as operating systems, container runtimes,
and orchestration frameworks. Ensuring compatibility between these de-
pendencies and the target deployment environment can be challenging,
requiring careful selection and configuration of software versions.

Overall,installing Non-RT RIC and Near-RT RIC can be challenging be-
cause it involves dealing with technical complexities, infrastructure con-
siderations, software dependencies, and optimization requirements. It re-
quires expertise and careful attention to detail to ensure a successful and
functional deployment.

50

Md Nur Mohammad August 9, 2023

5 Conclusion

This research project explores the initiatives of the O-RAN Alliance group,
which focuses on software-based solutions for open and programmable ra-
dio access networks. The O-RAN Alliance group aims to establish a refer-
ence design that offers operators and service providers a unified approach
to deploying disaggregated and software-defined 5G RANs. Additionally,
the collaboration between O-RAN and the Linux Foundation has resulted
in the development of initial software releases and documentation, serving
as a prototype platform for further RAN software advancements.

The objective of this project was to deploy developed components of O-
RAN in a specific radio access network intelligent controller part over a
virtualization infrastructure to investigate the capabilities of those com-
ponents as well as test their connectivity. Additionally, the study aimed
to evaluate the crucial role of Kubernetes in orchestrating containerized
applications. To achieve these objectives, the approach taken in this re-
search project primarily revolved around practical aspects, demonstrating
the deployment of specific O-RAN software components in a customized
virtual environment.

Despite the initial challenges, the project managed to deploy non-RT RIC,
near-RT RIC, and xApp components successfully. Basic performance eval-
uations were conducted to assess their performance. The connectivity
between the two RICs was established, allowing effective communication.
Furthermore, the creation of policies was accomplished without any issues,
enhancing the overall functionality of the deployed components. These
achievements demonstrate significant progress in implementing the de-
sired functionalities and capabilities of the system. The positive outcomes
from the performance evaluations provide a solid foundation for further
optimization and fine-tuning of the components, ensuring optimal perfor-
mance in real-world scenarios.

In summary, the procedural steps taken in this research project can be seen
as a starting point for further exploration into the feasibility of deploying
O-RAN software. These steps provide a basic framework for assessing
the deployment process, which can be adapted and expanded upon as the
software components continue to evolve.

o1

Md Nur Mohammad August 9, 2023

6 Abbreviations

RAN = Radio Access Network.

O-RAN = Open Radio Access Network.

RIC = RAN Intelligent Controller.

SMO = Service Management and Orchestration.
NSF = Network Slicing Function.

MANO= Management and Orchestration.
NFVI = Network Functions Virtualization Infrastructure.
VNFs = Virtual Network Functions.

PNFs = Physical Network Functions.

NMS = Network Management Systems.

0O-CU = O-RAN Central Unit.

0O-CU-CP = O-RAN Central Unit in control plane.
O-CU-UP = O-RAN Central Unit in user plane.
O-DU = O-RAN Distributed Unit.

O-RU = O-RAN Radio Unit.

RRC = Radio Resource Control.

SDAP = Service Data Adaptation Protocol.
PDCP = Packet Data Convergence Protocol.
ONAP = Open Network Automation Platform.
CNI = Container Network Interface

RF = Radio Frequency.

MAC = Media Access Control Address.

RLC = Radio link control.

FCAPS = fault, configuration, accounting, performance, and security.

52

Md Nur Mohammad August 9, 2023

Bibliography
1 O-RAN Alliance. "O-RAN Alliance”. available online: https://docs.
o-ran-sc.org/en/latest/architecture/architecture.html.

2 O-RAN Alliance. online: https://orandownloadsweb.azurewebsites.
net/specifications.

3 O-RAN Software Community. available online: https://wiki.o-ran-sc.
org/display/RICNR/Release+G+-+Run+in+Kubernetes.

4 O-RAN Alliance. available online: https://www.o-ran.org/specifications.

5 o-ran-sc.org. available online: https://docs.o-ran-sc.org/projects/
o-ran-sc-it-dep/en/latest/.

6 O-RAN Software Community. available online: https://wiki.o-ran-sc.
org/display/REL/F+Release.

7 rimedolabs.com. available online: https://rimedolabs.com/blog/o-ran-near-real-time-ric/.

8 Oliver Radwell available online: https://blog.radwell.codes/2022/
07/.

9 linuxconfig.org. available online: https://linuxconfig.org/.

10 github.com. available online: https://github.com/o-ran-sc/ric-plt-al/
blob/master/docs/user-guide-api.rst.

53

https://docs.o-ran-sc.org/en/latest/architecture/architecture.html
https://docs.o-ran-sc.org/en/latest/architecture/architecture.html
https://orandownloadsweb.azurewebsites.net/specifications
https://orandownloadsweb.azurewebsites.net/specifications
https://wiki.o-ran-sc.org/display/RICNR/Release+G+-+Run+in+Kubernetes
https://wiki.o-ran-sc.org/display/RICNR/Release+G+-+Run+in+Kubernetes
https://www.o-ran.org/specifications
https://docs.o-ran-sc.org/projects/o-ran-sc-it-dep/en/latest/
https://docs.o-ran-sc.org/projects/o-ran-sc-it-dep/en/latest/
https://wiki.o-ran-sc.org/display/REL/F+Release
https://wiki.o-ran-sc.org/display/REL/F+Release
https://rimedolabs.com/blog/o-ran-near-real-time-ric/
https://blog.radwell.codes/2022/07/
https://blog.radwell.codes/2022/07/
https://linuxconfig.org/
https://github.com/o-ran-sc/ric-plt-a1/blob/master/docs/user-guide-api.rst
https://github.com/o-ran-sc/ric-plt-a1/blob/master/docs/user-guide-api.rst

	List of Figures
	Introduction
	O-RAN Alliance and O-RAN Ecosystem
	O-RAN Alliance Overview
	Release Specifications
	O-RAN Software Community
	Architectural Release
	Release Notes

	Architecture of O-RAN
	Service Management and Orchestration (SMO)
	near-real time RAN Intelligent Controller (near-RT RIC)
	non-real time RAN Intelligent Controller (non-RT-RIC))
	O-RAN Central Unit (O-CU)
	O-RAN Distributed Unit (O-DU)
	O-RAN Radio Unit (O-RU)
	O1 Interface

	RAN Intelligent Controller

	RIC Environment Set-up and Deployment
	Infrastructure Preparation and Deployment of near-RT RIC.
	Prerequisites Installation and deployment of near-RT RIC.

	Infrastructure Preparation and Deployment of non-RT RIC.
	Prerequisites Installation of non-RT RIC.
	Deployment of non-RT RIC.

	Deployment Status Testing.
	near-RT RIC Status.
	non-RT RIC Status.

	Testing and Analysis
	Connection set-up.
	Create Policy.
	Result.
	Wireshark Capture and Analysis.

	 Follow-up opportunities
	 Challenges

	Conclusion
	Abbreviations
	Bibliography

