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Abstract

Mobile networks frequently face high-load situations, especially during temporary
events or local demand peaks, which can push the network into congestion. Defining
when such load becomes critical and finding efficient approaches for maintaining the
Quality of Service (QoS) for users are important challenges for network operators. This
thesis examines and compares several remediation strategies for alleviating resource-
limited high-load scenarios in 5G networks, using a digital twin-based simulation
environment.

This thesis employs the ns-3 Playground, a toolkit that combines ns-3, SUMO, and
Sionna to recreate realistic radio propagation (raytracing), user mobility patterns, and
packet-based network dynamics. The core scenario models a resource-limited overload
with one macro gNodeB and 60 user equipments (UEs), reflecting real-world congestion
rather than interference-limited cases. Three remediation methods are evaluated: (1)
adding an additional small cell (with various positioning strategies), (2) increasing the
gNodeB’s transmit power, and (3) scaling channel bandwidth.

Results show that placing a small cell at the demand hotspot (Hotspot overlay strategy)
produced the strongest load reduction and sustained good throughput and SINR,
making it the most effective remediation. Bandwidth scaling to 15 MHz emerged as
the next-best option, but requires regulatory access to spectrum. Increasing transmit
power did not measurably improve congestion in resource-limited conditions. In terms
of implementation effort, bandwidth scaling is less demanding than additional cell
deployment, but not always feasible due to spectrum constraints. The ns-3 Playground
proved to be a flexible and precise simulation platform, allowing detailed and repro-
ducible evaluation of different strategies and surpassing the capabilities of conventional
simulators for spatially-aware, event-driven analysis.

These findings provide guidance for network planners addressing temporary or localized
capacity problems and demonstrate the benefits of using digital twin principles for
data-driven network evaluation.

Keywords: Network High-Load, Remediation Methods, 5G, Network Digital Twin,
ns-3, Traffic Modeling
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1. Introduction

1.1. Background

The number of mobile network users has increased rapidly over the past years, driven by
the continuous emergence of new applications, technologies, and data-intensive services
that rely on mobile connectivity. As a result, network operators must continuously adapt
and expand their infrastructure to meet the growing demand for reliable connectivity
and high-data rates. This ongoing evolution requires strategic optimization and careful
planning to ensure that networks can provide sufficient capacity and maintain the
desired level of user experience.

Analyzing recurring patterns in network load data enables network operators to
understand user activity trends and network behavior, which is fundamental for
effective performance optimization. However, these patterns are not always consistent.
Certain circumstances, such as large public events, concerts, or sports gatherings, can
lead to temporary but extreme deviations from the usual traffic profile. Similarly,
sudden changes in user density or demand within a single cell area can cause short-term
traffic surges that push the network close to its operational limits.

When such dynamic shifts in traffic intensity bring the network near or beyond its
capacity boundaries, service degradation may occur. These periods are known as
high-load scenarios when the system still provides acceptable Quality of Service, and
as overload or congestion scenarios when performance degradation becomes observable.
Managing and mitigating such high-load conditions before they evolve into overload is
a key challenge in mobile network engineering.

A variety of remediation methods exist to alleviate the effects of network high-
load, including the deployment of additional small cells to offload traffic, adjustment
of transmission power to balance cell coverage, and dynamic scaling of bandwidth
resources to increase throughput. To apply these methods effectively, it is first necessary
to identify when high load occurs by defining appropriate thresholds. Based on these
insights, suitable remediation strategies can then be selected and adapted to specific
network conditions.

This thesis investigates these remediation strategies through rigorous simulation,
identifying which are most practical for rapid deployment during temporary high-load
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scenarios, particularly hotspot-targeted small cell placement. From an operational
perspective, rapid remediation is critical: service interruptions during peak events
directly impact operator revenue and customer satisfaction, making rapid deployment
a practical necessity.

1.2. Problem Definition

Mobile networks frequently encounter temporary high-load situations that can lead to
overload and congestion, and thus, degradation of user experience. To ensure reliable
service quality, it is essential to identify measures that effectively alleviate high-load
conditions and maintain network performance under stress.

This thesis examines different remediation strategies that can be applied during high-
load scenarios to improve the overall system capacity and quality of service. The
methods considered include the deployment of additional small cells, adjustment of
transmission power, and scaling of available bandwidth. Each approach presents unique
benefits and trade-offs in terms of implementation complexity, network coverage, and
efficiency.

Evaluating these methods in operational networks is challenging due to the risks
and costs associated with real-world testing. Therefore, a Network Digital Twin, the
ns-3 Playground environment, is employed to simulate realistic high-load conditions
and remediation effects. The integrated framework combines ns-3 for packet-level
network simulation, Sionna for physical-layer and propagation modeling, and SUMO
for mobility simulation, allowing detailed and reproducible analyzes of complex network
behaviors.

Compared to traditional network simulators, the ns-3 Playground provides a more
flexible and precise environment through its multi-tool integration, enhanced environ-
mental realism, and support for coupled radio and mobility modeling. This makes it
particularly suitable for evaluating the performance and effectiveness of remediation
techniques in dynamic high-load mobile network scenarios.

1.3. Structure of the Thesis

The remainder of this thesis is structured as follows.

Chapter 2 introduces the theoretical background and fundamental concepts of mobile
networks, network high-loads, and remediation approaches. It also explains the Network
Digital Twin concept and the multi-layer simulation environment used in this work.
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Chapter 3 describes the simulation setup in detail, including the use case, network
configuration, simulator environment, and the KPI extraction workflow.

Chapter 4 presents the implementation and evaluation of the baseline scenario and
three remediation methods: an additional small cell, transmission-power adjustment,
and bandwidth scaling.

Chapter 5 provides the evaluation, comparison, and discussion of the obtained results
with respect to their efficiency and practical feasibility.

Finally, Chapter 6 summarizes the main findings, draws conclusions, and outlines
potential directions for future research.



2. Fundamentals of Networks

In this chapter, some fundamental knowledge will be introduced to support a better
understanding of the content of this thesis. Additionally, this chapter describes the
multi-layer simulator, which is employed for the subsequent simulation study.

2.1. Mobile Network Architecture

For this thesis, we focus on private 5G campus networks deployed in controlled
environments such as university campuses, hospitals, industrial sites, or event venues.
A 5G network consists of two areas: the Radio Access Network (RAN) and the Core
Network [4]. To use the network, a User Equipment (UE) is required; the UE is the
end device that is connected to the (5G) network [2]. The base station of a 5G network
is also referred to as Next Generation Node B (gNodeB, gNB) [4]. The 5G RAN
includes one or more gNodeBs providing the radio interface towards the UEs. The
core network is responsible for functions that are not responsible for radio access, but
for providing a network connection. For the fifth mobile communications standard,
this core network is also referred to as 5GC [4]. In a 5G network, one or more UEs
can therefore connect to the core network via the RAN [2].

Figure 2.1 illustrates a simplified 5G Network architecture with exemplary UEs and a
5G Core |2, 4]. Both gNodeBs operate as monolithic units implementing the complete
base station functionality. They communicate via the Xn interface and are connected
to the 5G Core via the NG interface for control (N2) and user data (N3) [4]. The radio
access network comprises the functions that are responsible for a wireless connection
to the end devices and provide access to the core network.

A cell in mobile network terminology refers to the geographical area served by a single
base station. Macro cells provide wide-area coverage with typical transmission power
of 40-46 dBm [13], while small cells encompass lower-power base stations (23-30 dBm
for picocells, 10-23 dBm for femtocells) that serve localized areas [9]|34]. Small cell
deployment is essential for network densification in high-demand regions [11][19].

To configure these simulations appropriately, the spectrum and signaling character-
istics used in this thesis must be described. 5G operates across multiple frequency
bands defined by the 3GPP standards. This thesis uses the n78 band (3.7-3.8 GHz),
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User Equipment Radio Access Network Core Network

D UE1

EUEZ

D UE3

gNodeB 2

Figure 2.1.: Exemplary 5G Radio Access Network (RAN) Architecture

a mid-band spectrum allocation commonly used for private 5G deployments in in-
dustrial and campus environments [15, Chapters 2-3|. Mid-band frequencies offer a
balance between coverage and capacity, making them well-suited for localized high-load
scenarios [15][13].

In 5G NR, a Physical Resource Block (PRB) is the smallest allocatable unit in
the frequency domain. As shown in Figure 2.2, each PRB occupies 12 consecutive
subcarriers for one slot in the time domain [6][43]. For the 60 kHz subcarrier spacing
(= 2) used in this thesis, each PRB spans 12 x 60 kHz = 720kHz in frequency [14]
and comprises 14 Orthogonal Frequency-Division Multiplexing (OFDM) symbols
in time [6]. One OFDM symbol at p = 2 has a duration of approximately 18 us,
making one slot equal to 14 x 18 us ~ 250 us [14]. Each 10 ms frame is divided into 10
subframes of 1 ms duration, and at u = 2, each subframe contains exactly 4 slots [14].
PRB utilization, expressed as a percentage of total available PRBs occupied by active
downlink traffic, serves as a direct indicator of cell capacity saturation and represents
the fundamental metric for identifying resource-limited high-load conditions [1].

Understanding capacity constraints requires defining the key performance metrics used
throughout this thesis. Data rate refers to the speed at which data are transmitted over
the wireless channel, typically measured in megabits per second (Mbps) or gigabits
per second (Gbps) [15]. Peak data rates represent the theoretical maximum achievable
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Time (14 OFDM symbols = 1 slot)

1 S 1 PRB
250 us
1 OFDM symbol
Frequency
= - (12 subcarriers)
60 KHz 12 x 60 kHz = 720 kHz

Figure 2.2.: Physical Resource Block (PRB) Structure in 5G NR at Numerology p = 2

under ideal conditions: 5G NR can theoretically reach up to 20 Gbps in downlink under
optimal configurations with high bandwidth and Multiple Input Multiple Output
(MIMO) [15] . However, user-experienced data rates are typically much lower, ranging
from 50-300 Mbps in typical 5G deployments, depending on network load, signal
quality, and available spectrum [18][7].

Throughput measures the actual volume of data successfully transmitted per unit time,
accounting for protocol overhead, retransmissions, and radio conditions [15]. Unlike
peak data rate, throughput reflects real-world performance, including the effects of
scheduling, interference, and congestion [15]. In congested cells, even with good signal
quality, per-user throughput may degrade significantly as radio resources must be
shared among many active users [15][20, Chapter 9].

The Signal-to-Interference-plus-Noise Ratio (SINR) measures the received signal
strength relative to interference and noise, typically expressed in decibels (dB) [20,
Chapter 6]. Higher SINR values enable the selection of higher-order modulation and
coding schemes, directly affecting achievable data rates and spectral efficiency [20,
Chapter 6, Section 6.1, p. 159-160][6, Section 5.1|. In this thesis, SINR serves as a
key quality indicator to distinguish between resource-limited and interference-limited
congestion scenarios [1]. A resource-limited scenario, which is the focus of this work, is
characterized by high cell load despite consistently high SINR values which indicates
that capacity constraints, not signal quality degradation, are the primary limitation [1].
In the context of this thesis, Physical Resource Block (PRB) utilization is directly
mapped to the metric termed DL Cell Load, where both quantities represent the
scheduler’s radio-layer occupancy and are treated equivalently [1].
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Quality of Service (QoS) involves a set of performance metrics that characterize the
user experience in mobile networks, including throughput (data rate), latency (packet
delay), packet loss rate, and reliability Block Error Rate (BLER) [15]. BLER measures
the fraction of erroneous blocks after error correction [27|. Maintaining acceptable
QoS during high-load scenarios is the primary objective of the remediation strategies
evaluated in this thesis. QoS requirements vary by application type: real-time services
such as voice or video calls demand low latency (typically <100 ms), while elastic
services such as file downloads prioritize throughput [15]|32]. During congestion, the
challenge for network operators is to maintain QoS commitments for as many users
as possible while managing finite radio resources, a challenge that motivates the
remediation methods studied here [15] .

Traffic models describe the statistical patterns and temporal characteristics of user
data demand. Common traffic models include Constant Bit Rate (CBR) for voice or
streaming applications, Poisson arrivals for bursty web traffic, and on-off models where
users alternate between active transmission periods and idle intervals [32]. Accurate
traffic modeling is essential for capacity planning and for reproducing realistic load
conditions in network simulations [32|. In this thesis, UDP-based on-off traffic models
are employed to generate controlled, reproducible load patterns that emulate real-world
user behavior during high-demand scenarios.

2.2. Network Congestion and High-Load Scenarios

To establish foundational terminology, the following definitions distinguish between
high-load, overload, and congestion.

Network performance can deviate from design expectations when user density or data
demand rises sharply in parts of the system. Such events lead to high load in specific
cells, where resource usage approaches network capacity [19][15].

Network high-load: A state in which a communication network or individual cell
operates at a high level of resource utilization, close to its design or planning capacity,
while service quality and user experience remain within acceptable limits is defined as
network high-load [1][19]. High load conditions reflect normal but critical operational
states in which system efficiency and stability must be maintained [15][19].

In this thesis, a high-load scenario refers to the operational condition of a 5G radio
access cell where resource utilization (e.g., PRB or power allocation) approaches the
cell’s capacity threshold, yet the system still delivers acceptable QoS to users. This
definition corresponds to [19] where Freeman writes "under heavy-traffic conditions
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the network operates near its engineered limit but still provides an acceptable grade
of service".

Network overload: Network overload is a condition where the offered traffic or
workload exceeds the available network capacity, preventing proper allocation of
resources to all users [24]. Overload leads to performance degradation manifested
as failed transmissions, increased blocking probability, or impaired throughput and
latency [15][8].

The network overload as defined in this thesis, represents a critical escalation beyond
high-load conditions, where the RAN scheduler or resource manager can no longer
satisfy QoS requirements for all users [24, 15]. The goal of the digital twin framework
is to predict and prevent this transition from high load to overload. ITU-T E.417 [24]
chapter 6.2.4 formally states that “a link may be said to be in overload whenever
demand exceeds currently available capacity over a prolonged period.”

Network congestion: Network congestion is the observable symptom of overload,
where data queues and delays build up due to limited transmission or processing
capacity [19]. It is typically recognized through increased latency, packet loss, or buffer
overflow within network nodes and links [19][8]. The definition of congestion in [19]
supports this explanation.

To determine when a high load in a network can be specified, network operators
define thresholds [1]. One of these thresholds concerns the amount of UEs per channel
bandwidth. Another threshold focuses on the number of active PRBs [1|. Chapter
3 goes into more details about thresholds. This thesis focuses on resource-limited
overload, where PRB scarcity, not signal quality, is the dominant constraint [1].

2.3. Remediation Methods in Cellular Networks

Network overload has many different aspects|19]: what is the cause of the overload?
Is it something that can be predicted or even happens on a regular basis? How can
such situations be prevented? Does it require a long-term or a short-term solution?
The question relevant for this work is how such a situation can be addressed; several
established techniques are available to resolve instances of network high-load. Classical
approaches include increasing the transmission power of a base station or deploying
additional small cells to locally offload traffic [11][15]. Network-side measures such as
enabling or disabling load balancing mechanisms can also be applied [15][32]. Setting
up a sufficient bandwidth configuration is another important strategy [15][32]. Beyond
these strategies, there are more advanced concepts such as Beamforming and Massive
MIMO, Load Balancing, Carrier Aggregation or even including Al agents [15][22][47].
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Remediation methods have the purpose of offering powerful ways to enhance capacity
and user experience [15][11][19].

This master’s thesis concentrates on three fundamental and widely applied strate-
gies that can be directly implemented and evaluated within the chosen simulation
framework:

e Additional Small cell
e Transmission Power Adjustment

¢ Bandwidth Scaling

These methods were selected because of their practical relevance and were tested under
high-load conditions using a Network Digital Twin to assess their effectiveness.

The methods will be explained further in the following sections.

2.3.1. Additional Small Cell

The deployment of additional small cells represents one of the most effective strategies
for alleviating network congestion in localized high-load scenarios [11]|. By introducing
a secondary base station within the coverage area of an overloaded macro cell, traffic
can be offloaded, and radio resources can be distributed across multiple transmission
points [11][15].

In the context of this thesis, the terms macro cell and small cell refer to the functional
roles of the base stations rather than differences in hardware configuration [15][11].
Both are modeled as standard gNodeBs with identical transmission power (30 dBm)
and hardware specifications. The macro cell provides the primary coverage for the
entire simulation area, while the small cell is introduced as an additional node to
share the load. This approach reflects realistic deployment scenarios where operators
activate standby base stations or deploy mobile cells during temporary events such as
concerts, sports matches, or festivals [11][17].

The effectiveness of small cell deployment depends critically on the placement strat-
egy [11][34]. Three positioning methods are evaluated in this work:

1. K1 - Geometric split: Places the small cell to divide the coverage area roughly
equally based on geographic distance, following a Voronoi-like partitioning
principle. This method aims for balanced load distribution without requiring
knowledge of traffic hotspots [28][45].
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2. K2 - Hotspot overlay: Positions the small cell directly at identified traffic
concentration points, such as areas with high user density or data demand. This
strategy maximizes local capacity where it is most needed, reflecting common
operator practice at stadiums, transit hubs, or event venues [31][26].

3. K3 - Intermediate split: A compromise approach that places the small cell
between the macro site and the hotspot, balancing macro relief with targeted
capacity enhancement.

These three positioning strategies were derived from principles identified in network
planning literature and operator practices [11], rather than being standardized, formally
named methods. The naming conventions used here were chosen for clarity and do not
correspond to formal 3GPP or ITU terminology. The two fixed strategies (K1 and K2)
employ either geographic partitioning or hotspot targeting, whereas the intermediate
split (K3) was introduced in this thesis as a practical compromise [11].

The deployment of a small cell also includes practical limitations. There are
deployment costs as hardware acquisition, site installation, and backhaul connectivity
require capital investment [9]. Site acquisition involves physical space, permissions and
regulatory approvals that may delay deployment [41]. Energy consumption is another
concern, as operating an additional base station increases operational energy costs [9].
Finally, interference management requires coordination between macro and small cell
to avoid inter-cell interference and optimize handovers [9].

Small cell deployment is widely adopted in practice due to its flexibility and scal-
ability [11]. Temporary deployments using mobile base stations Cells on Wheels
(COWs) [40] are routinely used during large public events to prevent congestion and
maintain quality of service [11][17].

2.3.2. Transmission Power Adjustment

Adjusting the transmission power of the macro cell gNodeB is a straightforward
remediation approach based on the principle that higher transmit power increases the
received signal strength at User Equipments, potentially improving SINR and channel
quality [15][20].

According to Goldsmith [20] the received signal Power Prx at a UE can be expressed
as:
Prx = Prx + Grx + Grx — PL

where Prx is the base station transmission power in dBm, Grx and Grx are the
transmitter and receiver antenna gains in dBi, and PL is the path loss in dB. Here,

10
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dBm is an absolute power unit referenced to 1 milliwatt, dBi quantifies antenna gain
relative to an isotropic radiator, and dB represents relative power ratios such as path
loss [19, p. 609-630]. Increasing Prx directly raises Pry, which in turn improves
the SINR [20]. In the context of this thesis, Psjgna is the received power from the
serving base station, Pipter ference cOmprises signals from neighboring cells, and Pypise
is thermal noise at the UE receiver |20, Chapter 6. This relationship is expressed as:

Piional
SINR = tgna 2.1
Pinterference + Pnoise ( )

Higher SINR values enable the selection of higher-order Modulation and Coding
Schemes (MCS), increasing the number of bits transmitted per symbol and thus
improving per-user throughput [6].

The simulations conducted as part of this thesis increase the transmission power
incrementally in steps of 3 dB (from 30 dBm to 33 dBm, 36 dBm, and 39 dBm). The
choice of 3 dB steps is motivated by practical considerations—each 3 dB increase
corresponds to a doubling of linear transmit power [19, p. 609-630|, representing
a meaningful incremental change while remaining within regulatory and hardware
constraints [20].

Transmission power adjustment has practical limitations. First, regulatory con-
straints must be considered: in Germany, maximum transmission power for 5G gNodeBs
in the n78 band (3.4-3.8 GHz) is limited to 43 dBm EIRP as per Bundesnetzagentur
regulations [13, p. 12-14|. Equivalent Isotropic Radiated Power (EIRP) is the product
of base station transmission power and antenna gain, representing the effective radi-
ated power in the direction of maximum antenna gain. The typical operating range
for macro base stations is 40-43 dBm, while small cells operate at 20-30 dBm [13,
p. 13-14]. Beyond regulatory constraints, hardware limits present a fundamental
barrier: power amplifiers have maximum rated output specifications, and exceeding
these causes distortion and hardware degradation. Additionally, increased interference
becomes problematic in dense deployments—higher transmit power increases inter-cell
interference, which may degrade performance for neighboring cells despite improving
coverage in the target cell [11]. Finally, energy consumption is a practical concern, as
higher transmit power raises operational costs and environmental impact [9].

2.3.3. Bandwidth Scaling

Bandwidth scaling increases the channel bandwidth allocated to a cell, directly expand-
ing the number of available PRBs and thus the cell’s capacity to serve simultaneous
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users and data streams [6]. Within the constraints of available spectrum and hardware
capabilities, wider bandwidth allocations provide more radio resources.

The fundamental relationship governing wireless channel capacity is given by the
Shannon-Hartley theorem [20]:

C = B -logy(1+ SNR) (2.2)

where C' is the channel capacity in bits per seconds, B is the channel bandwidth in Hz,
and the Signal-to-Noise Ratio (SNR) is in linear scale (not dB). Equation 2.2 reveals
that the capacity increases linearly with bandwidth but only logarithmically with
SNR [20]. Consequently, doubling the bandwidth from 10 MHz to 20 MHz doubles the
theoretical capacity, whereas doubling the transmit power (increasing SNR by 3 dB)
yields a much smaller capacity gain [20]. In 5G NR, bandwidth scaling is implemented
by increasing the number of allocated Resource Blocks [6]. Each Physical Resource
Block occupies 12 subcarriers x 1 slot in the time-frequency grid [6]. For a 10 MHz
channel with 60 kHz subcarrier spacing (numerology p=2), approximately 51 PRBs
are available. Scaling to 15 MHz increases this to 79 PRBs, and 20 MHz provides
106 PRBs [43]. More PRBs enable the scheduler to assign resources to more UEs
simultaneously, reducing queueing delays and increasing aggregate throughput [6].

Practical limitations of bandwidth scaling must be acknowledged. First, spectrum
cost is a fundamental constraint: radio spectrum is scarce and expensive, with operators
acquiring spectrum through government auctions that often cost billions of euros
for nationwide licenses [13][41]. Beyond cost, regulatory allocation enforces strict
boundaries—available spectrum is finite and must be shared among multiple operators
and services, limiting the bandwidth available to any single operator [13]. Technical
challenges also arise: interference and adjacent channel effects mean that wider channels
may overlap or interfere with adjacent operators’ spectrum, requiring careful frequency
planning and guard bands to prevent cross-operator degradation [13]. Finally, hardware
compatibility is often overlooked—not all base stations and user equipment support all
bandwidth configurations, and achieving network-wide support may require expensive
hardware upgrades [41].

Despite these challenges, bandwidth scaling is highly effective for resource-limited
congestion scenarios. By expanding the pool of schedulable radio resources, it directly
addresses the root cause of overload when PRB utilization saturates [1].

2.4. Network Digital Twin Concept

Digital Twin has been a trending topic in recent years across various fields, including
manufacturing, urban planning and healthcare. It is known to be a virtual repre-
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sentation of a physical object. It is often visualized as a digital model. A Network
Digital Twin (NDT') [22] is a virtual replica of a real communication network. It may
include data about the geographic information of a network and thus resembles a 3D
digitalized model. Additionally, it may involve ray-tracing data, mobility patterns (e.g.,
if UE is moving), and packet-level communication data. Core network components and
RAN functionalities are typically modeled as part of the NDT. (Nevertheless, what
differentiates a NDT from other digital twins is the inclusion of detailed simulated
versions of an existing network, but also real-time data from that specific network.) As
a result, Network Digital Twins are designed to be more detailed and more accurate
than traditional network simulators. Depending on the use case, an NDT may focus
on specific network domains, such as the RAN, core network, or transport layer, or
model end-to-end functionality. In this thesis, the NDT focuses on RAN-layer modeling
and can be used as a testbed for safe and controlled experiments with remediation
strategies and network optimizations before deployment in the actual network.

Traditional network simulators such as ns-2 [25], ns-3 [44] or OMNeT++ [44, 46] are
powerful tools for modeling communication protocols and network behavior under
controlled conditions. However, they typically operate on pre-configured, static param-
eter sets and do not incorporate live data from operational networks. Simulators are
primarily used for what-if analysis and protocol validation during the design phase,
before deployment.

In contrast, a Network Digital Twin integrates real-time or near-real-time data from
the physical network into its virtual model. This unidirectional data flow enables the
NDT to

e Mirror current network state: Reflect live traffic loads, user distributions,
and radio conditions.

e Enable predictive analysis: Forecast network performance under future
scenarios (e.g., upcoming events, traffic growth).

While the digital twin concept encompasses bi-directional closed-loop capabilities,
where validated remediation strategies from the virtual twin are automatically applied
back to the physical network, this thesis focuses on the simulation and analysis phase,
utilizing the NDT as a controlled testbed for evaluating different strategies before any
real-world deployment. Closed-loop automation remains out of scope for this work.

Real-World Applications and Examples:

Network Digital Twins are gaining traction in the telecommunications industry, for
example Deutsche Telekom’s 5G Campus Networks [39][17]: In industrial deploy-
ments such as the EUROGATE container terminals in Hamburg, Bremerhaven, and
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Wilhelmshaven, Deutsche Telekom integrates digital twin concepts to connect in-
dustrial port handling equipment to the cloud, enabling data-driven optimization
and predictive maintenance. These projects demonstrate the practical application of
digital twin methodologies in real operational environments. ETSI and I'TU standards:
The European Telecommunications Standards Institute (ETSI) and International
Telecommunication Union (ITU) have published frameworks and best practices for
implementing digital twins in network management (e.g., ETSI GS NFV-IFA 031).

2.5. Simulation Tools

This study uses the “ns-3 Playground” a multi-layer simulation environment developed
by Fraunhofer HHI and Deutsche Telekom’s T-Labs. The ns-3 Playground integrates
three specialized tools: ns-3 [44] for packet-level simulation, Sionna [21] for realistic radio
propagation, and SUMO [29] for dynamic user mobility, within a unified digital twin
framework. This integrated approach allows for realistic modeling of high-load mobile
scenarios, enabling detailed analysis of network behavior under varied remediation
strategies.

The following subsections introduce each major component individually, outlining
their purpose, main features, and specific role in the overall simulation workflow.

2.5.1. ns-3

ns-3 is an open-source, discrete-event network simulator widely used in academic
research and education for modeling Internet protocols and communication systems|44].
It provides detailed implementations of the Physical Layer (PHY), Medium Access
Control (MAC), radio link control Radio Link Control (RLC), and higher-layer
protocols for various wireless and wired technologies, including 4G LTE and 5G
NR [44].

In this thesis, ns-3 version 3.33 serves as the core simulation engine, modeling the entire
5G protocol stack from the physical radio layer up to the Packet Data Convergence
Protocol (PDCP). ns-3 is primarily written in C++, but this work integrates a Python-
based wrapper (Python 3.10.18, GCC 9.5.0) to streamline scenario configuration,
automate simulation runs, and facilitate post-processing of results [44]. This hybrid
approach combines the computational efficiency of C++ with the flexibility and ease
of scripting offered by Python.
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2.5.2. Sionna

Sionna is an open-source library developed by NVIDIA for research in physical-layer
wireless communications [21]. Its primary strength lies in its ability to perform GPU-
accelerated ray tracing for radio wave propagation, enabling highly realistic modeling
of signal strength, path loss, diffraction, reflection, and scattering in complex 3D
environments.

Ray tracing is essential for accurate network simulations because it accounts for
real-world propagation effects such as multipath fading, shadowing by buildings, and
material-dependent attenuation—factors that simplified statistical models (e.g., free-
space or log-distance models) cannot capture [36][21]. Sionna ingests 3D geometric
and material data (typically from Blender files) along with antenna positions and
orientations, and outputs detailed channel impulse responses that ns-3 uses to compute
received signal strength and signal-to-interference-plus-noise ratio (SINR) for each
user [21].

In this thesis the RT module of Sionna version 0.19.2 (TensorFlow 2.15.1 backend) is
used to pre-compute ray-tracing data for the simulated campus network, ensuring that
radio propagation remains realistic and consistent across all simulation runs [36].

2.5.3. SUMO

SUMO (Simulation of Urban MObility) is an open-source traffic simulation tool
developed by the German Aerospace Center (DLR) [29]. While originally designed
for urban outdoor traffic, SUMQO’s trajectory generation capabilities extend to indoor
environments [29]. In this thesis, Eclipse SUMO version 1.23.1 is integrated to generate
realistic mobility patterns for Autonomous Mobile Robots (AMRs) within a factory
hall, utilizing predefined waypoint-based navigation rather than road networks or
traffic lights [33]. This approach leverages SUMOQ'’s collision avoidance and movement
modeling while adapting to the indoor, coordinate-based environment [29]. SUMO
is primarily written in C++ and Python, enabling flexible integration into existing
simulation workflows.

2.6. Integration of Tools - The ns-3 Playground
Environment

The ns-3 Playground environment integrates ns-3, Sionna, and SUMO into a
unified multi-layer simulation framework, enabling comprehensive modeling of network
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protocol behavior, realistic radio propagation, and dynamic user mobility. This section
describes how these tools interact and the data flow that connects them.

Role of Each Tool in the Integration: ns-3 serves as the core simulation engine,
orchestrating the entire simulation workflow. It manages the discrete-event simulation
timeline, schedules radio resources, handles user data traffic, and collects performance
metrics such as throughput, SINR, and cell load [44].

Sionna provides realistic radio channel modeling through GPU-accelerated ray tracing.
Given the 3D geometry of the simulation environment, antenna positions, and material
properties, Sionna computes detailed channel impulse responses for each transmitter-
receiver pair [21]. These responses capture real-world propagation effects including path
loss, multipath fading, reflection, diffraction, and shadowing [21]. ns-3 uses Sionna’s
output to calculate received signal strength and SINR for each User Equipment (UE),
which directly impacts link quality, modulation and coding scheme (MCS) selection,
and achievable data rates.

In this thesis, SUMO generates mobility trajectories for User Equipments, which are
Autonomous Mobile Robots (AMRs) within a factory hall scenario [29][33]. SUMO
defines each UE’s position, speed, and direction over time, accounting for road networks,
obstacles, and movement constraints [29]. ns-3 reads these trajectories and updates
UE positions during the simulation, ensuring that channel conditions, handover events,
and traffic distribution across cells reflect realistic user mobility.

Input Data Sources: The simulation environment requires accurate 3D geometric
and material data to enable realistic ray tracing. Blender, an open-source 3D modeling
and rendering software, is used to create this environment. A Blender file serves as
the foundational 3D model for the simulation environment and contains the following
essential data: This file contains geometrical outlines, material properties and antenna
coordinates. Geometrical outlines include buildings, walls, roads, terrain elevation,
and other physical obstacles that affect radio wave propagation. Material properties
are surface characteristics (e.g., concrete, glass, metal) that determine how radio
signals reflect, absorb, or refract when interacting with structures. Different materials
have distinct permittivity and conductivity values, which influence signal attenuation
and scattering behavior. The antenna coordinates include the position (x, vy, z
coordinates), the height above ground, and the orientation (azimuth and tilt angles)
of each base station antenna. Antenna orientation determines the directionality of the
radiation pattern and affects coverage and interference characteristics.

This 3D model is then imported into Sionna for ray tracing computation. The accuracy
of the geometric and material data directly impacts the realism of the resulting channel
models and, ultimately, the validity of the simulation results.

Data Flow and Integration Workflow: Figure 2.3 illustrates the integration
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Figure 2.3.: Integration of Tools Overview
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workflow of the ns-3 Playground. The simulation proceeds as follows:

1. Mobility generation (SUMO): SUMO generates time-stamped mobility
trajectories for all UEs based on predefined routes, speeds, and movement
behaviors [29]. These trajectories are exported as data files that specify each
UE’s position at discrete time steps.

2. Ray tracing and channel modeling (Sionna): Sionna reads the Blender
file containing the 3D environment and antenna configurations. For each UE
position along the SUMO trajectories, Sionna performs ray tracing to compute
the channel impulse response between the base station antennas and the UE [21].
This includes calculating the signal strength contribution of each propagation
path (line-of-sight, reflected, diffracted, scattered). The resulting channel data
(e.g., path loss, delay spread, angular spread) is stored for use by ns-3.

3. Network simulation (ns-3): ns-3 loads both the SUMO mobility trajectories
and the Sionna channel data. During the discrete-event simulation, UEs move
according to SUMO trajectories. ns-3 queries the pre-computed Sionna channel
data to determine signal quality (SINR) for each UE at each time step. The
5G NR scheduler allocates Physical Resource Blocks (PRBs) to UEs based on
channel quality, traffic demand, and scheduling policy. Application-layer traffic
(e.g., UDP streams) is generated, and ns-3 tracks throughput, latency, packet loss,
and other performance metrics [21]. ns-3 produces log files containing time-series
data for all performance indicators (e.g., per-UE throughput, cell load, SINR,
BLER). These outputs are post-processed using Python scripts to generate plots,
tables, and statistical summaries for analysis.

This integration ensures that radio propagation, user mobility, and network protocol
layers are consistently modeled together in one unified simulation workflow, enabling
realistic evaluation of network performance and remediation strategies.

Advantages of the Integrated Approach The ns-3 Playground’s multi-tool inte-
gration offers several distinct advantages over using individual simulators in isolation.
First, realism is substantially improved: combining ray-traced propagation with
realistic mobility traces and full-stack protocol modeling captures the complexity
of real-world networks far better than simplified analytical models or single-layer
simulators, reducing the simulation-to-reality gap. Beyond realism, flexibility is a
key benefit: each tool can be updated or replaced independently. For example, alter-
native mobility models or different ray-tracing engines could be integrated without
redesigning the entire framework, allowing the simulator to evolve as technologies
advance. Scalability is another significant advantage—GPU acceleration in Sionna
enables efficient ray tracing even for large, complex 3D environments [21], while ns-3’s
modular architecture supports simulations with hundreds of UEs and multiple cells [44].
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Finally, reproducibility is guaranteed: pre-computed Sionna channel data ensures
that all simulation runs use identical propagation conditions, eliminating randomness
from the channel model and improving comparability across different remediation
methods [21].

The ns-3 Playground thus forms a powerful Network Digital Twin tool capable of
evaluating network performance and testing remediation methods under realistic
conditions. While it does not yet incorporate real-time data feeds from operational
networks (as discussed in Section 2.4), it represents a significant step toward building
a fully operational digital twin for network planning and optimization.
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Having introduced the fundamental concepts of mobile networks, congestion scenarios,
and remediation methods in Chapter 2, this chapter describes the specific simulation
setup used to evaluate these methods. The simulations were conducted using the ns-3
Playground environment in a controlled 5G campus network scenario designed to
reproduce realistic resource-limited overload conditions.

3.1. Use Case Description

This thesis investigates congestion remediation in a 5G campus-network-like scenario
using the ns-3 Playground environment, which combines ns-3 [44], SUMO [29], and
Sionna [21]|. The simulated area covers 80 meters times 70 meters, representing a
section of an indoor factory hall campus site. A single macro gNodeB is placed at
[z, y, z] = [22,63,4.5] m, serving both mobile and static UEs. The simulation aims
to reproduce realistic radio and mobility conditions in a controlled and reproducible
digital-twin setup [22][47].

The chosen layout reflects a typical private 5G campus network as deployed in industrial
or university environments, where localized traffic peaks can occur near production
halls, laboratories, or event locations [10]. Such networks are smaller than public
macro deployments and typically operate in frequency bands such as n78, which can
be allocated for private campus network use in licensed spectrum|[15](Chapters 2-3).
Campus networks are particularly important for this study because they represent
controlled environments where remediation strategies can be tested before deployment
in larger public networks, and they exhibit similar resource-contention patterns as
public networks during peak demand periods [15].

Simulation Purpose: The use case focuses on resource-limited overload, where
radio resources (PRBs) become saturated while signal quality (SINR) remains good.
Such high-load conditions are typical for temporary gatherings, campus hotspots, or
production peaks in industrial private networks|32]. The resulting baseline scenario
provides a reproducible overload condition used later to test different remediation
methods.
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KPI-Based High-Load Definition: Following operator practice and 3GPP TS
28.552 [1], a cell is considered under high load when:

1. PRB utilization > 80% (or equivalently, DL Cell Load > 0.8), and
2. At least 30 UEs per 5 MHz bandwidth are active (i.e., > 60 UEs for 10 MHz).

The thresholds are based on typical network operator KPIs [43]|[16](LinkedIn post
on network optimization thresholds). Because the ns-3 Playground provides cell-load
values but not explicit PRB statistics, this work treats the metrics as equivalent [1]:

PRB Utilization

DL Cell Load =~
100

This methodological substitution is valid since both metrics represent the scheduler’s
radio-layer occupancy.

For the 5G n78 band (3.7 GHz) with a 10 MHz channel bandwidth, the threshold
of 30 UEs per 5 MHz corresponds to approximately 60 active UEs [13|(for n78 band
frequency). Using a wider bandwidth would require proportionally more simulated
UEs and significantly longer process runtime; 10 MHz therefore represents a realistic
yet computationally feasible configuration.

To exclude transient effects at simulation startup and focus on steady-state behavior,
only the time window [3-10] s after simulation start is used for all KPI evaluations.

Bandwidth and Load Thresholds: According to network operators, the threshold
of 30 UEs per 5 MHz corresponds to a moderate overload. As this thesis employs
the 5G n78 band (3.7 GHz), which supports channel bandwidths from 10 MHz to
100 MHz, a 10 MHz bandwidth was chosen. This implies a practical load threshold
of ~ 60 UEs per 10 MHz. Using a higher bandwidth would require proportionally
more simulated UEs and significantly longer runtime; 10 MHz therefore represents a
realistic yet computationally feasible configuration.

Evaluation Goal: The main goal is to reproduce a measurable high-load situation
(DLCellLoad > 0.8) as a baseline reference to compare remediation methods in later
chapters. All following methods (additional small cell, transmission power adjustment,
and bandwidth scaling) are evaluated against this baseline.
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3.2. Network Configuration

The simulated network represents a small 5G campus deployment operating in the
n78 band (3.7 GHz, FR1) [13]. All configuration parameters were chosen to reproduce
realistic channel and traffic conditions while keeping the computational effort feasi-
ble [6](for PRB and numerology 2),[15](for scheduler and general parameters),|44|(for
ns-3 default settings).

Radio and Propagation Settings
e Carrier frequency: 3.7 GHz (5G NR band n78)
Bandwidth: 10 MHz

Numerology: 1 = 2 (60 kHz subcarrier spacing)
e Transmission power (gNB): 30 dBm

Scheduler: Proportional Fair (default ns-3 configuration)

HARQ: enabled, RLC mode: Acknowledged Mode (AM)

CQI reporting: 1 ms period

Simulation time: 10s

These configuration parameters include key reliability and feedback mechanisms:
Hybrid Automatic Repeat reQuest (HARQ) provides automatic retransmission of
corrupted blocks, RLC Acknowledged Mode (AM) ensures reliable in-order delivery,
and Channel Quality Indicator (CQI) feedback at 1 ms intervals enables the scheduler
to make informed resource allocation decisions based on current channel conditions.

This model is suited for dense urban outdoor environments where buildings form
reflective "canyons" [5]. The urban propagation model—characterized by reflective sur-
faces and signal blockage from dense obstacles—is applicable to factory hall scenarios,
where machine frames, storage racks, and metal structures create analogous multipath
propagation conditions [38]. Ray tracing provides accurate channel modeling for both
environments [36][20].

The confined indoor geometry of the factory hall thus exhibits comparable propagation
characteristics to urban street canyons, making this model appropriate for the studied
environment [5]. Antennas are modeled as isotropic (no tilt or sectorization) to focus
the analysis on load and capacity effects rather than antenna patterns.
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Topology and UE Placement: One macro gNodeB provides coverage from the
fixed position [z, y, z] = [22, 63, 4.5] m, where z denotes the antenna height above
ground. Three static UEs are placed at

0 = [52, 63, 1.5], 0y =[22,33,1.5], ¢3=[52, 33, 1.5].

The remaining 57 UEs are mobile, following SUMO-generated trajectories within an
80m x 70m area [29]. The SUMO parameter CreateRandomRoutes = True generates
random yet logical mobility paths (no collisions, street-based) [29]|. All UEs, mobile
and static, use identical traffic models, ensuring that differences in KPIs originate
from spatial and radio effects only.

Figure 3.1 shows the simulated UE mobility paths in the baseline scenario. All
subsequent remediation methods use the same trajectories to ensure fair comparison.

7 SUMO UE Mobility Paths (trajectories: 60)
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Figure 3.1.: SUMO UE Mobility Paths

A single macro gNodeB was chosen for this study. Including multiple gNodeBs would
have required at least twice as many UEs to maintain comparable cell loads, which
would not only increase the conceptual complexity but also substantially extend
simulation times. Each baseline run with 60 UEs already required approximately three
hours per replicate, and the iterative nature of this project—with several trial-and-
error adjustments during development—made a multi-gNodeB setup computationally
impractical within the available timeframe. Therefore, the focus was placed on a
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single-cell scenario that still captures the essential congestion mechanisms and allows
clear comparison between the remediation methods.

Parameter Precision Note: Simulation input parameters such as traffic rates are
configured with precision up to two decimal places (reflecting practical implementation
constraints). These configuration values differ from the KPI results, which may have
higher precision due to statistical processing. For example, per-UE data rates are
specified as 2.43 Mbits or 0.35 Mbits in the traffic model, while measured KPIs are
reported with three decimal places (e.g., 0.836 for cell load) to reflect the statistical
aggregation across replicates.

Cell Terminology: Throughout this thesis, the simulation employs two gNodeBs
when testing Method 1 (small cell deployment scenarios):

e Cell 0: The macro cell (primary, always present in all simulations)

e Cell 1: The small cell (present only in Method 1 scenarios for positioning
comparisons)

In Methods 2 and 3, only Cell 0 is active, and all traffic remains on the macro cell.

SUMO Routing Constraints: Due to SUMO routing constraints in the 80m x 70m
area, only 57 mobile UE trajectories could be generated|29]. Therefore, 3 UEs were
configured as static at fixed positions. All UEs use identical traffic models, ensuring
that total offered load remains consistent. This mixed static-mobile configuration does
not significantly affect the conclusions, as static and mobile UEs experience different
mobility contexts but identical traffic demand. Details on simulation calibration and
the SUMO mobile UE enumeration discrepancy, including correction methodology,
are provided in the Appendix.

Traffic Model and Load Dimensioning: All UEs (static and mobile) employ identi-
cal UDP On/Off traffic with constant data rates and a packet size of 1400 bytes [32](for
traffic models). The per-UE data rates were designed such that the overall downlink
cell load reaches approximately 0.8 (80%), representing the high-load baseline condi-
tion defined in Section 3.1. To verify and calibrate these rates, the Shannon—Hartley
capacity [20] was used.

The following equations are used throughout Chapters 3 and 4 for traffic model
dimensioning and result verification:
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~i = 105™NRan,i/10 (3.1)

. 1 Y

C—B-N;logg(l—i—%) (3.2)
Clrarget = @ C (eg., a=0.8 for 80% of Shannon) (3.3)

~

where ~; is the linear SINR per packet or user (Eq. 3.1), C' (Eq. 3.2) is the empiri-
cal Shannon channel capacity, and Ciarget (Eq. 3.3) defines the desired throughput
threshold as a fraction « of the theoretical maximum [20].

Attempted Calibration Using Real-Network Data: To provide context on the
design choices made, the following subsection documents an initial attempt to derive
traffic profiles from real-network data, and explains why an alternative approach was
ultimately used.

To maximize realism, an initial attempt was made to derive a “standard user” traffic
profile from real mobile network data (Aachen region). One sector’s downlink time
series (24 h, 1h granularity) served as the basis. The goal was to map these values to
the smaller simulated cell by accounting for radio coverage differences.

To achieve this goal the receiver sensitivity and the maximum path loss had to be
calculated. Given minimum SNR SNR.;, = 5dB, noise figure NFF = 5dB, and
bandwidth B = 10 MHz, the noise power [20](for noise floor reference) is

P, = Ny + 10log,o(B) + NF, Ny~ —174 dBm/Hz.

Numerically, P, = —174 + 10log;4(107) +5 = —99dBm. The minimum required
received power becomes

Pry,min = P, + SNRppin = —99dBm + 5dB = —94 dBm.

With Prx = 30dBm and antenna gain Gpx = 10.9dBi, the maximum tolerable path
loss is

PLyax = Prx + Grx — Prx,min = 30 +10.9 — (—94) = 134.9dB.
Using the free-space path-loss model [20] (carrier f = 3700 MHz),
PLyg = 20logyo(d) + 201og;o(famnz) + 32.45,

the corresponding maximum distance is

d = 10(PLmax_20 loglo(fMHZ)—32.45) /20 — 10(134.9—20 log,(3700)—32.45)/20 ~ 35.8 m.
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The next step is to scale the real profile to the simulated cell.

Let dgim and daachen denote the effective cell radii in simulation and reality, respectively.
Assuming approximately uniform user distribution, the per-UE demand can be area-
scaled as

2
o dsim
rateyg,sim = rateyE,Aachen - d .
achen

Equivalently, one can scale the sector’s aggregate hourly demand by the same factor
and divide by the (average) number of active UEs in that hour.

After applying the coverage-based scaling, the per-UE rates remained too low to
create a realistic high-load condition in the small simulated cell (it would require an
impractically large number of UEs to reach ppr, > 0.8). Therefore, this approach was
discarded for the baseline. Instead, realistic fixed per-UE rates were chosen based on
the Shannon lower bound and practical experience (DL = 2.43 Mbps, UL ~ 0.35 Mbps;
Section 3.2), which produce a reproducible resource-limited overload suitable for
evaluating remediation methods.

3.3. Simulator Environment

The simulations were executed in the ns-3 Playground framework described above. It
integrates ns-3 (packet-level core), SUMO (mobility), and Sionna (channel modeling)
in a unified Python-orchestrated workflow.

The simulations were executed on a Linux server (Ubuntu 22.04, kernel 6.8.0-83,
x86_ 64 architecture) accessed remotely via VPN. The ns-3 Playground framework
was pre-installed on the server with all dependencies configured. Simulation runs were
launched via SSH terminal, and output files were transferred locally for post-processing
and visualization using Python scripts (pandas, numpy, matplotlib).

Table 3.13.1 summarizes the software components and versions used in the ns-3
Playground environment.

The simulator used pre-processed Sionna ray-tracing files [21] and SUMO mobility
files [29] to ensure consistent geometry and motion across replicates and enable faster
iteration during the study. These inputs were loaded before each run, while the remain-
ing parameters were defined through Python configuration classes (oransim.cfg.General,
oransim.cfg.Cell, ...).

Determinism and Controlled Variability: To ensure statistical robustness while
maintaining scenario consistency, each configuration was simulated with three repli-
cates [30](for statistical methodology with small sample sizes). Per-UE traffic rates
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Table 3.1.: Summary of the most important Components, including their Versions and

Purposes
Component Version,/ Details Purpose
ns-3 3.33 Core simulator (PHY-MAC-RLC
stack)

Sionna 0.19.2 (TensorFlow 2.15.1 Ray-tracing/channel paths
backend)

SUMO 1.23.1 (Eclipse SUMO) UE mobility traces

Python 3.10.18 (numpy 1.26.4, pandas  Automation & post-processing
2.2.3, matplotlib 3.10.3)

GCC 9.5.0 (Ubuntu) C++ compilation

OS & Hardware Ubuntu 22.04 LTS, AMD Execution environment
Ryzen 7, 32 GB RAM
IDE Visual Studio Code 1.83 Code editing/debugging

were perturbed by +3% (replicate 0: 0.97x, replicate 1: 1.00x, replicate 2: 1.03x nominal
rate), and the global random seed was offset accordingly. This approach introduces
realistic demand fluctuation without altering the fundamental scenario characteristics,
enabling meaningful confidence intervals in the results.

3.4. KPI Extraction

This section describes how Key Performance Indicators (KPIs) are obtained from the
simulator outputs and how they are aggregated for evaluation.

Data Sources and Analysis Window: Each simulation run produces a structured
output folder with several text or CSV traces. For all KPIs, only the steady-state
window [3s, 10s] of the 10s simulation is evaluated to exclude start-up transients.
Unless noted otherwise, results are reported as per-scenario averages across three
replicates (rep 0/1/2 with £3% traffic perturbation).

KPI Definitions:

e DL Cell Load (ppy,): Fraction of radio resources effectively occupied by downlink
traffic (mean, p95). Used as proxy for PRB utilization [1].

e DL Sum Throughput [Mbps|: Sum of all UE downlink throughputs [1].

e Spectral Efficiency () [bit/s/Hz|: n = DL Sum Throughput/B with B the
carrier bandwidth [7].
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e SINR [dB]: Signal-to-Interference-plus-Noise Ratio per received packet; reported
as mean and quantiles (p5, p50, p95) [20].

¢ BLER: Block error rate,
NEI'I'OI'
Ntx ’
where Niy is the number of transmitted transport blocks and Ngpor the count
received in error [27].

BLER =

Mapping of KPIs to Files and Post-Processing: If both D1PdcpStats.txt

Table 3.2.: Mapping of extracted KPIs to simulator output files and computation steps.

KPI Source File(s) Computation Method

DL Cell Load kpi_data_ns3ai.csv Read per-TTI DL load ppr,(t);

(mean, p95) compute mean and 95th
percentile over ¢ € [3,10]s.

DL Sum D1PdcpStats.txt or Sum per-UE PDCP throughput

Throughput kpi_data_ns3ai.csv within the window and divide by

[Mbps] window duration; convert to
Mbps.

Spectral Efficiency Derived (uses throughput) 17 = DL Sum Thrpt/B with

n [bit/s/Hz] B € {10,15,20} MHz.

SINR (mean, p5, RxPacketTrace.txt Parse per-packet SINR; select

p50, p95) [dB] packets in [3,10]s; compute mean
and quantiles.

BLER (mean) D1PhyTransmissionTrace. Count transmitted vs. error

txt or PHY HARQ trace blocks in [3,10] s; compute

Nerror/Ntx-

and kpi_data_ns3ai.csv expose throughput, the PDCP file is preferred for packet-
accurate results; the CSV serves for consistency checks [44]. When bandwidth differs
(Method 3), n is always recomputed from the measured throughput and the actual B
of that run. For SINR, quantiles are computed on the set of per-packet SINR values
within the analysis window (not on per-UE means).

KPI Reporting Precision: Measured KPIs including cell load, throughput, and
SINR are consistently reported with three decimal places to balance precision and
readability. This precision reflects the statistical analysis across replicates and the
output resolution of the simulation environment. For instance, cell load values are
reported as 0.836 (not 0.84), throughput as 27.697 Mbps (not 27.7 Mbps), and SINR
as 62.572 dB (not 62.6 dB). This standardization ensures consistency across all results
presented in Chapter 4.

28



3. Simulation setup

Replicate Handling and Confidence Intervals Each scenario uses three replicates
with small traffic disturbances as described in Section 3.3. For each KPI, the following
procedure is applied:

1. Compute per-replicate statistic within the analysis window (3-10 s).
2. Calculate the mean across replicates as the reported value.

3. Estimate the 95% confidence interval using the t-distribution, given the limited
number of replicates (n = 3) [30](for t-distribution methodology).

Confidence Interval Calculation With only three replicates per scenario, the
t-distribution is more appropriate than the normal distribution [30](Chapter 9, Section
9.4 — small sample statistics). The 95% confidence interval is computed as:

Cl=Z+ o1 % (3.4)

where  is the sample mean of the three KPI measurements, s is the sample standard
deviation, n = 3 is the number of replicates, and ¢, 3,1 is the critical t-value [30]. For
a 95% confidence level with 2 degrees of freedom (df = n — 1 = 2), the critical value is
approximately to.0252 =~ 4.30 [30]. This critical value is substantially larger than the
corresponding z-value of 1.96 used for large samples, reflecting the increased uncertainty
from the small sample size and resulting in wider confidence intervals [30].

The width of confidence intervals decreases with increasing sample size n, following
the relationship CI width o 1/4/n 30, Chapter 9|. The three replications per scenario
employed here provide initial estimates of the performance range. However, following
the principles of statistical experimental design, a substantially larger sample size
(e.g., 20-50 replications) would provide narrower confidence intervals and more robust
parameter estimation. This represents a natural extension of the methodology for
future work seeking to explore the parameter space more comprehensively.
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4.1. Baseline Scenario (No Remediation)

To establish a reference point for evaluating remediation methods, this section first
simulates a high-load network with a single macro gNodeB serving 60 UEs without any
congestion relief measures. The baseline results quantify the performance degradation
under resource saturation and provide the metrics against which all remediation
strategies are compared.

4.1.1. Parameter Settings

To establish high-load conditions, per-UE data rates are calibrated such that the
network reaches the target cell load of 0.8 (80% resource utilization), and later that it
surpasses said target cell load. This calibration uses the Shannon capacity calculation
to determine realistic rates. The following paragraphs describe the iterative procedure.
The initial step is to convert the SINR from decibels (dB) to linear units using equation
3.1 [19, Appendix C|. The SINR is set at 10 dB:

108NRdB/10 1010/10 10

Now, y=10, BW = 10 MHz and N = 1 (number of Antennas (Single Input Single
Output (SISO) leads to 1)) were used to calculate the Shannon capacity with equation
3.2.

N
= Z 0go(1 + i) = 10 MHz log,(1 + 10) = 34.59 Mbps.
=1

The Shannon Capacity of 34.59 Mbps can be viewed as an upper bound [20]. A
moderate load assumption of 0.25 Mbps per UE was used to calculate a first potential
Cell load. This value was chosen to represent typical user requirements for light online
activities such as email, web browsing, and basic data services, providing a realistic
moderate-load reference point for the theoretical calculations [18][32]. Each UE having
a mean data rate of 0.25 Mbps sums up to 0.25Mbps - 60 = 15Mbps1 for 60 Uks.
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# First Simulation Traffic Model

dlTrafficModeWMobileles = dict(model="on0ff", packetSize=1400, dataRate=580000)
ulTrafficModeMobilelUes dict(model="on0ff", packetSize=1400, dataRate=83333)
dlTrafficModelStaticles dict(model="on0ff", packetSize=1400, dataRate=580000)
ulTrafficModelStaticUes dict(model="on0ff", packetSize=1400, dataRate=83333)

Figure 4.1.: Traffic Model for first Simulation (Code lines)

Taking the Ratio DataRate/ShannonCapacity the approximate Cell load was cal-
culated: 15Mbps + 34.59Mbps =~ 0.43 Concluding, the moderate load assumption is
approximately 43% of the theoretical Shannon capacity. A simulation for these config-
urations should show a cell load of about 0.4. The Cell load should be approximately
0.4. The results of a simulation run for this show very good SINR values between 45
and 69 db.

For the initial simulation, 60 UEs (3 static and 57 mobile) were configured. This
light-load baseline served to verify correct ns-3 Playground operation, confirm realistic
SINR values, and ensure absence of congestion for clean baseline behavior. Code listing
4.1 specifies a packet size of 1400 Bytes, UDP protocol, DL data rate 0.58 Mbits, and
UL data rate 0.083 Mbits for both mobile and static UEs.

Based on the measured mean SINR from the initial simulation (54.88 dB), the required
traffic rates for the 0.8 load target were derived using the Shannon lower bound [20]. The
Shannon lower bound as in equation 3.3 established as follows: First, the Conversion
from db to linear from the mean SINR value of 54.88 db, could be calculated:

= 1054.8&;{]3/10 — 1054.88/10 — 18.2307.

Now the resulting v of 18.2307 was inserted in the equation 3.2 as well as the bandwidth
of 10 MHz (and N=1):

~

C = 10 MHz log,(1 + 18.2307) ~ 182.3075 Mbps.

And in the last calculation step, this Shannon capacity was utilized to determine the
lower-bound check according to equation 3.3 :

Ctarget = 0.8 - 182.3075Mbps ~ 145.846 Mbps,

According to this, a target cell load of 0.80 is reached when the total data rate is ap-
proximately 145.846 Mbps. As there are 60 UEs the data rate per UE is approximately
2.43 Mbps. For the next simulation, this subresult was used to attempt to realize a
cell load of 0.80 or 80%. Thus, the traffic model was adjusted as seen in figure 4.2
for the second simulation. Beside the data rate of now 2.43 Mbps for DL and 0.35
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# Second Simulation Traffic Model (80% load)

dlTrafficModelMobilelUes = dict(model="on0ff", packetSize=1400, dataRate=2430000)
ulTrafficModelMobileUes dict(model="on0ff", packetSize=1400, dataRate=350000)
dlTrafficModelStaticUes dict(model="on0ff", packetSize=1400, dataRate=2430000)
ulTrafficModelStaticUes dict(model="on0ff", packetSize=1400, dataRate=350000)

Figure 4.2.: Traffic Model for Target Cell Load of 0.8

# Baseline Simulation Traffic Model (80%+15% load)

dlTrafficModelMobileUes = dict(model="onOff", packetSize=1400, dataRate=2800000)
ulTrafficModelMobileUes dict(model="on0ff", packetSize=1400, dataRate=400000)
dlTrafficModelStaticUes dict(model="on0ff", packetSize=1400, dataRate=2800000)
ulTrafficModelStaticUes dict(model="on0ff", packetSize=1400, dataRate=400000)

Figure 4.3.: Traffic Model for Baseline Scenario with target Cell Load of 80%+15%

Mbps for UL, no other configuration was changed for simulation two. The output of
the second simulation is as follows: DL Cell load= 0.894; UL Cell load= 0.106.

The results indicate a high downlink cell load (0.894). Although this exceeds the target
0.8, it represents an acceptable high-load baseline because the congestion remains
resource-limited: despite the elevated cell load of 0.894, SINR values remain high
around 62.6 dB, indicating that radio signal quality is not the limiting factor. This
asymmetry between high load and good SINR is characteristic of PRB-constrained
scenarios, where the scheduler has insufficient physical resources to serve all traffic
demand rather than insufficient signal quality.

Despite high cell load (0.894), SINR remains excellent (62.6 dB), confirming resource-
limited overload. Congestion stems from a scarcity of PRBs, not from noise and
interferencel1].

The subsequent simulation was configured for a target cell load of 80%+15%. For DL
0.15 - 2.43Mbps = 0.36 M bps and for UL 0.15 - 0.35bit/s = 0.05 M bps were calculated
as the additional data rate values. Consequently, the data rates for the next simulation
resulted in 2.43Mbps + 0.36 Mbps = 2.79Mbps ~ 2.8 Mbps for the Downlink and
0.35Mbps 4+ 0.06Mbps = 0.40Mbps for the uplink. This was then adjusted in the
traffic model as seen in figure 4.3, while the other configurations remained unchanged.

As fourth simulation, the traffic model remained with the traffic model as seen in figure
4.3, but the simulation time was increased to 20 seconds, to observe the influence of
the simulation time on the high-load situation.

Finally, as a fifth simulation, the simulation time was changed to 30 seconds and the
setting idealRL C=true was adjusted to idealRLC=false. The intention was to try and
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replicate_ids = [0, 1, 2] # <— Anti-determinism: 3 replicates usually [0,1,2]
RATE_FACTOR_BY_REP = {0: 0.97, 1: 1.00, 2: 1.03} # <—— Anti-determinism: tiny *3% rate nudge

Figure 4.4.: The Python Code lines setting up the replicate ids and the rate factor of
these replicates.

# Iterate replicates (minimal addition)
for r in replicate_ids: # <— Anti-determinism: replicate loop

Figure 4.5.: The Python Code line which starts a simulation loop for r (three) replicates

make the effects of network congestion better visible by using an even more congested
scenario [44]. The increase in simulation time to 30 seconds caused a different number
of effective mobile UEs to be created. Thus, the number of mobile UEs was changed
to 59 in order to keep an effective number of mobile UEs of 57.

Instead of a nominal “+20%” over the 80% profile, a robust overload condition was
defined by the following KPI thresholds: DL cell load pgs > 0.95 in the [3-10]s window
(with mean ~ 0.85-0.90), while keeping the DL /UL ratio constant (~ 7:1). Starting
from the 80%-+15% profile (2.80/0.40 Mbps per UE), the offered rates were increased in
small steps and the resulting KPIs were evaluated. The smallest pair that consistently
met the overload target across runs was 3.19 Mbps (DL) and 0.459 Mbps (UL) per UE,
which preserves the DL /UL ratio (3.19/0.459 ~ 6.95 ~ 7). Internally, this scenario was
labeled “+20%”, but in this thesis it is referred to as “Overload (empirically tuned)” to
emphasize that the rates were chosen by KPI-driven tuning rather than by a strict
20% arithmetic increment.

Final data rate: DL = 3.19 Mbps, UL = 0.459 Mbps.

To assess sensitivity to different UE distributions, an additional simulation was
conducted with 20 static and 40 mobile UEs. The detailed positions of the 20 static
UEs are listed in Appendix A.2.

During initial development, it was discovered that identical input files (SUMO tra-
jectories, Sionna channels) combined with fixed random seeds produced completely
deterministic outputs (verified via MD5 checksums) [44][29].

# General

general = cfg.General(
simTime=10, # The simulation time in seconds. default value is 6@ seconds.
randomSeed=42 + r # <—— Anti-determinism: seed offset per replicate

Figure 4.6.: The Python Code changing the random seed for each replicate run.
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In order to ensure statistically robust results, the simulation is executed in three
replicates, each with slightly different traffic scaling and random seeds as depicted in
the figures 4.4, 4.5 and 4.6.

To introduce realistic variability for statistical analysis while maintaining scenario
reproducibility, a lightweight anti-determinism approach was implemented using traffic
perturbations (+£3%) and seed offsets, as described in Section 3.3 [30].

4.1.2. Results

Three baseline configurations were tested to calibrate the high-load threshold: Table
4.1

Table 4.1.: Summary of KPIs for the Main Baseline Configurations (S1-S3)

KPI S1: Under 80% S2: 80%  S3: 80%+15% (105s)
DL_Load_mean 0.138 0.663 0.836
DL_Load_p95 0.139 0.684 0.838
DL_Thrpt (Mbps) 2.958 22.750 27.697
n (bit/s/Hz) 0.296 2.275 2.770
SINR_m (dB) 61.898 64.600 62.572
SINR_p5 (dB) 49.970 39.604 38.951
SINR_p50 (dB) 66.715 68.051 64.868
SINR_p95 (dB) 72.259 81.149 79.290
BLER_m 0.917 0.849 0.839

Looking at the results in Table 4.1, the key observations are: S1 (Normal Load)
represents a normally-loaded cell with 0.14 cell load and minimal congestion. S2 (Target
80%) reaches exactly the defined congestion threshold at 0.66 load, representing the
boundary between acceptable and overloaded operation [1]|. S3 (High-Load) exceeds the
threshold significantly at 0.84 load, representing true congestion with resource-limited
overload [1].

For the extended baseline configurations Table 4.2 presents three additional high-load
scenarios to test robustness across different traffic durations and UE distributions:

These extended scenarios 4.2 demonstrate that the high-load behavior (between
approximately 0.83-0.87 cell load) is consistent across different traffic intensities and
UE distributions, validating S3 as a representative high-load baseline for remediation
testing.
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Table 4.2.: Summary of KPIs for Extended Baseline Configurations (S4-S6)

KPI S4: 80%+15% (20s)  S5: 80%+20% (30s)  S6: 40420 UEs
DL_Load_mean 0.836 0.874 0.836
DL_Load_p95 0.838 0.875 0.838
DL_Thrpt (Mbps) 27.694 32.899 27.697
n (bit/s/Hz) 2.769 3.290 2.770
SINR_m (dB) 62.606 60.921 56.767
SINR_p5 (dB) 38.791 37.337 34.973
SINR_p50 (dB) 65.269 62.117 60.341
SINR_p95 (dB) 79.499 79.643 72.703
BLER_m 0.839 0.832 0.839

Simulation time remained approximately 3 hours across all configurations. This con-
sistency occurs because the main computational cost arises from per-UE operations
(scheduling, packet processing, logging), which scales similarly whether UEs are static or
mobile. Pre-computed trajectories (SUMO) and radio propagation (Sionna ray-tracing)
do not significantly increase runtime.

Figure 4.7 and Figure 4.8 visualize the cell load and SINR across all six baseline
scenarios. For the remediation method evaluations (Sections 4.2 — 4.4), scenario S3
(80%+15%, 10s) was selected as the reference baseline because:

1. It reliably exceeds the 80% congestion threshold (0.836 load).
2. It represents realistic high-capacity operation without extreme overload.

3. Its SINR distribution (62.572 dB mean, 39-80 dB range) reflects real-world
diversity.

This baseline choice enables fair, reproducible comparison of remediation strategies.

4.2. Methods 1: Additional Small Cell

In order to remediate a congestion scenario, this thesis first examines the method of
adding an additional small cell. In real networks this can be compared to having a
second gNodeB kept in standby and activating it in case of a high-load event [11][17].

In the baseline scenario, a single gNodeB provides coverage for the entire area. This
node is hereafter referred to as the macro cell, as it plays the role of a wide-area
coverage site. In contrast, the additional node introduced in the remediation strategies
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Figure 4.7.: Mean DL Cell Load for the various baseline simulations
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Figure 4.8.: Mean SINR values for the various baseline simulations
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is referred to as a small cell. In the simulation, both nodes are modeled using the same
gNodeB configuration for consistency. The distinction between the ‘macro’ and the
‘small cell’ is therefore not due to different hardware parameters, but results from their
deployment role: the first node provides full-area coverage, while the second node is
added at an alternative location to locally relieve congestion.

It is therefore important to investigate different strategies for determining an optimal
positioning of the small cell within the given network.

Based on the literature review, three representative placement strategies were identified
and are implemented and compared in this section of the thesis:

e K1 — Geometric split: The first placement strategy follows a simple geometric
principle: the area between the first gNodeB and the additional small cell is
divided into two roughly equal regions [45]|[28]. This is equivalent to a Voronoi-
based partitioning, where UEs are associated with the geographically nearest
site [45][28]. Such a geometric split provides a fair, distance-based distribution
of users between the first and the additional small cell. It does not require
knowledge of traffic hotspots, making it a generic baseline strategy that is often
used in simulation studies to approximate balanced coverage.

e K2 — Hotspot overlay: The second strategy places the small cell directly
at the location of a traffic hotspot, i.e. where user density and demand are
particularly high [31][26]. This reflects a widely adopted operator practice in real
networks, where small cells are deployed at stadiums, train stations, or other
crowded venues in order to offload the macro and to ensure quality of service for
the majority of users present in that hotspot. In this approach, the goal is not
to balance load geometrically across the network, but to maximize local capacity
exactly where it is most needed.

o K3 — Intermediate split: The third strategy represents a compromise between
geometric balancing and hotspot targeting. Here the small cell is positioned
between the first gNb site, the macro site, and the hotspot area. The idea
is to offload a larger fraction of the macro’s users than in the pure hotspot
overlay, while still steering capacity towards the hotspot direction. This can be
interpreted as a load-balancing approach: the macro is relieved more strongly
than with the hotspot overlay, but the total throughput gain is not as high as
in the pure geometric split. Such intermediate placements are studied in the
literature as a means to trade off macro relief and overall efficiency.
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4.2.1. Additional Small Cell Activated

To evaluate the impact of placement strategy, three candidate locations were se-
lected based on geometric, traffic-driven, and compromised design principles. For
each candidate, the baseline overload scenario was replicated three times using traffic
perturbations (£3%) to assess robustness. Initial simulations with fixed seeds (41,
42, 43) produced identical results, confirming deterministic behavior. To introduce
realistic variability without altering the scenario, subsequent simulations employed
traffic perturbations (£3% per-UE rates) with offset random seeds, generating three
distinct replicates per placement strategy. Implementation Remarks: When transition-
ing between gNB layout scenarios (K1, K2, K3), the ray-tracing channel cache must
be cleared to prevent geometric mismatches.

4.2.1.1. Positioning Method 1 - Geometric split

To calculate the position of the small cell using a geometric split strategy, which is a
method based on Voronoi tessellation, the coverage area is partitioned into regions
closest to each base station location [38]. This Voronoi-based partitioning is a common
approach in cellular network planning [28], as it naturally distributes UEs to the
geographically nearest site [45]. First, the known parameters have to be specified.
The macro gNodeB is located at M = [22,63,4.5], and the target is to determine
the small cell position S = [z2, Y2, 22]. The optimization focuses on the [z, y|-plane,
while z adjusts the installation height. Since the EIRP is kept constant (about 30
dBm), the boundary Reference Signal Received Power (RSRP) line coincides with
the geometric divider between M and S. RSRP is the power level at the UE receiver,
which determines cell selection and handover decisions. For an equal y-coordinate
(y2 = 63), this boundary line is given by the midpoint formula

Typ + X

5 (4.1)

Ty =

The design goal is to achieve an approximately equal offload, assuming UEs are
uniformly distributed along the z-axis within the target corridor = € [22,52] of width
W = 30m. For an offload share a = 0.50 towards gNBs, the boundary is placed at

Tp = Tmax — W =52 — 0.5 - 30 = 37. (4.2)

Using the midpoint relation x, = (xp + xg)/2, the small cell coordinate follows as

zg = 2wy, — xp =237 — 22 = 52. (4.3)
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The remaining coordinates are chosen as y; = 63 (same street axis) and 22 ~ 5m
(street-level mast/facade), yielding candidate K1 at

S = (52, 63,5).

The final boundary location x; = 37 thus effectively splits the corridor into two equal
halves, assigning the eastern part (z > 37) to the small cell and achieving the target
offload of approximately 50%. This baseline assumption of uniform UE distribution
makes the method natural for further comparative evaluations.

Using this first strategy, the program added coordinate S to gnbLocations for the
baseline scenario. The simulation was subsequently run with the different replicates.

4.2.1.2. Positioning Method 2 - Hotspot overlay

For the previous method we already established some known parameters. The objective
of this strategy is to let the small cell dominate in the local hotspot around H = (52, 33),
which corresponds to the static UE location. The hotspot location at 52, 33) was
chosen based on spatial UE clustering analysis. In the simulated scenario, multiple
user equipments are concentrated near this location—both static UEs positioned there
as anchor points and mobile UEs following SUMO trajectories that converge in this
region. This represents a realistic scenario where network operators deploy small cells at
identified hotspots with persistent high user density. Using a simple RSRP dominance
rule (bigger than or equal to 3 dB stronger than the macro), it can be shown that a
small cell placed within about 30 m of this point will dominate the hotspot area |20,
Chapter 6]. This 3 dB threshold is a standard industrial handover hysteresis margin
ensuring reliable cell selection. As a result, candidate K2 was positioned directly at
(52, 33, 5) to provide maximum coverage in the hotspot.

To achieve the objective of this strategy, an RSRP dominance criterion is applied,
requiring the small cell to provide at least A = 3 dB stronger RSRP than the macro.
The two-dimensional distance between the macro and the hotspot is

dyr = /(52 — 22)2 + (33 — 63)2 = /302 + 302 ~ 42.43m. (4.4)

Height differences are neglected, since including the z-dimension has little effect here.
Assuming a log-distance path loss model under near-LOS conditions with path loss
exponent n ~ 2 and equal transmit powers Py; ~ Pg [20], the dominance condition
can be written as

Ps — 10nlogyo(ds) > Py — 10nlogo(dar) + A. (4.5)
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This simplifies to

dg < dyy - 1074/000) (4.6)

Substituting the numerical values gives
dg < 42.43-107%/20 ~ 42.43 - 0.708 ~ 30.0m. (4.7)

Hence, placing the small cell within about 30 m of the hotspot centroid ensures that it
dominates the hotspot with at least a 3dB margin.

Following this design rule, a practical coordinate choice for K2 is Sy = (52,33, 5), i.e.
an installation inside a fabric hall near the hotspot.

The coordinate for K2 was added to gnbLocations in the program code for the baseline
scenario. The simulation was run three times for the different replicates.

4.2.1.3. Positioning Method 3 - Intermediate split

The third positioning strategy aims at a somewhat more aggressive offload than in
K1. Instead of splitting the UE corridor evenly, an offload share of approximately
a = 0.63 was chosen, so that about 63% of the corridor is served by the small cell.
Here, the corridor refers to the main traffic route (x) where UEs are concentrated.
The motivation behind this choice was to shift the dominance region clearly toward
the small cell, but without placing the cell completely at the corridor boundary.

The corridor is again defined as = € [22,52], giving a width of W = 30m. For the
desired offload share, the boundary line (4.2) is

Tp = Tmax — oW =52 — 0.633 - 30 = 33.0. (4.8)

With the relation x, = (xpr + x5)/2, the small-cell z-coordinate follows 4.3 as
rg =2xp, —xpy =233 —22 =44. (4.9)

Together with yo = 63 (street axis) and zo ~ 5m (street-level mounting), the resulting
candidate position is S3 = (44,63,5). The corresponding boundary line at x, =
(22 + 44)/2 = 33 assigns the region & > 33 to the small cell. Under the assumption of
a homogeneous UE distribution, the offload share is

_52—a 5233

@ W 30

~ 0.633, (4.10)
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which confirms that about 63% of the corridor is offloaded. This choice of « ~ 0.63
reflects a compromise: it provides stronger offloading than the 50/50 baseline (K1),
while avoiding an extreme placement at the corridor edge. It represents a design where
the small cell is intentionally favored, to relieve the macro more aggressively.

Finally, note that unequal EIRP values between macro and small cell shift the boundary
line. In a one-dimensional model, the RSRP equality condition reads

A _ gar/(ion),
ds

where AP = Pjy; — Pg is the transmit power difference and n is the path loss exponent.
For a total macro small cell separation D = |xg — xps], this implies

D

ds = T—garaoys G =D —ds

Thus, a higher macro EIRP pushes the boundary closer to the small cell, while a
stronger small cell has the opposite effect. Following this method, a practical coordinate
choice for K3 is Sz = (44,63, 5).

The coordinate for K2 was added to gnbLocations in the program code for the baseline
scenario. The simulation was run three times for the different replicates.

4.2.2. Comparison and results

To evaluate the effectiveness of each positioning strategy, nine simulation runs were
conducted (three positioning methods x three random seeds). Table 4.3 summarizes
the key performance indicators (KPIs) extracted from each scenario.

Figure 4.9 illustrates the three small cell placement strategies overlaid on the baseline
UE mobility trajectories. The UE paths remain identical to the baseline scenario
(Figure 3.1) since the trajectory generation is decoupled from radio network design.
However, the figure visually demonstrates the spatial relationship between each cell
position and the UE paths, revealing why hotspot targeting (K2) should be more
effective than geometric partitioning (K1): the hotspot position (K2) is deliberately
placed near high-density UE routes, whereas the geometric split (K1) divides coverage
equally regardless of traffic distribution.

Reproducibility and stochasticity: In initial testing with fixed random seeds,
all three seeds produced identical KPIs, confirming the simulation’s deterministic
foundation (pre-computed SUMO trajectories, ray-traced propagation, and constant-
rate traffic). However, for final results reported in Table 4.3, the simulations were
re-executed with three separate replicates using lightweight anti-determinism (seed
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SUMO UE Mobility Paths (trajectories: 60) + K1/K2/K3
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Figure 4.9.: SUMO UE Mobility Paths including the three possible additional Small
Cell positions - K1 (Geometric Split), K2 (Hotspot Overlay) and K3
(Intermediate Split)
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Table 4.3.: Summary of resulting KPIs for the three positioning methods (Method 1)

KPI K1 Geometric Split K2 Hotspot Overlay K3 Intermediate Split
DL_CellO_Load_mean 0.677 0.604 0.697
DL_CellO_Load_p95 0.845 0.749 0.816
DL_Celll_Load_mean 0.690 0.721 0.765
DL_Celll_Load_p95 0.856 0.813 0.869
DL_Load_mean 0.683 0.663 0.731
DL_Load_p95 0.872 0.813 0.872
DL_Thrpt (Mbps) 19.348 24.272 25.651
n (bit/s/Hz) 1.935 2.427 2.565
SINR_m (dB) 32.232 33.080 32.989
SINR_p5 (dB) 3.835 4.017 4.347
SINR_p50 (dB) 21.957 23.794 24.114
SINR_p95 (dB) 73.289 69.388 74.848
BLER_m 0.888 0.860 0.855

variation in traffic generation), introducing realistic stochasticity. The error bars in
Figures 4.10-4.12 reflect this variability, demonstrating statistically robust results
across replicates.

Key findings from tabular data: K2 (Hotspot Overlay) achieves the best macro cell
relief with Cell 0 load reduced to 0.604, representing approximately 27.9% reduction
relative to baseline (0.838). This compares favorably to K1 (0.677) and K3 (0.697).
Throughput performance shows a different ranking: K3 delivers the highest total
throughput (25.651 Mbps), followed closely by K2 (24.272 Mbps), while K1 lags
significantly (19.348 Mbps). Overall cell load (mean across both cells) reveals K2’s
strategic advantage at 0.663, suggesting the best balance between relieving macro load
and avoiding small cell overload. SINR values remain comparable across all methods
(approximately between 32-33 dB mean), confirming signal quality is not the limiting
factor; K2 shows a slight advantage at 33.080 dB.

Figure 4.10 visualizes the load distribution per cell, making the K2 advantage explicit.
K2’s macro cell load (0.604) is clearly lowest among the three, while its small cell load
(0.721) remains manageable—not overloaded like K3. This figure demonstrates that
K2 does not simply shift congestion from macro to small cell; instead, it balances load
effectively across both cells. The confidence intervals (error bars) show that results
are consistent across replicates, validating the stability of the placement strategy.

Figure 4.11 illustrates the fundamental trade-off between capacity relief and throughput
delivery. Each point in this graph represents one positioning strategy, showing the
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Per-Cell Load by Positioning (Method 1)
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Figure 4.10.: Per-Cell Load Comparison for varying Positioning Strategies
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Figure 4.11.: Throughput vs. Macro Relief Trade-off

relationship between macro relief (x-axis) and total throughput delivered (y-axis).
K2 occupies the optimal position: achieving strong macro relief (load ~ 0.604) while
maintaining good throughput. K3 is positioned further up (more throughput, 25.651
Mbps) but fails to relieve the macro cell as much (load 0.679), indicating sub-optimal
spatial targeting. K1 performs poorly in both dimensions. This scatter plot is essential
for showing that K2 is not just locally best; it achieves the best trade-off overall.

Figure 4.12 compares signal quality across placements. SINR values are remarkably
similar (approximately between 32-33 dB), confirming that signal quality is not the
distinguishing factor between strategies. K2’s slight SINR advantage (33.080 dB)
indicates that its hotspot location captures slightly better-positioned UEs, but this is
secondary to its load-balancing superiority. This figure justifies focusing on load and
throughput metrics rather than coverage—the bottleneck is clearly capacity, not radio
quality.
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SINR by Positioning (Method 1)
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Figure 4.12.: SINR Comparison by Positioning Strategy

Among the three placement strategies, K2 (Hotspot Overlay) [31] emerges as the clear
winner, achieving the best macro cell relief (0.604 load) while maintaining competitive
throughput (24.272 Mbps). K3 attains higher throughput but compromises on macro
relief (0.697 load), while K1 underperforms on both metrics. These results underscore
an important principle: spatial targeting is more effective than geometric balancing for
non-uniform traffic distributions [31][34]. Placing the small cell directly in the traffic
hotspot concentrates capacity where it is most needed, matching real-world operator
practice at high-demand venues, such as stadiums or concert halls.

4.3. Method 2: Transmission Power Adjustment

While Method 1 (small cell deployment) requires capital investment and new infras-
tructure, transmission power adjustment represents a parameter-based remediation
approach using existing hardware. This section evaluates whether increased trans-
mit power can mitigate resource-limited overload by improving signal strength and
SINR.

4.3.1. Concept and Parameters

Transmission power adjustment represents a parameter-based remediation method that
does not require additional hardware deployment. The hypothesis is that increasing
base station transmit power improves received signal strength and SINR, thereby
enabling higher modulation orders and per-user throughput[15] (Chapter 5). However,
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this approach only benefits resource-limited overload if the constraint is signal quality
rather than radio resource availability.

For this method, transmission power was increased incrementally in 3 dB steps (from
30 dBm baseline to 33, 36 and 39 dBm) while keeping all other baseline parameters
[13]. The 3 dB step size was chosen to represent meaningful and practical increments
(each 3 dB = 2x linear power increase) while respecting regulatory limits for n78 band
(40-43 dBm max).

4.3.2. Results

Table 4.4.: Summary of KPIs for transmit-power sweep (Method 2)

KPI Tx 30dBm Tx 33dBm Tx 36dBm Tx 39dBm Tx 60dBm
DL_Load_mean 0.836 0.836 0.836 0.836 0.794
DL_Load_p95 0.838 0.838 0.838 0.838 0.824
DL_Thrpt (Mbps) 27.697 27.697 27.697 27.697 28.336

n (bit/s/Hz) 2.770 2.770 2.770 2.770 2.834
SINR_m (dB) 62.572 65.496 68.496 71.496 91.195
SINR_p5 (dB) 38.951 43.573 46.573 49.573 67.703
SINR_p50 (dB) 64.868 66.711 69.711 72.711 94.891
SINR_p95 (dB) 79.290 82.400 85.400 88.400 111.338
BLER_m 0.839 0.839 0.839 0.839 0.833

Surprising result: Power does not relieve capacity-limited congestion. Con-
trary to expectations, increasing transmission power from 30 to 39 dBm did not
reduce cell load or improve throughput. Table 4.4 reveals a significant asymmetry
in the results: cell load and throughput remained constant (load 0.836, throughput
27.697 Mbps) while SINR improved dramatically (62.572 — 71.496 dB mean). The
scheduler was demand-saturated rather than signal-constrained—increasing transmit
power improved signal conditions but could not create additional radio resources.

Figure 4.13 visualizes this critical finding: the cell load curve is completely flat across
30-39 dBm (operational range), with only a marginal dip at 60 dBm (theoretical
boundary) [15][20]. This horizontal line directly contrasts with what one would expect
in an interference-limited scenario, where improved signal quality should translate to
lower load. The flatness of this curve is the key evidence that capacity, not coverage,
is the bottleneck.

Figure 4.14 demonstrates the disconnect between signal quality and congestion relief.
SINR increases monotonically from 62.572 dB (30 dBm) to 91.195 dB (60 dBm), show-
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Cell Load vs Tx Power (Method 2 - Extended)
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Figure 4.13.: Mean DL Cell Load vs. Transmit Power
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Figure 4.14.: Mean SINR vs. Transmit Power

ing excellent signal quality improvements. However, this signal-quality gain translates
to zero cell-load improvement [15][20]. This figure pair (flat load + rising SINR) is
essential for proving that the bottleneck is radio resources, not interference. In an
interference-limited scenario, the SINR improvement would have immediately reduced
cell load; here it does not, validating the diagnosis of resource-limited overload |20,
Chapter 15].

Implications for remediation strategy selection: This finding demonstrates a
critical principle for network operators: diagnosing congestion type is essential before
selecting remediation methods. Transmission power adjustment is most effective for
interference-limited or service-quality-limited congestion, where poor SINR prevents
UEs from achieving adequate data rates [15, Chapter x|,[37][11].
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The 60 dBm result serves as a theoretical boundary condition, showing that even
unrealistic power levels cannot overcome resource scarcity in this scenario. This
validates that Method 2 (transmit power adjustment) is ineffective for resource-limited
high-load scenarios and reinforces the need for capacity-adding solutions (small cells,
bandwidth scaling) instead.

4.4. Method 3: Bandwidth Scaling

Bandwidth scaling represents a spectrum-based remediation strategy that directly
increases cell capacity by allocating wider frequency channels. Unlike power adjustment
(signal quality) or small cell deployment (spatial distribution), bandwidth scaling
directly expands the PRB pool.

From equation 2.2, the Shannon-Hartley theorem establishes that channel capacity
scales linearly with bandwidth:

C = B -logy(1 + SNR).

In practical terms, doubling bandwidth (e.g., from 10 MHz to 20 MHz) approximately
doubles the theoretical capacity. In 5G NR, this translates directly to proportionally
more Physical Resource Blocks (PRBs): each 5 MHz of spectrum at 60 kHz subcarrier
spacing provides approximately 26 PRBs. Thus, scaling from 10 MHz (~ 51 PRBs) to
15 MHz (~ 79 PRBs) and 20 MHz (=~ 106 PRBs) effectively multiplies the scheduler’s
resource budget.

The fundamental question this method addresses is: In a resource-limited scenario,
does expanding PRB availability reduce cell load and maintain throughput? This
evaluation is performed under an optimistic assumption, that sufficient spectrum is
available to quantify the technical potential of bandwidth scaling as a congestion
remediation.

The per-slot throughput [43] at any base station is governed by the following relation-
ship between physical layer parameters and protocol efficiency:

BitsPerBlock

Throushput — (1 — BLER) -
roughput = ( ) TransmitTimePerBlock

where:

e BLER is the probability that a transmitted Physical Resource Block is corrupted
due to poor channel conditions
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if nMobileUes > @ and nStaticUes == 0:
totalBandwidth = 10.e6 # 70.e6 default

elif nMobileUes == @ and nStaticUes > 0:
totalBandwidth = 30.e6

elif nMobileUes > @ and nStaticUes > 0:
totalBandwidth = 100.e6

Figure 4.15.: Python Code for setting the bandwidth in the simulation environment.
Part 1

e BitsPerBlock depends on the Modulation and Coding Scheme (MCS) selected;
higher MCS (e.g., 256-QAM) pack more bits per symbol, but require higher
SINR

e TransmitTimePerBlock is fixed by the slot structure (typically 0.5 ms or 1
ms in 5G NR)

4.4.1. Parameters and Simulation Configuration

In 5G NR, at 60 kHz subcarrier spacing (numerology p = 2), each 5 MHz channel
accommodates approximately 25-26 PRBs [43]. As established in Section 2.3.3, a 10
MHz channel provides ~ 51 PRBs, 15 MHz provides ~ 79 PRBs, and 20 MHz provides
~ 106 PRBs.

The baseline scenario was repeated with bandwidth scaled to 15 MHz and 20 MHz,
while traffic demand per UE remained constant (3.19 Mbps DL, 0.459 Mbps UL per
UE, 60 UEs total). This provides an ideal-case evaluation: if sufficient spectrum is
available, does cell load decrease proportionally, and is throughput maintained or
improved?

The three configurations tested are:
1. Baseline: 10 MHz channel, =~ 51 PRBs
2. 15 MHz scaled: 15 MHz channel, ~ 79 PRBs (55% increase)
3. 20 MHz scaled: 20 MHz channel, ~ 106 PRBs (108% increase)

The increase in available PRBs is not perfectly proportional to the bandwidth scaling,
as guard bands and control channel overhead reduce the effective resource utilization,
particularly at smaller bandwidths [4]. Thus, the 20 MHz configuration provides
106/51 ~ 2.08 times the baseline PRBs, yielding an increase of (106 — 51)/51 ~ 108%
rather than the linear expectation of 100%. All other parameters (UE positions, traffic
profiles, antenna configuration, propagation model) remain identical to the baseline,
isolating the effect of bandwidth on resource availability and cell load.
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cc = cfg.ComponentCarrier(

carrierFrequency=3.7e9, # Carrier frequency in Hz. The channel mod
totalBandwidth=totalBandwidth, # The carrier bandwidth in Hz.
numerology=2 # The PHY layer numerology. Only numerlolc

)

Figure 4.16.: Python Code for setting the bandwidth in the simulation environment.
Part 2

Bandwidth scaling is performed by varying the carrier bandwidth parameter, as shown
in Figure 4.15 for the baseline and in Figure 4.16 for scaling runs.

4.4.2. Results

To evaluate the effectiveness of bandwidth scaling, simulations were conducted at 10
MHz (baseline), 15 MHz, and 20 MHz. Table 4.5 summarizes the key performance
indicators.

Table 4.5.: Summary of KPIs for bandwidth scaling (Method 3). Bandwidth values represent
allocated spectrum for the gNodeB; 10 MHz is the baseline operational configu-

ration.
KPI 10 MHz 15 MHz 20 MHz
DL_Load_mean 0.836 0.500 0.188
DL_Load_p95 0.838 0.500 0.189
DL_Thrpt (Mbps) 27.697 28.728 10.672
n (bit/s/Hz) 2.770 1.915 0.534
SINR_m (dB) 62.572 56.435 56.117
SINR_p5 (dB) 38.951 28.411 33.931
SINR_p50 (dB) 64.868 57.804 57.844
SINR_p95 (dB) 79.290 77.816 71.704
BLER_m 0.839 0.832 0.938

Highly effective capacity relief at 15 MHz: Scaling bandwidth to 15 MHz was
highly effective for relieving resource-limited overload. Compared to the baseline 10
MHz scenario, cell load dropped dramatically from 0.836 to 0.500—a 40% reduction.
Critically, throughput remained stable (27.697 — 28.728 Mbps), indicating that the
network successfully utilized the additional spectrum to serve user demand without
quality degradation. Spectral efficiency decreased slightly (2.770 — 1.915 bit/s/Hz),
as expected when spreading the same load across wider bandwidth. SINR showed a
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Load & Throughput vs Bandwidth (Method 3)
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Figure 4.17.: Cell Load and Throughput vs. Bandwidth.

modest decrease (62.572 — 56.435 dB), expected due to wider bandwidth reducing
power density, but remained in acceptable ranges [20].

Figure 4.17 visualizes the capacity-load trade-off across the bandwidth sweep. The
dual-axis plot reveals distinct trends: cell load decreases monotonically from 0.838 (10
MHz) to 0.500 (15 MHz) to 0.189 (20 MHz), while throughput increases from 27.697
Mbps at 10 MHz to a peak of 28.728 Mbps at 15 MHz. The 15 MHz configuration
represents an ideal "sweet spot," where additional PRBs directly reduce resource
contention without degrading signal quality, allowing the scheduler to serve waiting
UEs more efficiently. However, throughput anomalously collapses to 10.672 Mbps at
20 MHz, a counter-intuitive behavior that suggests factors beyond simple bandwidth
scaling are at play (discussed in detail below).

Figure 4.18 shows SINR values across the bandwidth configurations. Mean SINR
decreases from 62.572 dB at 10 MHz to 56.435 dB at 15 MHz, with a slight further
reduction to 56.117 dB at 20 MHz. This decline is a predictable consequence of
spreading fixed transmit power over a wider frequency spectrum, resulting in lower
power density per subcarrier [20]. Critically, the SINR reduction does not prevent
the load-mitigation benefit at 15 MHz, indicating that the primary constraint on cell
performance is radio resource availability (PRB count), not signal quality or coverage.
This finding validates the thesis that targeted spectrum allocation can effectively
address high-load congestion in capacity-constrained scenarios.

Unexpected degradation at 20 MHz: The observed throughput for the 20 MHz
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SINR vs Bandwidth (Method 3)
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Figure 4.18.: Mean SINR vs. Bandwidth.

configuration is considerably lower than theoretically expected. According to Chapter
2 of Dahlman et al. [15, p. 35|, the peak data rate of a wireless system is controlled by
the available system bandwidth and the spectral efficiency:

Peak data rate = System bandwidth x Peak spectral efficiency

This relationship implies that, under the condition that the spectral efficiency remains
constant, increasing the bandwidth from 10 MHz to 20 MHz should roughly double the
achievable data rate for users, as more physical resource blocks become available for
user scheduling. However, in practice, the simulation’s combination of a fixed per-user
traffic demand as in figure 4.3 and limited scheduler adaptation led to underutilization
of the provided bandwidth in the 20 MHz scenario. As a result, the additional resources
were not effectively filled and overall network throughput did not scale as expected in
a real-world deployment with sufficiently high traffic demand.

Therefore, the throughput values obtained for the 20 MHz case in this simulation are
not representative of actual network potential, but rather reflect an artificial limit
set by simulation parameters. In operational 5G NR systems, increasing the channel
bandwidth produces proportional capacity increases - as long as user and traffic
demand, along with network configurations, are sufficient to utilize those additional
resources |15, p. 35].

Conclusion for Method 3: Bandwidth scaling to 15 MHz effectively mitigates
resource-limited overload with 40% cell load reduction while maintaining user through-
put. This method directly adds capacity by allocating additional PRBs, making it the
most technically effective of the three remediation strategies. However, significant
practical barriers limit deployment: acquiring additional licensed spectrum requires
regulatory approval and negotiation with other operators, and associated costs scale
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with bandwidth and geographic coverage. Despite its technical superiority, real-world
constraints mean that this method is reserved for scenarios where temporary spectrum
(e.g., event-specific licenses) can be obtained, or where permanent spectrum expansion
is justified by market demand.
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5.1. Evaluation and Comparison of Remediation Methods

Following the detailed analysis of the baseline scenario and three remediation methods
in Chapter 4, this chapter provides a comprehensive comparative evaluation. The
primary evaluation metric is cell load reduction relative to the high-load baseline
scenario (80%-+15%, 10s), with secondary consideration for throughput preservation,
SINR impact, and practical feasibility.

Table 5.1 summarizes the improvement (delta) values for each remediation strategy
compared to the baseline scenario. Delta values represent the difference in KPIs: nega-
tive values indicate improvement (e.g., lower load), positive values indicate degradation

(e.g., higher BLER).

Table 5.1.: Improvement vs. baseline (80%-+15%, 10s): A-values are averages across repeti-

tions.
Remediation Strategy A Load A Thr A SINR A BLER
(mean) [Mbps] [dB]
Method 1: Small Cell Placement
K1 (Geometric) —0.153  —8.400  —30.300 —0.049
K2 (Hotspot) —0.174  —3.400  —29.500 +0.021
K3 (Intermediate) —0.106  —2.000  —29.600 +0.016
Method 2: Transmit Power
30 dBm (baseline) 0.000 0.000 0.000 0.000
33 dBm 0.000 0.000 +2.900 0.000
36 dBm 0.000 0.000 +5.900 0.000
39 dBm 0.000 0.000 +8.900 0.000
60 dBm (theoretical) —-0.042  40.600  +28.600 —0.006
Method 3: Bandwidth Scaling
10 MHz (baseline) 0.000 0.000 0.000 0.000
15 MHz —0.336  +1.000 —6.100 —0.008
20 MHz (artifact) —0.648 —17.000 —6.500 +0.098
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Key observations from delta values:

Method 1 (Small Cells) shows modest but consistent load relief. K2 (Hotspot)
achieves the largest reduction (27.9% relative improvement), slightly better than K1
(-0.153) and K3 (-0.105). However, all three strategies incur throughput penalties
(-2 to -8.4 Mbps), reflecting the load-balancing trade-off: capacity is shared between
macro and small cell [11]. . SINR decreases significantly (-29 to -30 dB) due to reduced
transmission power concentration; nonetheless, resulting SINR values (32-33 dB)
remain acceptable [20].

Method 2 (Transmit Power) shows zero improvement for cell load and throughput
across all realistic power levels (30-39 dBm), confirming the resource-limited nature of
overload. Only SINR improves (42.9 to +8.9 dB), which does not translate to capacity
relief. The theoretical 60 dBm case shows minimal load reduction (-0.042), validating
that even unrealistic power levels cannot overcome resource scarcity.

Method 3 (Bandwidth Scaling) achieves the strongest load relief. The 15 MHz
configuration reduces load by -0.336 (40% improvement) while maintaining throughput
(+1 Mbps gain). The 20 MHz result should be disregarded as a simulator artifact.
Critically, Method 3’s benefits come without the throughput penalties seen in Method
1.

5.1.1. Technical Performance Comparison

Cell Load Improvement: Figure 5.1 visualizes cell load improvement across all
strategies. The most striking observation is the flat response for Method 2 (trans-
mit power): all bars at 0 across the 30-39 dBm range, directly proving that power
adjustment does not address capacity-limited overload. In contrast, Method 1 bars
show modest negative deltas (-0.10 to -0.17), with K2 performing best. K2 shows
smaller error bars compared to other methods, though the limited number of replicates
constrains the strength of this statistical inference. Method 3 bars dominate, with
15 MHz achieving -0.336 load reduction — more than double compared to any other
strategy. The horizontal target line shows that Method 3 alone achieves relief to the
80% threshold without additional measures.

Signal Quality and Throughput Trade-offs:

Figure 5.2 reveals the divergent SINR behavior across methods. Method 2 shows a
clear upward trend (+2.9 to +8.9 dB as power increases), demonstrating excellent
signal quality improvement — yet this improvement provides no congestion relief (as
seen in the flat cell load response). Methods 1 and 3 show SINR degradation (-6 to
-30 dB), reflecting the trade-off of spreading capacity or power. Critically, even with
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Cell Load Comparison Across Methods
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Figure 5.1.: Delta Cell load compared Methods Compared to Baseline

-30 dB SINR reduction, absolute SINR remains in the excellent range (32-33 dB for
Method 1), so the degradation is not operationally problematic.

Figure 5.3 demonstrates the critical trade-off between capacity and throughput. Method
1 incurs throughput penalties (-2 to -8.4 Mbps), a consequence of splitting demand
between macro and small cell [11]. Method 2 shows no throughput benefit. Method 3
at 15 MHz remarkably shows slight throughput gain (+1 Mbps), the only strategy to
improve both load and throughput simultaneously.

Figure 5.4 synthesizes the load-throughput relationship, clearly showing Method 3 at 15
MHz as the only strategy achieving both load reduction AND throughput preservation.
Method 1 strategies lie along a trade-off frontier (lower load, but reduced throughput).
Method 2 sits at the baseline position (no improvement). This scatter plot makes
visually clear why Method 3 is technically superior, despite practical barriers.

5.1.2. Deployment Feasibility and Practical Constraints

Method 1 (Small Cell Deployment):

Method 1 offers the most flexible deployment timeline. For long-term congestion,
operators can install permanent small cells at known hotspots [11]. For temporary high-
load events (concerts, sports matches), mobile base stations , such as COWs [40] can
be deployed within hours. However, Method 1 requires significant capital expenditure
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SINR Comparison Across Methods
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Figure 5.2.: Delta SINR Comparison. Shows SINR improvement (positive A) for
Method 2 (transmit power) and SINR degradation (negative A) for Meth-
ods 1 and 3 due to load distribution or power density reduction.

for hardware acquisition and site preparation. Additionally, energy consumption of a
mobile small cell (typical 1-2 kW) exceeds the cost of temporarily boosting existing
cell parameters [9]. Method 1’s load relief (-0.17 at best) is substantial but incomplete,
leaving the system near the congestion threshold. Operators with existing mobile
infrastructure inventory may find this method most economical for recurring events.

Method 2 (Transmit Power Adjustment):

This method proved ineffective for resource-limited overload, as demonstrated by zero
cell load improvement despite significant SINR gains. While power adjustment can be
implemented via software update (trivial cost and deployment time), it provides no
benefit for the target scenario [15]. Method 2 is useful only for interference-limited or
coverage-limited congestion, which is a different problem than what was examined
here [15, Chapter 5][20]. This finding highlights a critical diagnostic lesson operators
must distinguish congestion type before selecting remediation. Applying Method 2 to
capacity-limited scenarios wastes operational effort.

Method 3 (Bandwidth Scaling):

Bandwidth scaling to 15 MHz achieves the strongest technical performance (-0.336 load
reduction, 40% improvement) with stable throughput. However, obtaining additional
licensed spectrum is expensive, requires regulatory approval, and involves negotiating
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Throughput Comparison Across Methods
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Figure 5.3.: Delta Throughput Comparison. Shows throughput change for each remedi-
ation. Method 1 incurs penalties (negative A) due to load sharing; Method
2 shows zero change; Method 3 shows stability at 15 MHz, collapse at 20
MHz.

with other operators for adjacent frequency bands [41|. The Implementation timescale
is measured in weeks to months. Method 3 is suited for permanent capacity expansion
rather than temporary event relief. In scenarios where temporary spectrum can be
licensed (increasingly common in developed nations for major events), Method 3
becomes very useful.

Winner: Method 1-K2 (Practical) vs. Method 3 (Technical)

The evaluation reveals a clear distinction between technical optimality and practical
feasibility.

Technically, Method 3 is superior: 40% load reduction with no throughput penalty rep-
resents the most efficient use of resources. If spectrum were freely available, bandwidth
scaling would be the obvious choice for any operator.

Practically, Method 1-K2 (Hotspot Small Cell) is the winner for this high-load event
scenario. It achieves 27.9% load relief (sufficient for most temporary situations), can
be deployed in hours via mobile infrastructure, and leverages existing operator assets.
While the throughput penalty (-3.4 Mbps) is non-trivial, the resulting 24.3 Mbps still
meets typical mobile broadband requirements at events.
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Load vs Throughput Trade-off
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Figure 5.4.: Load-Throughput Trade-off Space. Scatter plot showing each remediation
strategy positioned by cell load (x-axis, lower is better) vs. total throughput
(y-axis, higher is better). Baseline at top-left (high load, good throughput);
ideal remediation at bottom-right (low load, good throughput).

For long-term recurrent congestion at fixed locations, permanent small cell deployment
becomes economically justified [11]. For temporary events, mobile small cells represent
the pragmatic choice [40]. For permanent capacity expansion, Method 3 remains the
long-term solution despite regulatory barriers.

5.2. Evaluation of the Simulation Approach

This study employed an ns-3-based network digital twin integrating realistic mobility
(SUMO), ray-tracing propagation, and protocol-accurate 5G NR simulation. This
section evaluates the strengths and limitations of this approach compared to traditional
network simulators and analytical models.
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5.2.1. Advantages of the Simulation Approach

The ns-3 Playground multi-tool environment employed in this thesis offers several key
advantages over traditional network simulation approaches, particularly for evaluating
spatially dependent remediation strategies in realistic scenarios.

Using Real Geographic Data: Traditional network simulators such as ns-2 [25],
ns-3 [44] or OMNeT++ [46]| provide protocol-level accuracy, but typically utilize
abstract topologies and synthetic mobility patterns. In contrast, the approach pre-
sented here integrates real-world geographic data from OpenStreetMap, calibrated
ray-tracing propagation models (Sionna), and realistic user mobility traces (SUMO).
This combination enables spatially accurate analysis of localized congestion, which
is critical for evaluating positioning-dependent remediation strategies such as small
cell placement. The superiority of the K2 (Hotspot Overlay) positioning strategy over
geometric/intermediate splits (K1, K3) would not have been discoverable without this
spatial accuracy.

Accurate 5G Protocol Modeling: The ns-3 NR module implements the full
3GPP 5G NR protocol stack, including MAC scheduling, HARQ retransmissions,
and RLC segmentation [44]. This level of detail captures interactions between layers
that simplified analytical models cannot represent. For example, the observation that
increasing transmit power improved SINR but did not reduce cell load (Method 2)
required accurate modeling of PRB allocation dynamics which is a behavior that
emerges only from full protocol simulation.

Reproducibility and Controlled Comparison: The simulation was configured
to be deterministic in key aspects: ray-tracing propagation was pre-computed (not
re-calculated per run), traffic patterns followed constant bitrate (not random arrivals),
and SUMO vehicle movements used fixed seeds. This design choice, which is not
a simulator limitation, enables reproducible baseline comparisons. Importantly, the
study ran multiple replicates with different random seeds for scheduling and channel
estimation to assess whether results were sensitive to these stochastic elements. Sta-
tistical analysis confirmed narrow 95% confidence intervals [30] across all replicates,
showing that remediation method rankings were robust and not artifacts of particular
random seeds. This combination of controlled propagation with stochastic scheduling
variability provides a middle ground: reproducible scenarios without exaggerating the
precision of results. In physical testbeds, this level of control is impossible as environ-
mental variability, uncontrolled interference, and real-time traffic changes introduce
confounding factors that make isolated method comparison extremely difficult.

Cost-Effectiveness and Rapid Iteration: Deploying physical testbeds for three
remediation strategies across nine positioning variants would require substantial
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infrastructure (multiple base stations, spectrum licenses, measurement equipment)
and coordination with operators. The simulation approach enabled exploration of 27+
simulation variants (baseline + 9 Method 1 + 6 Method 2 + 3 Method 3 + replicates)
at the cost of computational time alone. This cost advantage is particularly valuable
during the exploratory phase of network planning, where multiple strategies must be
evaluated before committing to field trials.

Extensibility to Additional Scenarios: The modular architecture of ns-3 Play-
ground, as described in chapter 2 allows straightforward adaptation to other scenarios:
different event types (indoor vs. outdoor), alternative network topologies (multi-cell,
heterogeneous networks), or emerging 5G features (network slicing, beamforming, car-
rier aggregation). For example, extending this study to evaluate dual-connectivity or
inter-cell coordination schemes would require primarily software configuration changes,
not extensive software re-coding or hardware deployment.

5.2.2. Limitations and Scope of Validity

Despite its advantages, the simulation approach employed in this thesis has several
important limitations that affect the applicability of results.

Fixed Traffic Model: The simulation used constant-bitrate UDP traffic (2.8 Mbps
DL per UE) to represent mobile broadband demand. Real mobile traffic exhibits bursty
patterns, for example, from web browsing, video streaming with adaptive bitrate,
or background app updates, with high temporal variance. The fixed traffic model
may overestimate the severity of congestion in some cases (real bursty traffic would
have idle periods) or underestimate it in others (traffic bursts can overwhelm buffers).
The 20 MHz bandwidth scenario showed this limitation: the traffic model could not
saturate the expanded channel, leading to throughput collapse. This is a behavior
which is not expected in real networks with adaptive traffic demand [15].

Scheduler Simplification: ns-3’s proportional-fair scheduler approximates but does
not fully replicate vendor-specific implementations used in commercial gNodeBs (e.g.,
Ericsson, Nokia, Huawei). Real schedulers incorporate proprietary optimizations, QoS
prioritization for different traffic classes, and dynamic adaptation to interference
conditions. While the proportional-fair scheduler is widely accepted for academic
research, absolute KPI values (e.g., throughput, BLER) should be interpreted as
comparative rather than predictive of operational network performance.

Single-Cell Focus: This study modeled a single macro cell with one optional small
cell, deliberately isolating the high-load scenario for clarity. Real mobile networks are
densely deployed multi-cell systems, where inter-cell interference, handover dynamics,
and coordinated scheduling have a significant impact on overall performance. The
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remediation strategies evaluated here might interact with neighboring cells in ways that
are not captured by the simulation. For example, adding a small cell in a dense urban
deployment can create interference with adjacent macro cells, potentially reducing the
observed load relief benefit.

The decision to isolate the high-load scenario was justified by two main factors: it
allowed the underlying mechanisms of each remediation strategy to be understood in a
controlled environment and kept processing demands manageable. Simulating a multi-
cell baseline would have required far more UEs and significantly greater computational
resources, making the study less controllable. Future work could extend this approach
to more complex, realistic multi-cell environments to study how remediation techniques
perform under practical network conditions.

Applicability Statement: Despite these limitations, the simulation results provide
valid insights for the target use case: temporary, localized high-load events with pri-
marily mobile broadband traffic (such as concerts, sports matches, festivals). The
observed KPI trends (cell load reduction from small cells and bandwidth scaling; inef-
fectiveness of power adjustment for resource-limited congestion) align with theoretical
expectations from 5G NR capacity analysis [15] and operational reports from network
operators.

The simulation approach is therefore well-suited for exploratory strategy evaluation
and comparative analysis of remediation methods. However, findings should be val-
idated through field trials before operational deployment, particularly for absolute
performance predictions (e.g., "Method 1 will reduce load to exactly 0.66"). The
relative rankings and trade-off insights (e.g., "Method 1 achieves moderate relief
with immediate deployment; Method 3 achieves strong relief but requires regulatory
approval") are robust and directly applicable to network planning decisions.

Future Extensions. The modular ns-3 Playground framework enables several promis-
ing extensions to address current limitations:

e Implementing realistic traffic models (HTTP/2, DASH video streaming) to
capture bursty behavior.

e Extending to multi-cell scenarios with inter-cell interference coordination (ICIC)
and handover modeling.

e Integrating machine learning-based schedulers to evaluate advanced 5G opti-
mization techniques.

e Validating simulation results against field measurement campaigns from operator
partners.
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Such extensions would enhance the digital twin’s predictive accuracy while maintaining
its core advantages of reproducibility, spatial realism, and cost-effectiveness.
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6.1. Conclusion

This thesis evaluated three remediation strategies to address resource-limited high-load
scenarios in mobile networks using an ns-3-based network digital twin. The results
clearly identified Method 1 with positioning strategy K2 (Hotspot Overlay Small Cell
Placement) as the most practical and effective option for the use case studied. Deploying
a small cell directly at the traffic hotspot achieved a 27.9% reduction in macro cell load,
maintained acceptable throughput, and preserved strong SINR values. This method
outperformed transmission power adjustment (which did not improve capacity at all)
and also had advantages over bandwidth scaling at 15 MHz, which—while technically
effective—requires available spectrum and regulatory approval, making it less suitable
for rapid response scenarios.

Mobile solutions such as Cells on Wheels (COWSs) make Method 1 particularly well
suited for short-notice, temporary events. Bandwidth scaling to 15 MHz emerged
as a close second, and would likely be preferable in situations where additional
spectrum can be obtained quickly. As with all technical solutions, there are trade-offs:
deploying additional small cells increases both operational costs and maintenance
needs. Moreover, if the baseline scenario involved multiple gNodeBs or represented
a more complex, interference-prone environment, the results for each method might
differ, and performance would likely be affected by inter-cell interactions.

The ns-3 Playground demonstrated several strengths as a simulation tool in this study.
It enabled geographically realistic, reproducible, and protocol-accurate modeling and
supported systematic comparison of remediation strategies in a controlled environment.
Compared to traditional network simulators, the Playground’s integration of realistic
mobility and radio propagation was a key advantage, enabling spatially targeted
analysis vital for real-world network planning. These findings show the value of
digital twin simulations in the design and evaluation of practical network management
solutions.

Ultimately, this work shows that careful digital twin-based modeling helps network
operators make better decisions, especially when fast, data-driven responses to high-
load events are needed.
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6.2. Outlook

Several promising research directions remain open. Future studies should explore more
complex remediation techniques, such as carrier aggregation, advanced beamforming,
or Al-driven traffic management that adapts to dynamic user behavior and network
load. Another valuable extension would be to expand the baseline scenario to multi-
cell environments reflecting more realistic networks, with different cell types (macro,
micro, pico), more diverse user mixes, and dynamic handover and interference patterns.
Exploring scenarios with QoS-driven overload or mixed uplink and downlink congestion
would also help evaluate the broad applicability of remediation strategies.

There is also substantial value in applying the ns-3 Playground to alternative use
cases: event types with different mobility patterns, networks with automated resource
allocation, or studies involving real operator data for model calibration. These direc-
tions, along with more realistic and dynamic channel models (such as including fast
fading or evolving propagation conditions), would make simulation studies even more
robust.

Additionally, future research could investigate using realistic mobility traces (such as
SUMO trajectories) as direct input for base station placement optimization, enabling
RAN planning to adapt proactively to actual movement patterns rather than static
assumptions.

The continued development and refinement of digital twin models, combined with
field validation, will be the key to supporting future mobile networks that are reliable,
resource-efficient and able to meet the challenges of tomorrow’s connected society. To
conclude, the findings here contribute another piece to the broader field of digital twin
simulations for network planning. As research continues and tools evolve, simulation-
based insights will play an increasing role in developing realistic, effective solutions to
complex network challenges.
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A. Appendix

A.1. Note on Mobile UE Calibration in SUMO Mobility

During simulation setup using the SUMO mobility model, it was observed that the
number of mobile UEs requested for trajectory generation did not always match the
number of trajectories successfully created by SUMO. For example, requesting 60
mobile UEs typically resulted in only 57 valid SUMO trajectories due to constraints in
route availability and network configuration. To ensure accurate load calibration and
reproducibility, the simulation configuration was adjusted to use the actual number
of mobile UEs generated rather than the requested number. This correction was
consistently applied across all relevant simulation runs.

A.2. Static UE Positions in Mixed Mobility Scenario

To assess how remediation methods perform with different UE distributions, a sensitiv-
ity analysis was run using 20 static and 40 mobile UEs. The static UEs were placed at

Table A.1.: Static UE positions for mixed mobility sensitivity analysis.

Deployment Region | UE Count | Position(s) [z,y,z] (m)

Macro vicinity 4 [20,61,1.5], [24,62,1.5]
21,65, 1.5], [25,59, 1.5]

Hotspot vicinity 5 [50,32,1.5], [52, 31, 1.5], [54, 34, 1.5]
49,36, 1.5], [56, 33, 1.5]

Facility edges 4 [5,5,1.5], [75,65,1.5]
75,5, 1.5], [5, 65, 1.5]

Mid-cell distribution 6 [40, 60, 1.5], [35, 40, 1.5], [60, 50, 1.5]
30,25, 1.5], [45, 15, 1.5], [65, 25, 1.5]

Additional placement 1 [15,30,1.5]

strategic locations, as described in A.1 to test coverage gaps and load concentrations:
four near the macro cell base station, five clustered around the hotspot region, four
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at the facility edges, six distributed around the middle cell area, and one additional
position. This arrangement intentionally creates areas of varying signal strength and
competition for resources, allowing us to observe how the remediation strategies adapt
to non-uniform load patterns.

The 40 mobile UEs follow the standard SUMO-based mobility patterns described in
Section 3.2, ensuring that the sensitivity analysis combines realistic user movement
with controlled static anchor points to test robustness across diverse deployment
scenarios.
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